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ABSTRACT 

The propagation of hybrid wave (EH) 11  through an imperfectly 
conducting cylindrical guide filled completely with an imperfect dielectric 
has been treated as a boundary value problem. General expressions for 
attenuation and phase constants have been derived. 

INTRODUCTION 

The propagation of circularly symmetric wave through an imperfectly con- 
ducting guide has been treated by Carson, etc. (1936), Barrow (1936), Linder (1942), 
Hetrick (1950). But the problem of propagation of higher order waves through 
an imperfectly conducting guide filled with an imperfect dielectric has not yet been 
solved to the best knowledge of the author. It is the object of the present paper 
to discuss the propagation of higher order waves as a boundary value problem and 
derive general expressions for attenuation and phase constants for (Em il  wave 

by considering the losses contributed by the dielectric as well as the boundary wall 
of the guide. 

FIELD COMPONEN1S 01 "I lit: HYBRID ( EH 	WAVI 

In the case of a guide having infinitely conducting wall and filled with a per- 
fect dielectric, the boundary conditions are simply E, 	

Ep - 0 at the surface 
1 
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of the guide, and it is possible for either E or H wave to exist independently of the 
other. But, in the case of a guide having imperfectly conducting wall and eon- 
taining an imperfect dielectric, the boundary conditions are the continuity or the tangential components of both electric and magnetic fields. This double set of 
boundary conditions show that the E or the H wave cannot exist alone unless the 
wave is circularly symmetric. In this case, both E 3  and H it  are required for the  
analysis. Or, in other words, in the case of higher order waves we have to con- 
sider the co-existence of both the E and the H wave. Let us consider the ease of 
(EF1)11  wave. The field components of E n  and H 11  waves in the dielectric are 

En  Wave: 

=-- A" cos .1 1  (MO exp(frot 	h°z) 

h° 
Egi  = 	A" 

Xi
-
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 cos 4 J 1 ' (X, °r) exp (jcot 	h°z) 
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cis J 1  (Mr) exp (jcot 	h"z) r 
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A 1 
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jA'cue 

cos 9!) J 1 ' (X l er) exp Out h°z) X 1 ° 

Hu  wave: 

jA°coiz i  I 
11 1' 2 	k1 2  r 

sin J 1  (X?) exp (jcot ez) 

jA °ugh 
Eth = 	

k 
cos # J1 ' (Xi") exp (hot — ez) 

i k 

kin  = A° cos J1  (x,"r) exp (fad - 1(z) 

H il  = 	
AM' 

- k21  cos 4) r i  (X1 " r) exp (jail 	z) 

A°h" 	I. 
thiq = h.2 ki 2 r  sin # .1 1  (Mr) exp (jcot — 1(z) ( 2) 

In order to satisfy the energy conditions at infinity, the Bessel functions ys 
are 

Hankel functions H's for the field components in the boundarY 
The field components for the En  and H11  waves in the wall 

to be replaced by the 
wall of the guide. 
of the guide are 

• 
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En  wave: 

E :2 = B" cos 96 H 1 o )  (X,°r) exp (jail 	h°z) 

XG °  
E r  2 	13" 	cos Hi m' (X 2 °r) exp (pot — huz) 

h° I 
-r  sin Irk H1 (1)  (X 2 ° exp (pot — h°z) 

Et= B it  x  o 	
(3) 

2 

B e Cro I 
- sin 49 	(X,°r) exp (pot — 0z) 

ls 	
XIIJF°7  r 

13"a2  
H1p 2 =-- 	---5  cos H 1 ( 1 )' (Mr) exp (Rot — 11 0::) 

X, 

H11  wave: 
/13 ° ‘011 2  1 
--- 	sin H 1 " )  (X," r) exp (pot — fi NZ) 

EP2 	1C2 1- k 22  r 

irC011/2 
\/ -0  k22  cos 4) H1 " (X 2 " exp (pot — 

H z2  = B° cos cf) H1(1) 	
(4) 

(X2 W  r) exP jug — 

B°h" 
H12 	h02+ k92  COS 0 Hlm' (X 2 " r) exp Veit 	IC:) 

BM' 
r  Hth 	- - - 	sin 4) H 1" )  (x2fin exp (pot — h4 z) 

