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Abstract 

The asymptotic solution of a self-adlomt matrix ditferent~al system are obtained by means of an integral 
transformation, using Titchmarsh's complex variable method. This leads to finding the nature of the spec- 
him of the differential system. 
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1. Introduction 

We consider the differential system 

(L.- XF) U = O  

whcre, 

is a matrix differential operator, F, a 2 x 2 matrix and U = {u, v), A, a scalar. The 
(eqn 1) is equivalent to 

d2u du 
P o x  + ph - + plu + N - ~ ( F I I U  + 4 2 ~ )  = 0, dr 



348 S DASKANUNGO AND B R A Y  PALADHI 

0 s x < m, where h is an eigenvalue parameter; po, pb, qi,, qjl, E C[O, m); q,, 
r - .  as x-+ pi, q ~ ,  r 4 V I  for all b ) 0; PO, q o )  O in [O,m]; F is PDc 10, .I, 
along with the boundary conditions at x = 0, viz., 

i) pn(0) [a,~u(O) + ald(0)l  + qo@)[a,~(O) + aI&(o)l = 0, O' = 1.2). 6) 
ii) alk(j = 1,2; k =. 1,2,3,4) arc real-valued constants. 

iii) the set {alk; k = 1,2,3,4} is linearly independent of the set {a7k; k = 1,2,3,4). 

iv) qdO) h a 2 3  - a 2 4 4  + PO(O)(~JZ~ZI - a 1 4 4  = (4) 

The relation (4) ensures the self-adjointness of the system (2-3). 

In the present paper, we study the nature of the spectrum of the self-adjoint diffe- 
rential system2", the system being considered earlier by Bhagatl in solving some other 
eigenvalue problem, and obtain some generalisation of the results in Paladhi2 

The results and notations of  haga at',^, Chakraborty5, Paladhi2 and Titchmarshs are 
followed. 

2. Notations 

We use the following notations: 

44 = (A -  PI(^)) (X - 91(x)) 

F = (pi?) is PDC [O, m] means that F is positive definite and continuous over the 
interval [0, m]. 

(a ,  P) = alpl + azPz for any two vectors a = {a,, q), b = {PI. Pz} 

T(x)  = - ip;0p&(x)-'14 
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Thrs may be noted that S(t). S,(t) denote the same expressions for T(t), T,(t) ,  
respectrvelp, po and pi, berng replaced by qo, 96, respectwely. 

3. Downgrading of the coeCficients of the differential system (2) 

By using the transformation 

X 

5(x) = i SZ(~)"~ dt. 

0 
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d2( 
with similar expression for z- 
Thus, (2) transforms to 

p6 z(x) -"' + po z (x) -~ '~  + PO z(x)~/' { z ( x ) - ~ ~ ~ ( z ( x ) ~ ' ~ ) ~ ) ~  

1 
- ( p~pb ) ]q  - - [z(x)-' (hF12 - -)I} - az(x) '"{(z(x)-I")' 

40 
4 + (~(x)"~) '  z(x)-'/' + z(x)-~"} - 

PO d5 ('4 

and 
1 

= - - [z(x)-'(WZZ + qr) - ql )  + {(z(n)-"')' + (~(x)"~) '  z(x) "1 
& 40 

In (6), the coefficient of q 

1 = - -  ~Z(X)-'(AF,~ + pi; - pl + {(z(x)-'14)'+ (z)~)' '~) '  x z(x)-'7 
Pa 

pl, z(x)-" + po~(x)-~" {~(x)-'"(z(x)~'~)')' - K(Pop'o)l 

--t a finite numbcr under suitable conditions on po, pa, p', ql, Fu and the coefficient 
4 of 5 and -- are O(1) as x - +  w . 
d5 

d l  . Similarly, in (7), the coefficient of q, 6, - 1s O(1) as n + m. 
d5 

4. Derivation of an integral solution of the system (6,7) 

Let p(x) = z(x)"' H(x), H(x) = {HI(x), Hz(x)} 

where Hl(x) = 
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where z ( ~ ) ' ~ ~ H ~ ( x )  = z(x)li4 - z(x)-'" * - i - po - 
dx ' [  d x ]  : x ( ; )  

x 

We have, S sin (F;(x) - e( t ) )  H l ( t )  dt  
0 

. . 
Also by (10) we have 
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+ J&z(~)-'~} ur( t )  dt 

