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Abstract | This work focuses on the static analysis of functionally
graded (FGM) and laminated doubly-curved shells and panels resting
on nonlinear and linear elastic foundations using the Generalized
Differential Quadrature (GDQ) method. The First-order Shear Deforma-
tion Theory (FSDT) for the aforementioned moderately thick structural
elements is considered. The solutions are given in terms of general-
ized displacement components of points lying on the middle surface
of the shell. Several types of shell structures such as doubly-curved
shells (elliptic and hyperbolic hyperboloids), singly-curved (spherical,
cylindrical and conical shells), and degenerate panels (rectangular
plates) are considered in this paper. The main contribution of this
paper is the application of the differential geometry within GDQ
method to solve doubly-curved FGM shells resting on nonlinear elastic
foundations. The linear Winkler-Pasternak elastic foundation has been
considered as a special case of the nonlinear elastic foundation pro-
posed herein. The discretization of the differential system by means
of the GDQ technique leads to a standard nonlinear problem, and the
Newton-Raphson scheme is used to obtain the solution. Two different
four-parameter power-law distributions are considered for the ceramic
volume fraction of each lamina. In order to show the accuracy of this
methodology, numerical comparisons between the present formula-
tion and finite element solutions are presented. Very good agreement
is observed. Finally, new results are presented to show effects of vari-
ous parameters of the nonlinear elastic foundation on the behavior of
functionally graded and laminated doubly-curved shells and panels.
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1 Introduction

1.1 Background

Shell theories based on the Kirchhoff-Love assumptions have been developed by various authors.
The effect of transverse shear deformation has been incorporated into shell theories in the same way
as in plates,” and the resulting theories are also termed shear deformation shell theories, where the
assumption of the preservation transverse normals to the shell middle surface after the deformation has
been abandoned. A comprehensive analysis for elastic isotropic shells was made by Kraus,” Gould,'*"
and Qatu.'®" In,'>" the shear correction factor has been eliminated by assuming a parabolic thick-
ness function along the shell lamina thickness and the initial curvature effect has been embedded into
the displacement field (also see Reddy and Liu'® for the third-order shell theory). The curvature effect
is not only included in the evaluation of the stress resultants as in Kraus,” Qatu,'®'” and Toorani and
Lakis," but also in the kinematic analysis of the shell. According to literature, there are three different
ways to calculate the thickness-integrated shell stiffness coefficients. The first is the Reissner-Mindlin
approach,”” in which the effect of curvatures is neglected [i.e., (1 +2z/R)™" » 1, where R is the local radius
and z is the thickness coordinate]. The resulting elastic stiffnesses are constant and do not depend on
curvatures. The second approach, proposed by Kraus’ and Toorani and Lakis,' is based on the Taylor
series expansion of (1 + z/R)™, and the third approach due to Qatu'® evaluates the shell stiffnesses by
exact integration of the elastic constants through the shell thickness. Due to these considerations the
stress resultants directly depend on the geometry of the structure in terms of the curvature coefficients
and the hypothesis of the symmetry of the in-plane shearing force resultants and the twisting moments
is not valid. A further improvement of the previous theories of shells has been proposed by Toorani and
Lakis," in which a kinematic model is used in order to include the effect of the curvature from the begin-
ning of the shell formulation. When this hypothesis is considered, the strain-displacement relationships

have to change and, as consequence, the equilibrium equations in terms of displacements have to be
modified.

1-12

1.2 Present study

In this paper, we propose a shell theory, named General Shell Theory (GST) and compare its results with
those of the first-order shear deformation shell theory.”” Furthermore, the GST is employed to analyze
doubly-curved shells resting on linear (Winkler-Pasternak) and nonlinear elastic foundation. Due to the
increasing importance of the interaction of shells with an elastic medium, a nonlinear elastic founda-
tion including the linear Winkler-Pasternak one is introduced. Unlike the papers in the literature,* - all
effects of the foundation, are separately considered.

Over the years, different numerical tools that are used to carry out static and dynamic analyses of
every kinds of engineering problem are developed in literature,'*'>?***=% such as Finite Element Method
(FEM) and meshless methods. In this paper the fundamental equations constitute a system of second-
order nonlinear partial differential equations. Since the system is written as a function of the displace-
ments of the middle surface, it can be easily solved by using the Generalized Differential Quadrature
(GDQ) method. The mathematical fundamentals and recent developments of the GDQ method as well
as its major applications in engineering are discussed in detail in the book by Shu.”” The interest in the
use of this procedure is increasing due to its great simplicity and versatility. As shown in,*® GDQ tech-
nique is a global method, which can yield very accurate numerical results by using a considerably small
number of grid points. Therefore, this simple direct procedure has been applied in a large number of
cases™ ! to circumvent the difficulties of programming complex algorithms in the computer, as well as
excessive storage and computing time. In summary, the aim of the present paper is to demonstrate an
efficient and accurate application of the GDQ approach by solving the equations governing the static of
functionally graded and laminated composite doubly-curved moderately thick shells and panels with the
Differential Geometry (DG) tool. Furthermore, due to the fact that a nonlinear algebraic system of equa-
tions must be solved, an iterative method has been considered. The Newton-Raphson scheme has been
implemented in a MATLAB code in order to solve the nonlinear problem. The use of the GDQ method
allows us to obtain, in an easy way, the Jacobian matrix necessary for the Newton-Raphson method. A
high rate of convergence has been found and a maximum of three Newton-Raphson iterations has been
used for all the results obtained in this paper at each load steps considered. The nonlinear behavior of
all the analyzed structures due to the effect of the nonlinear elastic foundation is graphically reported
for different load steps. Different lamination schemes are considered to expand the combination of the
two functionally graded four-parameter power-law distributions adopted. The treatment is developed
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within the theory of linear elasticity, when materials are assumed to be isotropic and inhomogeneous
through the lamina thickness direction. A parametric study is performed to illustrate the influence of
the parameters on the mechanical behavior of functionally graded shell structures made of a mixture of
ceramics and metal.

In summary, the present study is based on four aspects. Firstly, an improvement of the first-order
shear deformation shell theory using a different kinematical model is presented and the shear correction
factor is included using a parabolic thickness function. Secondly, functionally graded and laminated
doubly-curved shells and panels are represented using the differential geometry tools to describe the
middle surface of the structure. Thirdly, an investigation has been carried out on the effects of linear
and nonlinear elastic foundations on the behavior of shell structures in the static case. In addition, all
the effects of the foundation are separately considered. Finally, the GDQ methodology coupled with the
Newton-Raphson procedure has been used to solve the system of nonlinear governing equations.