7-2 	hff2+ k2 2  

where r, 4), z are the cylindrical co-ordinates, h° and 
h" are the propagation con- 

stants for the E n  and the H 31  wave respectively ; 	E l , al  and p. 2 , 62 , g2  refer 

to the properties of the dielectric and the boundary wall of the guide respectively 

k 2  — CO 2  1 	PI e l 

X i°  

1( 2 2  e2s- 

X 2 ° ------ 	h°1` 	k22 	
(5) 

x 2" \ h" 4—k? 
Xi° 	\,:k92 + k1 2  

the dielectric and metal wall of the guide respec- 
constants depending on excitation for the E

ll  

0) is the angular frequency of excitation. 
• The subscripts I and 2 refer to 
tively. A", 13" and A°, B" are 
and the 111L wave respectively. 

the superposition of the E n  and tin wan.a. 

wave in the dielectric and the wall of the guide The hybrid wave is formed by 
The field components for the (E1 - )11 

are respectively as follows: —  
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4 

• 
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tra 2  
— -0  COS ch F1 1"  (X 2 °0 exp (jwt h°z) X2 

Whir  I • + 
X2

0
2  r 

sin 96 H i ") (X 21r) exp (pot — hez) 

H:2  = B °  cos # F1 1 " )  (X 2 5.) exp (fad — 

BOUNDARY CONDITIONS 
• 

At r = a, the inner radius of the guide, the following conditions are satisfied 

En  (a) 	E:2  (a) 
	

4:1  (a) =---- H12  (a) 

Et (a) = E02 (a) 
	

H01  (a) r-  H02 (a) 
	

(8) 

CONDITIONAL EQUATIONS 

Applying the boundary conditions (Equation 8) the following conditional 
equation is obtained from (6) and (7) 

1 ][ 1 tan2  A r 	3-5-r2 	1 
a203 	r x i ° 	Xg v 	A2 

[W EI 

x 1 0 

J i t (X i °a) 
J (X 1 0a) 

H 	 I /42 Fi1 ui l (X 2"a) 	i.41  J1 ' (X i wa)i  

	

+f Hi m (X 20,2) j Lx2 " H 1 (n  (X 2" a) 	Xi " J (X i s a) j (9) 

Substituting 11,2 	ti o  and Ei 	E 	j a—all  in (9) and separating 

and the imaginary parts, the following two equations are obtained. 

	

Oh" 2 , [ I 	i1rl  

	

Pea w 	

—I  1 

	

tan ip x 0  — 	Lx202 

r we, 	vloco 	owfa, 	WE Ji 1  (Ma) JAXi nan 

LX1 °X2.  Ji (X t 00 Hi m (X 2 wa) 	xl ox ;  ii  0004 Ji  (Ma) j 

	

Xela  HS (X 2' a) 	(Xi sa) 
_ _ 

	

X2°  Ht(' )  (X; a) 	J1 (X i sa) 

PROPAGATION FACTOR 

Using recurrence relations, the Equation 11 reduces to 

	

Xi" , X 1' Hp (X s"a) 	I 	Jo(xi fra) 

rat, 	"r • - 	
-- 

— X t  *a 	Xi-"  Hi " )  (X s  a) 	X i  a 	(X i ' a) 

the . real 

(10) 

(12) 
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Using the following expressions for large arguments 

H (X 2" a) = 	?„ 
71.X2 wa 

(x Na) = 2  el (xtra- i 7r) 

	

TrX a 	 ( 1 3) 

the Equation (12) yields 

J o  (X:a) 	1 	. Xl e 
(14) J1 (Ma) — ;ma a  X 2" a a i  X2a 

Expanding is in the above equation by complex Taylor series 

Jo (X:a) ="- Jo (rot) 	(Xi sta — rot) Jo' (rot) 	• 	 

J1 (Xi Na) ="-- J1 (rot) el- (X i Na — rim) Ji f  (rot) + 	 (15) 

where rol  = 24048. Substituting (15) in (14), using the relation x 2"2 = ;et 
k1 2 	k22, rearranging the terms, separating the real and the imaginary parts, 

we obtain the following two equations 

atro/X:4 	are1 2X1 ff3  + X1 °2  (a2r01k2 2 	a2  r01 k1 2  — 2ar01 	2r01) 

X1 ' (aro/  2  lc/  2  — ar o/  2  k2 2 	ak 1 2 	ak2 2) 	2rin (k2 2 	k1 2) 
	

(16) 

	

a2X 1 "2  [X 1 "-2r 01 ] VX: 2  —k 1 2  +k 2 2  =-- 0 
	

( 17) 

The propagation factor X: can be found from any of the above equations. 

PROPAGATION CONSTANT 

Equation (17) leads to the following conclusions:— 

(i) X1 12  = 0 which gives the propagation constant h" =jk 1  which yields the 
attenuation constant a =0. 