From (12-13), we obtain 

x [{ - z(t)ln + pi1 @I - AF&(t)-ln}q(t) + ( r  - AF,,) qil 

z(t)-'"~(r) + K( t ,  A)] d t ,  (14) 

where, K(t ,  A) = {F z(t)-% zC( t )  + pb(t)z(t)-'I4 

(IS! 

We have from (5) 

= i 4 ~ ) ' ~  PO (4 4 x 1  

?'(x) = i[(z(x)'I4 pb)' U ( X )  + z(x)'14 p0(x)u1(x)] 

so that 

ur(x)  = i [-z(x)-'I4 p;' 7 '  ( x )  + ( Z ( X ) ' ~ ~ ~ ~ ) '  z(x)-'" q(x)] (16) 

It then follows from (15-16) that 

= - T(0) ~ ( 0 )  sin 5(x) - S [sin (5(x) - S(t)) T'(t) 
0 

- i cos (6 (x)- E(t)) z(t)'" T(t)] ?(t) dt. (18) 
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~t follows then from (14, 15, 17 and 18) that 

+ i $ [sin ( 5  ( x )  - E(t))[{-z(t)ln + 
0 

Proceeding in the same way, taking (9) and (11) into consideration, we obtain 

['(x) = [ ( O )  cos [ (x)  + (- i A-' c'(0) - iS(O)[(O)) sin 5 (x) 

where S ( f )  and Sl(t) can be obtained from T(t) and T(t), respectively, replacing Po 
by qo in the expressions for T(t), Tl(t) (see § 2). 

Equations (20) can be written in the form 
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5. Some propositions 

proposition I: If the coefficients PO: yo, PI ,  qt,  r(x) in the differential system (2, 
satisfy the following conditions, viz.,  

(iv) py(x), q;(x) maintain their signs 

(compare  itchm marsh^, (Ch. V, p. 121) and ~ a l a d h i ~  p. 448), then the integrals 

and 

with respect to A over I A - p,(x) , / A - ql(x) 2 6, > 0 for 0 s x < m. 

Proof. We have, 
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s SQ(t)-' dt,  since / z(t) 1 > Q2(t) for t > A 
A 
<x 

inequality. 

= O(1) as n --t P, by conditions (i) and (v) 

= 0 (I), provided 0 < c < 1114. 
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= 0(1), O < c < 714, by conditions (v) and (vi). 

= 0(1), as x -+ a, since rqtl, ~ ~ ~ q , ~  E [L[O,m) by condition (i). 

Thus, the integral 

over 1 A-pl(x) 1 , 1 A-ql(x) 1 3 61 > O for 0 5 x < 

Similar results hold for the other integral 

Thus, the proposition is established. 

Proposition 2: If Im A > 0, O i  arg X < n, then exp[i E(x)] + as -r Isee 
Paladhi2, Lemma 111. 
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1 or, q+(x) = T q ( 0 )  [l + e-2"(X)] z(x) + ~ ( - X - ' ~ ( O )  - T(0) ~ ( 0 ) )  z(x) 

Now, (23) and (24) can be written in the form 
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where A = max [1-A-' rlr(O)-T(O) ?(0) / + 1 q(0) I , I -K15'(0)- 

S(0)5(0) I + 1 5(0) 1 I 
and 1 E;T(t) / = I E;l(t) I + / T(t) 2(tIm 1 

1 5:(t) 1 = 1 Ci(t) 1 + 1 s(t) ~(t)'" I . (26) 