2 Governing Equations

A shell structure can be described by the position vector of an arbitrary point using an orthogo-
nal coordinates ¢, a’lo <g < a’ll), a, (0’3 <, < aé) upon the middle surface, or reference surface
r(a,, @), and coordinate { directed along the outward normal n(o,, o), measured from the reference
surface (=h/2 < {< h/2). h(a,, o) is the total thickness of the shell. A laminated composite doubly-
curved shell, as shown in Figure 1, has [ plies and the total shell thickness / is defined as

!
h=Yh (1)
k=1

in which h, = {  — { is the thickness of the k-th lamina. Starting from the position vector (e, @)
written in the global reference system, Ox x,x,, the shell structure is described using the Differential
Geometry (DG) tool”!h129296-102

h(a'pa'z)

R(ey, 2, ) =x(a, )+ S

m(a, ) (2)

where z=2{/h(e,, ) and z € [-1,1] is the dimensionless shell thickness. From equation (2) the loca-
tion of each shell point is a function of the position of the corresponding point on the reference surface
r(e, ¢,) and of the corresponding normal vector n(e,, &) to the reference surface (Figure 1). Moreover,
the position of the generic point of the shell volume is also a function of the shell thickness h(e,, ).
The three components of the shell reference surface (e, @,) along the three global axes Ox x,x, can be
written as

r(a, @) =n(a, o )e+n(an, @, )er+ (@, &, )ey (3)

Figure 1: Geometry and coordinate system of a laminated doubly-curved shell.
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wheree, e, e, are the unit vectors of the global reference system Ox x,x,. From the definition of the first
fundamental form, the Lamé parameters can be expressed as

A(eg,a) =t 1y, Az(al’a'z):\/r,z'r,z (4)

where r, for example defines the partial derivative with respect to . Moreover, by considering an
orthogonal curvilinear coordinate system O’c, e, ¢, from the position vector r(e, @,) (3) the normal
vector n(¢,, @,) can be written as

r, Xr,

AA, ©)

n(“v%):

Due to the fact that an orthogonal curvilinear coordinate system O, ¢, { is considered and following
the definition of the second fundamental form, the principal radii of curvature can be evaluated as

I, I I, I,

(6)

’Rz(apa’z):_

R (ey,05)=~
I -n Iy -n

The displacement field for a moderately thick shell follows the first-order shear deformation theory
(FSDT) and can be written as'>*

U\(a,2,¢) = Hu (e5,2) + ¢ (e, )
Uz(a'l’ap{)=H2“2(a'1’“2)+§52(a'1’az) (7)
Us (&’1,6&’2,§/)=u3 (apaz)

where

H =1+, H2=1+R— (8)

(u,, u,, u,) are the displacement components on the middle surface (£=0) of the shell, while (3, B,) are
the rotations about the ¢, and ¢, axes, respectively. Due to the displacement field (8), the relationships
between the generalized strains 7=[& & )\ /3 1 72 & @)y, 75,]" and the generalized displace-
ments u= [u, u, u, B, B,]" can be written as

7=Du ©)

where the definition operator D is defined as

¢ Reference Surface

______ Reference Surface

Figure 2: A doubly-curved shell: (a) subjected to external forces at the top surface and (b) resting on an
elastic foundation at the bottom surface.
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1 9 1 0A, 1
—— — — 0 0
A, 0 AA, de, R,
1 0A 1
o4 1 9 1 0 0
AA, 0y A, da, R,
1 0A 1
Lo 19 0 0 0
AA, da, A, 0a,
1 A
_i _ 1 9 2 0 0 0
A, da, AA, 0,
Lo 1R Lo O R B2
o AR 0oy AR} 0 A AR, 0, A, 0 A A, da,
1 04, 1 9 1 dR, 0 1 0A, 1 4
AA,R, 0y AR, 0, A,R; e AA, 0y A, da,
1 04, 1 9 1 9dR, 0 1 94 1 9
A AR, da, AR, 00y AR} 0 A A, da, A, 0y
Lo 1R 1 9 0 1o 1%
AR, 0, AR} da, A AR, 0y A, de, A A, I
0 0 Li 1 0
A, d
A, da,

(10)

According to the generalized Hooke’s laws,” the internal stress resultants and the internal couples
S=[N,N,N,N, MM, M, M, T, T,]" can be obtained as a function of the generalized strain
components (9)

S=A7 (11)

where the constitutive matrix A is defined as

Ao Ay Ao Ay Ao sy Ao A 00
Ay Anloy Aty A A ARy A Awey 00
Ak, Aaly Aebo Ay Aoy Ay Aego Ay O 0
Ay Ay Aely Aoy Aoy Aoy Aty Aoy 0 0
- Al Ay Ay Aoy Ao Ay Ao Al O 0 1)
Ay Aoy A Akey A Abe Ay Ak 0 0
Ao Ay Ay Ay Aoy Ay A Aaty O 0
Ay A Ay Aoy Aoy Ay Aty Aoy 0 0
0 0 0 0 0 0 0 0 AL, AL
0 0 0 0 0 0 0 0 A, Ay |
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The elastic stiffnesses A(’) are expressed in the following form

nm(pq)

1 Skn
— H H

qufz(pq):z [ Qe —=rar for 7,p,q=0,1,2 for n,m=1,2,3,6
k=li/k H1 Hz (13)
I Skt

(0 _ (k) H, _ _

Anm(pq) = 2 é'[ g({)Qnm[[ Hqu a¢ for 7,p,q=0,1,2 forn,m=4,5

- k

g(ni[l—ﬁ] (14)

hZ

Recently, different approaches have been presented to evaluate the engineering elastic constants Anm( - 10
the present paper, the relations of the elastic stiffness Anm (pq) AT€ numerically evaluated using the Generalized
Integral Quadrature (GIQ) in order to avoid numerical 1nstab111t1es For more details about the GIQ rule, the
reader can refer to the book by Shu.” Since the elastic constants Anm (pa) depend on the shell curvature (11),
the corresponding derivatives evaluated along the coordinates ¢, and ¢, directions of the reference surface
have to be evaluated. In order to perform this operation, the GDQ rule37 is used. Thus, the derivatives of the
elastic constants Al(](r; , are numerically evaluated. The correspondmg elastic constants Q can be found in
literature (see, for example),?*85#79293 in which Q () and Q are explicitly defined for a lamlnated composite
and functionally graded shells and panels. For the sake of clarity, they are reported in the following for the
k-th orthotropic lamina (see Reddy):®