(ii) X I ' — 2r01  = 0 which yields h" ="Vk 1 2  — 4r01 2  or IC = — A.Mr oi 2 11;i  
In the former case, a = 0, 13 =Vk is a. 401 2.  In the latter case a is negative and 

=0. 

(iii) x1 "2  = lc/  2  — k2 2  or h" = jk 2  which gives a = 0. So, the solution of 

Equation (17) for X: is physically inadmissible in the present case. Let us consider 
the Equation (16) which is quartic in X:. The four roots of this equation obtained 
by Ferrari's method (Burnside and Panton, 1924) are as _follows:— 
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a' 	a 	2 

) N  = [ 	e ) 	e 	( 23,  — 4f)} 1 ] 

[ 	e ) 	{(4-2: — e) 2 4f)} 1 ] 

3X1" 	 + e  ) 	+ e 	(2 ) 2 	4f)}11 	(IS) 

+ e ) {GI + e ) 2  --- y  41 )11 
where, 

= A + B 1-‘3  

q 	-17  
A --- 

2 
B 	q 	+ 2 	4 	27 

A 2  

q r 
T 	

2A3 	 (19) 
sr /7  

A = 

1' = 4/31 8 a'2  8 — y2  

n is 
e2  74  — +Y 

f2 
- 8  + Y42  

roi  
a  a 

2 	2  )fit  
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ki 2  ( rot  b 2 	'01 k2 
= a 41 	a n2 	aro 

--5(ko2 	/c2)
a2 

k32 ) 

In Equation (18) J. is the real root of the cubic 

y3 1354 + / al k — 48) y 413'S — a'28 —y 2  = 0 

The other two roots of y being imaginary have been discarded. Applying the 
relation h"=--- ‘11 " 2  -- 	a + jf? in Equation (18) where a is the attenuation 
constant and g is the phase constant, we find that h" in the case of the first and the 
second root assumes the form 

[{ 	 
3  + 1 )1  2 	)3 (20) 

In the case of the third and the fourth root h" assumes the form 

s' Is'—!'  )1 ] 
h ff3.4 == 	[( 	 2 	P./ 	2 	 (21) 

where the negative signs inside the brackets are for first and third roots only and 

, 

= RI — el — (i' -2.1) —102P-0c1 

u 	

(

a 	 a 

	

-fat 	{(2y -- 4f ) 	— e) 2 1 +  

S = [t2 	u2]i 	 (22) 

a' 	) 2  
I' 	{(T e 	(Y + 2f )1 	00 21,061  

ut =1
(
: e) { (2Y  41)  (a; ± e) 21 

SF =-- [e 2 	u'li 

It will be observed from (20) and (20 that for hi ff and h3 ", the attenuation con- 
stant a is positive when 19 is negative and vice versa. This means the existence . of 

either a backward wave of decreasing amplitude or a forward wave of increasing 
amplitude. As we are concerned with a forward wave of decreasing amplitude 

the two progapation constans h: and h3 " and hence 'x i " and 3X: being physically 
, 
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inadmissible are discarded. In order to find which of the other two roots is valid 
let c 	2.5 and cr2  = 5.7 x. l0 5  el/cm.,  a = 2 cm. Substituting these values of 
El , g2  and a in (19) it is found that both e and sf are >> a'• Also, e 2 	v and 
f ".; 42. Substituting the values of e and f and neglecting a' compared to e and 
in the expression for 2X1 ', it is found that 2; 11  nearly vanishes and ? jk, which 
yields atr--: 0 and 	The root 2X1, therefore, does not yield a valid solu- 
tion. Considering the other root it is found that X 1 	j f — e 	(e2 	4y)i) which 
yields 

h=---- 	(S1 	t1)i i 	j 	(s1 	 (23) 

where the primes and the superscript in X, and h have been dropped and 

e2  
== k- 2 	= 	e21 	01 2  4- u1. 2) 	 (24) 11  2 " 2  

ATTENUATION AND PHASE CONSTANTS 

From the value of the pro 
ecpressions for the attenuation 

1 e2 
a = -\//2  [{( 	— 

2 

e2 
= 

1
/ 

, 2  

pagation constant h (Equation 23), the following 
constant and the phase constant are obtained 

	

2 	3 41  i 

— 4 e 	k12  
elk 

	

\ 2 	3 	)1 

4 el + kl2  
(25) 

where e depends on the electrical properties of the boundary wall of the guide 
and the enclosed dielectric. 
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