We can take 1 G(t) 1 = max[ I S%) I , I G(t) I 1 = Mdt) say, (27) 

for otherwise the same lines of argument will follow with 

I c:(t) 1 = m a [  1 S:(t) 1 , I Z;(t) I 1. It follows then from (25) that 

x 
== A exp [S (a1+a2) dt, by Conte and sangren7 

0 

A exp [ I z(x) I S (or:(t) + orz(t)) dt], where a;(t) = aj(t) / z(t) I -'. 
0 
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The two integrals above in the R.H.S. are convergent by Proposition 1. Therefore, 
we obtain from (31) 

Id4 I . 1 5(x) I =s A exp(+))) exP [k I 4x1 I I 

= 0[ I exp(iW) I I exp(K P I ( ~ ) ~ I ( x ) )  I I. (32) 
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Also, z(x)-'{l+exp(-2i(t(x)-S(t))} ~(t)"' T(t)r l ( t )exp(-Kp~(x)q~(x))  

x exp (-iE(t)) I 
=z I {l+ex~(-2i(S(x)-S(t)))}z(t)-~ I I T(t).rl(t) I I exp(-iS(t) 1 

x I e x ~ ( - K ~ l ( t ) q l ( t )  I 
c K Z  / T(t)z(t)ln I by (32), where K2 is a constant. (35) 

But, S( 1 S:(t) I + 1 ~ ( t )  1 ) 1 z(r)-l 1 dt, f / T(t) z(t)-" I dt are convergent by 
0 

Proposition 1. 

Therefore, from (34) and (35), it follows that 

LI = .f +z(x)-' exp(-Kpl(x)ql(x))exp(-iS(t)) x {l+exp(-Zi(S(x)-S(t))} 
w m  0 
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proceeding in a similar way, it follows that 

[(x) -S*12 z(x) exp(Kp~(x)ql(x)+iE(x)) where S* = S1+S2 (37) 

x z(t)ln S(t) L(t) dt. 
We take 

Qt = { u k ,  v k } ,  k = 1,2 are two solution vectors of (2) satisfymg (2-4) and t% = 
h y k }  are also two solution vectors of (2) such that 

It foUows from (36-37) 

1 
q (xJ ) -  y z  (x) exp [K$l(x)q&)+iS(x)l Lj@) 

T/i(&A) - z(x) exp [Kpl(x)ql(x)+iE(x)l sj (A) 

Lj(X) -- {Llj(h), Lzi (A)), SJ(A) -- {S~j(h), sdh)} .  

'%,h) -- {VI ,  .2), y(x,h) {VJh yd; 

and Lq are independent o f  x; U, (x)  = iz(x)'" @o x,(x), q@(x)} 

and ?(x) = i z(x)'"(p0ui(x), qOvJ{x)) 
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8. Main theorem 

Theorem. The spectrum of the differential system (2-4) is a countably infinite piir 
spectrum in (-m,m) if all the conditions (i)-(vi) of Proposition 1 are satisfied by th 
potentials PO, 40, PI, 41, d ~ ) .  

Proof. We consider two solutions of (2-4), viz., 

Therefore, 

But for non-real values of A, we have in the singular case 0 S x < at least two 

linearly independent solutions of (2) say W, (x, A) (r = 1,2) such that 

W&,h) a LZ [0, m) ( ~ h a ~ a t ' ~ ~ )  

If $1 be an L2-solution of (2), we must have 

since li2i exp [iS(x) + Kpl(x)ql(x)] ~ ( 2 ) ~ ' ~  -+ m as x -+ m. 

Similarly, if +2 be an L~-solution of (2) we have 
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11 follows from (40-41) that 

m, (A) = where U&), D(A) 
D(A) 

functions of A1 expressible in terms of L3, S&). It follows by argument similar 
to paladhi' pp. 457-458) that U&), D(A) are integral functions of A. Therefore, 
m,,(h) are meromorphic functions of A over (-m, m). 

The spectrnm of the system (2-4) is, therefore, a countably infinite point-spectrum 
in the interval (-m, m). 
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