f’{) =Q( Jcosto) +2(Q12 +2Q6?)Sln W cos? t9k)+Q cost o)
(]2‘) = (Q11 +Q22 —4Q66 )sin #Wcos? o™ +Q12 (sin 6™+ cos* ﬂ(k))
Q¥ = Wsin*e® +2 (Ql(’;)+ 2 )sin2 6Wcos? 0™+ Qlcos' o
c‘zf? =( - f’z‘)—zeé?)sin 605’6 + (- Q'+ 20 Jsin’ #cos o
W =(ef-af-20% )sm #9cos o +(Q12 ) +20l) Jsin0Wcos’ o (15)
66 _(Q11 +Q22 2Q12 —2Q66 )sin % cos? 6! +Qg;) (sin467(k)+ cos46’(k))

k) —Q44cos ¢9k+Q sin?g™®)
= (Q44 - Q( )cos 49(k)51n o™

ég];) =Qg§)cos oM+ +Q, )sm o™
where 0% is the orientation angle of the principal material coordinate system O’&'l&'zg'A’ of the k-th

orthotropic ply with respect to the laminate coordinate system O‘e;,0,¢. The elastic constants Q,(q’;,i in
the material co-ordinate system O’&, &, ¢ are expressed as follows:

k) (k K ok
o = E| QW = ESY QW = ny B
= 0k 2 T 0 o K12 T A0
1- 5 A 1- 5 1- A
(16)
(k) k) _ ~(k k) _ k
Q66 - 12 > Q4(14) - G13)’ gS - G§3)

where E, E,, G, G,,G,,v,are the engineering parameters of the k-th lamina. It should be noted that
for a complete characterlzatlon of an orthotropic material, parameters E,, v, , v,, have to be taken into
account as well.

For the functionally graded material k-th lamina the elastic constants QW =Q® (£ in the material

coordinate system O’ &, ¢ are functions of thickness coordinate ¢'({"€[¢}, ¢}, ]) and are defined as:

13
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- 1 (s I VU 41 (9) W AR
A= P @ m‘l—m@ O )= =44 (0

Q=6 0, W)=6¥(¢). Q¥ ()=c% () (17)

where the following relations have to be introduced:

N ()= ()=EP (0)=EY(9),
%1’; ()= uéﬁ (€)= vf’; <;v= ué’;’ (;>= (0, (18)
619 (0)=65(0)=6%(©)=6"(¢)

Typically, the functionally graded materials are made of a mixture of two constituents. In the
present work, it is assumed that the functionally graded material lamina is made of a mixture of
ceramic and metal constituents. The material properties of the functionally graded shell vary con-
tinuously and smoothly in the thickness direction { of each lamina and are functions of volume
fractions of two constituent materials. The Young’s modulus E® (), shear modulus G% ({), Pois-
son’s ratio v ({) and mass density p* ({) of the functionally graded shell k-th lamina can be
expressed as:

A=A - AT O+ Al
O ()= (B0 - R v () + £
W)= (- VO )+ )
G® i (¥)

for {, << (19)

2144 (9))

where p(c), Ec R V(Ck), Ve (%) and ,01(\4), Ey/» 1}1\}2 S VM) represent mass density, Young’s modulus, Poisson’s
ratio and volume fraction of the ceramic and metal constituent materials, respectively. In this
work, the ceramic volume fraction Vé )(g") follows two simple four-parameter power-law
distributions:”

(k)
k k ;k é év ‘
F(;Ml( (k)/l(k)/c(k)/l?(k)): LC( )(é‘/)__ 1—a( )(—( - +b(k) =2 2k

e i iy
® (20)
A0 p
V(2] 1o a®[ Sk S|y 0 Sk &
FGM 00,00, 00y Ve (§)=|1-a ( e hk]+b ( e
where the volume fraction index p® (0 < p® < o) and the parameters a®,b®,c® dictate the material

variation profile through the functionally graded shell lamina thickness. It is 1mp0rtant to remark that
the volume fractions of all the constituent materials should add up to unity:

v vl = 1)

In order to choose the three parameters a®,b®,c® suitably, the relation (21) must be always satis-
fied for every volume fraction index p® in each lamina. By considering the relations (20), when the
power-law exponent is set equal to zero (p® =0) or equal to infinity (p'¥ = o), the homogeneous isotropic
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material is obtained as a special case of functionally graded material. Some material profiles through the
functionally graded shell thickness are illustrated in literature.*-%

Following the principle of virtual works,'** the five governing equations in terms of internal actions
S can be written as

D'S+q+q;+q,; =0 (22)

The equilibrium operator D* is defined as

D, -D, D, D, -+ -—= %2 2 o
Rl Rl R1 Rl
; . . .. Dy D) D D;
-D, D, D D ——+ =% —L 2 o0 o
* 2 RZ RZ R2
D' = | . (23)
-— —-— 0 0 0 0 0 0 D D
Rl RZ
0 0 0 0 D -D;y D, D, -1 0
|0 0 0 0 -Dy Dy D Dy 0 -1

where

1 0 1 04 . 1 9 1 94,
+— Dy=——+——

A da, AA, da’ A, da,  AA, 8a'2
1 04, . 1 04
—2 D4 — il 0
AA 0 AA, da,

(24)

®
3

The generahzed external forces q = [q, q, g, m, m,]" due to the external forces @™, q,

q§+)’ ‘b > ‘13 8 % ) acting on the shell top and bottom surfaces are

] ]

b= (1) + o0 (0

o= H )+ R )
h Ok (9 (-
) - )
h Sk (). (-
=l LB )

Furthermore, the generalized external forces qf = [q]f qu qaf m, m,]" due to the linear

Winkler-Pasternak elastic foundation (k1 R k( ), k2 R kg N k§+ , k3 , Gt 7 G( )) acting on the shell bottom
and top surfaces can be evaluated using the static equivalence principle as

0 =_( e ( O )3 HE 10 ( B )3 Hg—)jul _ g ( K ( H )2 HE Z ) ( o )2 Hg—)j Y,

3 _ _ )3 h 2 _ _ \\2
oy =~ K00 () k0RO (HO) o =280 (1] 000 (1) )
gy =~ HE B+ R

{ )u3 +GIHOHOV uy + GV HOHDIVE 4y (26)
h + + 2 + - I\ - h2 + + - -
o ==2{ K0 (1) 1 40 (10 1 o -2 B 1O ) g

h( (), .+ ) =) (- )2 h2+++ =) (=) ro(-
g =2 () 80 (0 o 0 )+ 00
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where the Laplacian V(Zm) operator is defined on the shell bottom and top surfaces as

V2, - 1 82 1 : 0’
o
Jon o h R, 1 oA hn AR |D
AfAz(Hf )) 00, ,2p (H( )) ) 9 A?(Hf‘)) o 2A§R§(Hf‘)) 0oy |0y
Jo o h OR, 1 9A,  h R |
AlAg(H§->) 9% Ha2p ( ()) p 9% A;(Hg-)) dIa, 2A22R22(H§‘)) Ia, |0,
Vi, 1 0 1 0’

1 04 h OR, 1 9A R | o

h
A%&(Hﬁ*))z oe, ZA%Rzz(H§+))2H£+) ey A?(HH))ZG—&& 2A2R2(H+) Jda, ¢

1

N 1 oA h R 1A h R |

AIAZZ(HgJ’))Z 9, 2A22Rf(H§+))2H£+) I A;(Hg)) 9, 2A§R§(H§+))3 92, |9,

(27)

On the contrary, the generalized external actions q,,.= [q, . 4,,,, q3n1f 1y My, ]" due to the nonlin-

(=) (+) (+) (=) (+) - (+) (=) (+ (=)
ear elastic foundation (klnlmZ ’klnlinz ’anIinZ > k2nl1n2 ’ k3nlm2 ’k3nlm2 ’k1n11n3 ’klnlm3 ’k2n11n3 ’k2nlm3 ’k3n11n3 ’ k3ﬂlm3 )

can be expressed on the reference surface of the doubly-curved shell as follows:

|
i ) (W) ) 3 ()
) (Hf+>)“uz+§Hf+> Ce () g 2 ) ulﬂfij”H?)
A (10) -0 5 -2 (0] 2 () w2 )
G = kgn,)zsgn( iy + ,6’2)(( )ug+§Hg+)ﬁ22+h(H§+>)2u2,6;JH§+)H§+)+
s -—@)((Hw ) s ) )
A () 2o 2 ) o 2
(0 uz-%ﬂg->ﬂ;-7(ﬂg->)3 s (1) o

Gy =Kol sgn (s )oYV HY) Ko s (g )t Y H) K 1S kG HY

(28)
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h h 2 I h?
myp =—k 1n12 sgn(H ' ) Zﬂj[E(Hl(+)) ; +§ﬂ12 +7H1(+)”1/51]Hf+)Hg+)
h hi ()2 n oo R
lnIZSgn(H U= E 1)[_E(H§ )) u%__ﬂlz"-_Hl( )ulﬂle]( )Hg)
h 3K%
kl(:l)S E(Hl(+)) ?+—,51 +T(H( ) '6)+TH 1ﬂ1J )

9y 3n’ _ N
_(Hf)) u1+—ﬂ1 ( ) 1/4__ 1()u1/512jH§ 'u)
+) 2, "
Mo = ~Kyu1p 580 H Dy + 2 ﬂz ( ) u; +—ﬂ2 +— W, p |H
2 2 x ~ ~
kgngl sgn( ”2 __/52)[ ( ) uw __ﬂzz +_Hg )uzﬂzJHl( )Hg )

h 3 3h%
- g:l)3 E(Hg+)) 2+_ﬂ2+ 1 (H( ) 2/52+ 3 H 2ﬂ2) )
I k(.o 3h* - (-
_kgn;3 _E(Hg )) u; +_ﬂ2 + 1 ( ) 2/52 g )”zﬂzszl( )Hg )

The formulation of the linear and nonlinear foundations is based on the first-order approximate
assumption that the foundation is made of a homogeneous material of uniform thickness s, h).12

By replacing the kinematic equations (9) into the constitutive equations (11) and the result of this
substitution into the equilibrium equations (22), the complete nonlinear governing equations in terms
of generalized displacements can be written as

(L-L;-L,(u*,u))u+q=0 (29)

where L L(u)f’ L(ijw, i,j=1, ..., 5, are the equilibrium, the linear Winkler-Pasternak elastic founda-
tion and the nonlinear elastic foundation operators, respectively. As it can be seen, the nonlinear elastic
operators L, (W 1212, 30, /3] sy sty i3, B, f3,) are linear and nonlinear functions of the generalized
displacements themselves.

Three types of boundary conditions are considered, namely the fully clamped edge boundary
condition (C), the free edge boundary condition (F) and soft-simply supported boundary condition (S).
The following equations describe the boundary conditions introduced previously:

Clamped edge boundary conditions (C)

=ty =us =B =£=0 at y=a)ora, =, &)<, <a, (30)
=ty =us =B =£=0 at y=adyora,=0, & <n<a (31)

Free edge boundary conditions (F)

M M
N1+R—1:0, N12+R—12:0, T,=0, M;=M,,=0 at @=c or, =0, & <a,<a, (32)
1 2

M M
N2+R—2:0, N21+R—21:O, T,=0, My,=M,; =0 at os=dora,=0,, & <a,<c (33)
2 1

Soft-simply supported boundary conditions (S)

M
N +—L=0, u,=u;=0, M, =0, £=0 at = orey=01, &Ah<or<e (34)
1
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M
u, =0, N2+R—2:0, u, =0, f=0, My=0 at =) ora, =00, & <a<cq (35)
2

To consider complete revolute shells characterized by &, =2, it is necessary to implement the kin-
ematic and physical compatibility conditions between the two computational meridians with & = 0
and with &) =27.

Kinematic compatibility conditions along the closing meridian (o, =0, 27)

u (a,0,t) = uy (,275,1), 1, (4,0,t) = u, (€, 270,1), 15 (,0,1) = us (4,270, ),

A<on<oy  (36)
£(,0,t) = f(e,27,1), B (,0,t) = By (4,27, t)

Physical compatibility conditions along the closing meridian (o, = 0, 27)

M, (e;,0,t M, (27t
Nz(al,o,t)+M=N2(a/1,27r,t)+2(R‘7),
2 2
M, (e,0,t M, (e,27,t
NZl(a'l,O,t)+M=N21(a'1,2mt)+M, A< <al (37)

1 1
’Tz(allao)t) = 7“2(&’1)2”)t)) Mz(all)())t) = Mz(a])Zﬂ')t)) le(allao)t) = le(al)Zﬂ.)t)

Analogously, in order to consider toroidal and cylindrical shells it is necessary to implement the
kinematic and physical compatibility conditions between the two computational parallels with & = 0
and with ¢ =27.

Kinematic compatibility conditions along the closing parallel (o, = 0, 27)

w (0,a5,t) =u, (27,05,t), u, (0,0, ,t) = u, (271,0%,t), u3 (0,5 ,1) = uz (270,05, 1),

A (0at)= B (2manst), By (0ent) = B, (2,0 t)

Physical compatibility conditions along the closing parallel (o, = 0, 27)

A <o, <o) (38)

M 5 5 M, (2 5 >
Nl(O,QZJ)JFM:M(M,%J)JFM,
Rl Rl
M, (0,a,, M, 27, c,,
Ny, (0,a2,t)+%:le(ziz,az,t)+w, A<a,<a)
2 2

T,(0,%,t) =T, 27,2,t), M, (0,%,t) = M, (27,1 ), My, (0,2, ) = M, (27, 2, 1)
(39)

3 GDQ Numerical Implementation of Nonlinear Governing Equations

The GDQ method is used to discretize the derivatives in the fundamental system (29), written in terms
of generalized displacements, as well as boundary conditions (see Tornabene” for a brief review). For
all the computations reported in this work, the Chebyshev-Gauss-Lobatto (C-G-L) grid distribution is
assumed either along the curvilinear abscissa &, and . For this grid distribution choice the coordinates
of grid points (0(17., otzj) along the reference surface, in discrete form, are

N

0
i—1 a - o
a’li=[1—cos[11 7[]]( 12 1)+a'1°, i=1,2,..,1y, fora’le[a’?,a&l]

(40)

M

0
i—1 a -
azj:(l—cos[lj /Z']J( 22 2)+a§, i=12,...1,,, foraze[ag,aé]
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where I, I, are the total number of sampling points used to discretize the domain in ¢, and ¢,
directions, respectively, of the doubly-curved shell. It has been proven that, for the Lagrange inter-
polating polynomials, the C-G-L sampling point rule guarantees convergence and efficiency to the
GDQ technique.” ' For the nonlinear static analysis the GDQ procedure enables to write the gov-
erning equations (29) and the boundary and compatibility conditions (30)—(39) in discrete form,
transforming each space derivative into a weighted sum of node values of independent variables
using the GDQ rule”

9" f(x)
ox"

T
=25{l:’k)f(xk)) k=1)2,.,T (41)
k=1

x:xﬂl
Each approximate equation is valid in a single sampling point. Thus, the whole system of differential

equations has been discretized and the global assembling leads to the following set of nonlinear algebraic

equations
K,y (d,9) Kbd(é‘h’é;i):|[‘%:| |:fb:| m
R(J)= - = (42)
(©) {de(é‘baé‘d) K (d,03) |6 ] [fa] [0

in which the partitioning is defined following the subscripts b and d, referring to the system degrees
of freedom 6= [J, 6,]" associated with boundary 6, and domain &, respectively. In other words,
b-equations represent the discrete boundary conditions, which are valid only for the points lying
on the constrained edges of the shell §, and they are numerically represented by the first matrix line
of (42), whereas d-equations are the discretized equilibrium equations, assigned on the interior
nodes &,

The nonlinear deflection of the shell structures can be determined by solving the nonlinear algebraic
problem (42). In particular, the solution procedure by means of the GDQ technique has been imple-
mented in a MATLAB code and solved using the Newton-Raphson method. The load vector f=[f, f ]"is
applied incrementally and for each load value f, the Newton-Raphson iterations e are to be continued
until the required accuracy is reached. After the evaluation of the Jacobian matrix ](e) = g—}; © the fol-
lowing quantities are evaluated at each e-th iteration &

r r r

1A = R(519), Al = gler - 5 (43)

The residual R(9) is gradually reduced to zero if the procedure converge. For this purpose,
in the present approach, two different criteria are used and simultaneously satisfied at each e-th
iteration

”A(f) <p (44)

i o)

Here, the convergence tolerances 9, p are taken to be equal §= p = 107. For each r-th load step f*,
the generalized displacement field & can be obtained. For all the results presented in the following a
maximum number of three iterations has been used to converge to the solution.

4 A Posteriori Stress and Strain Recovery Procedure

The 3D Elasticity problem represents a starting point for all the engineering problems of mechanics. In
fact, the initial problem has been simplified using the well-defined hypotheses of the FSDT. Hence it must
be underlined that the approximated solutions found within a 2D Equivalent Single Layer (ESL) theory
work only under the limits of the theory. Since the 3D Elasticity equations are always valid for every elas-
tic problem, the approximated solution can be used to evaluate some quantities that had been neglected
by the FSDT. For example the in-plane stresses, their derivatives and in addition others quantities of
interest can be found solving the 3D equilibrium equations such as shear and normal stresses. 0929398100
Thus, starting from the 3D Elasticity in orthogonal curvilinear coordinates for a general doubly-curved
shell," the 3D equilibrium equations for a doubly-curved shell can be written as follows
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07, , [ 2 1 Jz_ 1 9o,  o,-0 94,

¢ "Ri+¢ Ry+( A (1+¢/R, )9 A4, (14 ¢/R,) 04

1 97, 27, 94,

A,(1+¢/R,) 3 A4, (14 4R,) 0

872"+r [ 1,2 ]z_ 1 802+ o—o, O0A
o R RS A (144/R,) 9 A4, (1+¢/R,) 0 5)

1 97, 27, aA;

A (1+¢/R,) 92 A,A,(1+¢)R, ) 944

a0, 1 1 1 07, 7, 04,

35”+0"[R1+(+R2+{ C A (rgR) 9 AA, (14 R,) 9

1 97, Don % 4 9,

_A2(1+;/R2) da, _A1A2(1+{/Rl)aa’2+Rl+§’+ R,+{

It can be seen that if the stresses (0, 0,, 7,,) and their derivatives ( 0,0, Ty Tm) are known in
all the points of the 3D solid shell, the above three differential equations can be seen as three independ-
ent differential equations of the first order that can be solved via the GDQ method along the thickness
direction {. It is worth noting that the third equation can be evaluated after the numerical computation
of the first two unknowns 7,7, and their derivatives T Do

In order to determine the unknowns present in the rlght hand side of the equations (45), it is pos-
sible to start from the static solution in terms of the displacements obtained in the previous paragraph.
Thus, after solving the static problem, all the displacements in the 3D solid shell can be written in dis-

crete form using the displacement field (7)

S
Uljm) = [” J”wj) +CnGi)

Ry
S , .
U2(7]m):{1+R2(U)]u2(1j)+§/m/ﬂz(y) fOrlZL,N,]:l,,M,m:L,T (46)
Usiim) = 165

where T is the total number of sampling points used to discretize the domain in ¢ direction. The C-G-L
grid distribution is assumed for the coordinates of grid points { along the shell thickness direction ¢

' :(l—cos(?:llﬂ)jg—g,mzl, 2,...,T, for{e [—g,g} (47)

Furthermore, the discrete external actions (ql((l])) ql((lj)) qz((z])) qz((z])) q3((1])) q3(»(1]))) acting on the top and

bottom surfaces due to the external forces and due to the linear and nonlinear elastic foundations can
be evaluated as:

() — ) () (+) ) Wy
1 1

Bi5) =4+ 41+ Doy = 60 R Vim) + Rang 80 (Ui Uy + Ko U )

T = ki) * 81 15) + o) = i) * Ky Vtr) Kooy 580 (U U * Koy U

T =) * )+ Bty = )+ K Ustir) * Koy 580 (Vs | USm) + b U (48)
B) =4y )+ Gy =) * M) Vi * ¥y 980 (Ui ) Uy + KU 3(111)

Ty = B0+ asts) * Doty = Do)+ K5y Vo) * Kt 82V U3+ Ko Ui

B0 =050+ 45145 By = %o+ KUt + Koot 588 (U U3 * Koy U
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By using the GDQ rule,” an approximation of the kinematic relations (9) can be obtained in discrete

form
" 0 1 & a0 Haij)
i) = 25 ) T

()

A k;l A Ao ; o R
o 1 (), ) 9Aaf M)
&) = 2.5k Usik) +
T A ia A Aol ;’“1 b Ra
1 < a0 i) 0A
}}l)z = thkl( k B
D amE T Y Ay dal,
1 Y 1) Uiy 0A,
T 29'3?( Uy i) Ey
D Ay &7 A Aag) O |
P ([ M — o %
i) — 1 2
VAR ) i ] 21<ij)le) 91y Ay Ra) % b
2(ij) aAl
* A zgzk ﬂuq a 1; Sz
133]) k=1 1G7)“* 2(1) 2 (ij)
o M(ij) 04, | 1 & 40 Uyy) IR, (49)
Zz(ij)=A AR, aa,‘ +A R Zgjk “z(ik)—ﬁ—
(u}f 2(if) " 1(3) ‘ V) “720) ™ 2(5) k=1 2(i7) ™ 2(5) (i)
1(ij 0A, 1 (1)
g‘z ﬂz
Al(ij)A G) 9 ‘( ) Ay g A
b= )  0A] 1 i?"‘“) - () OR
\(ij) = ik ki 2
: Al(ﬁu)f‘z(le(a)‘a% G AR i T ARy 9%
i) 94 L < a0
- i/
A IJ)A aa’Z (if) 1(i7) é ¢ Z(k])
Ml i aR uz i aA
a)( E Zgjk 1(1k A (J) aa}} - A A (J)R a—a,z
() 1(i7) 2R () 20G) ) 200) " 205) 77 )
% ﬂ yis hi)  0A,
i) " 3 A A
ey Ay 94y
Since the kinematic relation &, £, £, of the 3D shell medium are the following
gl(ijm) 1+§' /R ( ,] + mlzll(y))
0
“lim) =11z, /R CORE (50)
D T R — i +§/mw0 T~ 70,“ +§Vmw0,“
12(ijm) 1+§/m/R1(ij)( 1(5) 11) 1+C, /R %) ( 2(i) 2(1))
by using the well-known reduced Hooke’s laws? for elastic composite materials
Oi(iim) = fl)f(umﬁsz) (um)*Qfé)%z(um)
(i) = le il )+Q22 (i) Q26 Jiatin (1)

l2(ym) Q16 gl(;]m +Q t]m) +Q66 712(1]:11)
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and the GDQ rule,” the derivatives of the stress components 0,0, T, T,,can be approximated as

follows

01| _x )
n —gak O\ (kjm)
(ijm) "
J0: @
ﬁ = Z Sk ® O)(ikm)
2 k=l
(’Jm) N (52)
9| S om0,
aa'l ) . i 12(kjm)
(ijm) "
82'12 ‘1’2(1
B = ; 7 tkm
aaz (l]m) g jk 12(k )

By considering the boundary conditions at the bottom surface of the shell, the first two 3D equilib-
rium equations (45) in terms of shear stresses 7, , 7, can be directly and independently solved at each

reference surface points (¢, &) using the following linear algebraic systems of equations obtained via
the GDQ method

7

)

(i) =q (1) (Boundary condition at the bottom surface of the shell)

n(ijt) = q 1) (Boundary condition at the bottom surface of the shell)
i W, Ly 2 N 1 _ 1 20, ‘
& mk “1n(ijk) * “1n(ijm) Rl(ij) +¢ Rz(ij) +¢n A 1(3) (1+ S /R 1) ) ‘ 1l(ijm)
afim) ~ PiGim) 42| 1 97|
+ > +-
Al(z])AZ(t]) (1+§/m/R2(lJ)) (24 (,]) (1+§/ /R ) t]m)
B Tia(ijm) 04,
Ay A U@+{/RU) 2 )
for m=2,...,T

(53)

; 20
s‘i(l)fn,-- ir 1 + 2 _ 1 90,
; k “2 (]k) 2 (] ) Rl(lj)—i-;m RZ(I])+;"’ 1] (1+§V /R z] )

2 l(ijm)

+ Oi(ijm) ~ Pafijm) 04, ‘ +_ 1 82'12|
AyA U@+(/Ru) 2ls) U@+;/R ) im)
_ Z12(ijm) aAz‘
A4 ’J(H{/R u) (i)
for m=2,...,T

In order to satlsfy the second boundary condition at the top surface of the shell, 7,7 = ‘11 l])
and 7,,;r) = qz g )» respectively, the shear stress profiles can be linearly corrected in the following

manner

— _ ql((;)) In 1]T
z.ln(ijm) - Tln(ijm) + h g'/ + 2

_(Jr) fOI' m=1,...,T (54)
— Da(ij) ~ Zan(ijT)
an(ijm) = TZn(ijm) + (])T]({ + )
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Finally, the last 3D equilibrium equation (45) can be written in discrete form and solved via the GDQ
method

O(iin) = (U) (Boundary condition at the bottom surface of the shell)
Yo o L1 ) %, %dm
m n(ijk n(ijm -
pus )72 Ry + 6 Rag ) Riyt6m Ragy 6
1 8?1n| _ Tln(zjm) aA | (55)
Ay 1+ & /Ry) 9 |(l.jm) i Ao L+ S /Rogip) aal|(l])
1 8?2,, _ TZn(z]m) aAl |
26i) (1+§'/R21])8a'2|l]m) Ay ,}(1+g”/R1,])aa'2|
for m 2,...,T

where the derivatives 7, |, 7, , of the shear stresses 7, 7,, can be approximated using the GDQ rule”

97,
Sit m
aa,l (i) Z k n(kjm)
a7 (56)
2n
S nz )
aaz (i) z Jk (ik

In order to satisfy the second boundary condition at the top surface of the shell o, iT) = qs((t.;), the
correction profile of the normal stress can be defined as the shear stresses (54) as follows

—(+)
q ij _O-nz
5ﬂ(ljm) = O-n(ijm) +¥(; + ) for m =1...,T (57)

Furthermore, it is possible to use the generalized Hooke’s laws? in order to evaluate the out-of-plane
deformations Yo Yo €

n

~(m)— (m)—
” _ Css Tin(ijm) _C4’;1)2'2n(ijm)
1n(ijm) — =(m) ~ = 2
o T - @)
() —
¥ _ C4T Z'2n (1jm) C45 z.ln(zjm) (58)
2n(ijm) =
o - Ry
G —Cmg o _pm g om) .
£ _ “nlijm) 13 “1(ijm) 23 ©2(ijm) 36 }/12(1]m)
(iim) = =)

C33

It is worth noting that the relations (58) do not guarantee the strain compatibility. In fact, some
discontinuities can arise. However, the solution obtained in this way can be used as a good approxima-
tion of some quantities that are considered a priori constant or negligible by using the FSDT. In fact, the
stresses O, O,, T,, can be corrected taking into account the contribution of the approximated deforma-
tion £ using the following generalized constitutive relations

Oiim) = E_f(T))éi(um) + Cl((z )) 2(im) * Cl% ))%zwm) ¥ Cf(s )) i)
o) = C12 i)+ Ca2 Exm) + i Pintn) + C23" € (59)
Tagin) = Che €iim) * €56 €xtn) + Co Piatim) +Cot Exim)
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Thus, after the above considerations all the stress components (Gy,055 7155 71> Z2,,>0;,) of the 3D shell
medium are numerically computed using the relations (54), (57), and (59). Finally, the simple efficient
method for accurate evaluation of the through-the-thickness distribution of shear and normal stresses in
composite laminated shells presented above can be easily applied to different generalized displacement
field solutions obtained with other numerical methods and with more sofisticated kinematical models.
In fact, since no restriction has been assumed about the methodology used to perform the pre-processing
static analysis, the post-processing procedure proposed can yield stress distributions starting from the
knowledge of the displacement field previously evalauated with an altenative methodology different
from the FSDT solution presented in this work.

5 Numerical Results

In the present section, some results and considerations about the static problem of functionally graded
and laminated composite doubly-curved, singly-curved and degenerate shells and panels resting on
nonlinear elastic foundations are presented. The geometrical boundary conditions for a panel are iden-
tified by the following convention. Considering the Figure 1, the West edge (W) is defined by the rela-
tions @, = &, & < & < o, whereas its opposite, the East edge (E), is characterized by the relations
a, =, < o, < a. Likewise, the North edge (N) is defined by the relations &, = &, & < &, < @,
whereas its opposite, the South edge (S), is characterized by the relations ¢, = a'll R a'g <o < a’% Thus,
the boundary condition sequence for a panel structure can be represented with the following symbology
WSEN. In this way, the first side is the West edge, the second one is the South edge, the third one is the
East edge and finally, the last one is the North edge. For example, the symbolism CFCF shows that the
West and East edges are clamped, whereas the South and North edges are free. Differently, the CF symbol
denotes that the South and North edges are clamped and free for a revolution shell, whereas the West
and East edges are clamped and free for a toroidal shell. The missing boundary conditions are the kin-
ematical and physical compatibility conditions that are applied at the same closing meridians, the West
and East edges, for a revolution shell and at the same closing parallels, the South and North edges, for a
toroidal shell, respectively.

In order to verify the theoretical formulation proposed in the second section, the solution procedure
has been implemented in a MATLAB code.'® In this study the geometric parameters are calculated by
using the differential geometry, as it is shown in.””' Since a 2D Equivalent Single Layer (ESL) theory®
has been considered, it is important to specify in which surface the foundation is applied; it can be on
the bottom k™ or on the top surface k¥, depending on whether the foundation is considered to support
the structure. With the same symbology the top and bottom nonlinear elastic normal and in-plane stiff-
nesses have been applied.

Figure 3 shows the six investigated shell structures: a rectangular plate, a cylindrical shell, a conical
shell, a spherical shell, an elliptic paraboloid and a hyperbolic paraboloid. For these structure, the local
coordinate system and the reference surface vector r(c, ¢,) are shown in Figure 3.

For the present GDQ results coupled with the Newton-Raphson method, a Chebyshev-Gauss-Lobatto
grid distribution (40) with I, = I, = 31 is considered for all the shell structures depicted in Figure 3.
Moreover, a C-G-L grid of 31 points for each lamina is considered through the thickness of the shell.
The external load has applied on the top and bottom surfaces of the shell and the numerical value of
the nonlinear foundation varies from case to case and it is indicated in the corresponding figures and
tables.

Figure 4 shows the lamination schemes for the six structures analysed varying the value of the expo-
nent of the four-parameter power-law distribution adopted. Tables 1-6 present numerical results in
terms of the static center deflection of the six considered structures. The material properties used and
the lamination schemes adopted as well as the geometric parameters and the boundary conditions con-
sidered for each structure are indicated in Tables 1-6.

Figure 5 graphically shows some of the results of Tables 1-6 and presents the effects of various
parameters of the nonlinear elastic foundation introduced. Finally, Figures 6-23 report the through-
the-thickness displacement, stress and strain profiles for all the structures under consideration obtained
using the stress recovery procedure.

Table 1 presents results for a square plates (Figure 3a) with a (30/65/45) lamination scheme as shown
in Figure 4a. Two different composite material has been considered: Graphite-Epoxy and Glass-Epoxy.
The orthotropic materials and the lamina thicknesses, as well as the boundary conditions and lamination
scheme are also reported in Table 1. The external laminae are made of different orthotropic materials
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a) Rectangular Plate b) Cylindrical Shell
r(a,a,)=0,e +ae, r(a,a,)=—R cosa e —a,e+Rsina e

S
c) Conical Shell d) Spherical Shell
r(a,, a,) = (R, +asin o) cos a, e + r(a,, a,) = Rsin o, cos a,e +
— (R, +a,sina)sina,e,+ o, cosae, —Rsino sino,e, +R (1 —cosa)e,

e) Elliptic Paraboloid f) Hyperbolic Paraboloid
( 2 \ [ Ktan « Ktano, . )
r(a,a,)= \M —msinal le, + r(a,a,)= |——L ——— Lsina le +
2 4 ) L2
( 2 2 \ ( 2 2
_ Ktan a, et | Ktan® a, " Ktan” a, cos ale B Ktan a, e+ | Ktan” a, i Ktan® a, cosa,le
2 . 4 )3 2 . 4 4 )2

Figure 3: Different shell and panel structures and relative reference position vectors r(e,, o).

with respect to the middle lamina (see Table 1 and Figure 4). The thickness of the first and third laminae
are equal to h = h, = 0.03 m, whereas the second lamina has a thickness equal to h, = 0.04 m. Figure 5a
shows the response of the structure surrounded by different kinds of linear and nonlinear foundations.
The static center deflections are compared for seven different cases: the first has no foundation, the sec-
ond is a Winkler elastic foundation with kg_), the third is a Winkler-Pasternak elastic foundation with
K, Gﬁﬁ, the fourth is characterized by kg_) k=), the fifth considers kg_), kg;;z R G(f_) and finally the sixth

3 > M3nl2 >
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Figure 4: Lamination schemes and volume fraction distributions V_ for the six structures of Figure 1: (a)
rectangular plate of Table 1, (b) cylindrical shell of Table 2, (c) conical shell of Table 3, (d) spherical shell of
Table 4, (e) elliptic paraboloid of Table 5, (f) hyperbolic paraboloid of Table 6.

and the. seventh are characterize.d by the follow.ing. parameters kgf) , kg;% , kg;% and kg_) , kg;%z , k;% , G(f_),
respectively. In analogous way, Figure 5 shows similar results for the others five structures considered.

In order to validate the procedure in Figures 6—8 the GDQ results in terms of displacements, strains
and stresses are compared with 3D FEM solution obtained using Straus code. 16000 bricks with 20 nodes
are used to obtained 3D FEM solutions for the square plate with and without Winkler foundation.
The reference 3D FEM mesh is taken as 40 X 40 X 10, where 10 represents the number of elements
along the thickness direction. Very good agreement is observed with the FEM solutions as it can be seen
from the Figures 6-8, even though a 2D FSDT is considered.

In Figures 9-11 a cylindrical shell (Figure 3b and Table 2) is considered. The material properties are
reported in Table 2. The lamination scheme is reported in Figure 3b. Figure 5b reports the results by
varying the nonlinear elastic foundation parameters, whereas Figures 9-11 show the response of the
structure by varying the exponent of the four-parameter power-law distribution.
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The results in terms of displacements, strains and stresses for the conical (Figure 3c and Table 3) and
the spherical (Figure 3d and Table 4) shells, which have the lamination schemes reported in Figure 4c
and 4d, respectively, are shown in Figures 12—-14 and 15-17. Also for these two cases Figures 5¢ and 5d
present the structural response by varying elastic foundation parameters, whereas Figures 12—-14 and
15-17 show the response of the structures by varying the exponent of the four-parameter power-law
distribution.

In conclusion, Figures 18-20 and 21-23 present results for two doubly-curved panels: an elliptic
paraboloid of Figure 3e (Table 5) and a hyperbolic paraboloid of Figure 3f (Table 6). The lamination
schemes adopted are shown in Figure 4e and 4f, respectively. Also for these two last cases Figures 5e and
5f present the structural response by varying elastic foundation parameters, whereas Figures 18—20 and
21-23 show the response of the structures by varying the exponent of the four-parameter power-law
distribution.

As expected, from the parameter investigation the structural response of the last five structures does
not present any discontinuities in terms of stresses, strains and displacements, as it can be seen for the
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Figure 5: Static center deflection u, [m], at the point B = (0.5(cr} — &%), 0.5( e, — &))) for different load steps,
of six different structures resting on elastic foundations, using a 31 x 31 Chebyshev-Gauss-Lobatto (C-G-L)

grid distribution: (a) rectangular plate of Table 1, (b) cylindrical shell of Table 2, (c) conical shell of Table 3,
(d) spherical shell of Table 4, (e) elliptic paraboloid of Table 5, (f) hyperbolic paraboloid of Table 6.
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Figure 6: Through-the-thickness variation of the displacement component vector [m] at the point
G= (O.25(cr11 - a/?), 0.25(0'; - afg)), for a C-C-C-C square plate of Table 1 with a (30/65/45) lamination scheme
when uniformly distributed load q(;) =-10kPa is applied at the top surface: 1) 3D FEM (16000 Bricks
with 20 nodes), with no foundation; 2) 3D FEM (16000 Bricks with 20 nodes), with ké’); 3) 2D Shell

GDQ, with no foundation, 4) 2D Shell GDQ, with k{; 5) 2D Shell GDQ, with k$, G\, 6) 2D Shell GDQ,
with k), k$).; 7) 2D Shell GDQ, with k{7, k)., G; 8) 2D Shell GDQ, with k{7, k)., k{).; 9) 2D Shell GDQ,
with k§7, k$)o, k5., G
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Figure 7: Through-the-thickness variation of all the strain components at the point c:(0.25(a11—a/?),
0.25(a — @3)), for a C-C-C-C square plate of Table 1 with a (30/65/45) lamination scheme when uniformly
distributed load q‘;' =-10kPa is applied at the top surface: 1) 3D FEM (16000 Bricks with 20 nodes), with
no foundation; 2) 3D FEM (16000 Bricks with 20 nodes), with k$7; 3) 2D Shell GDQ, with no foundation, 4)
2D Shell GDQ, with k$7; 5) 2D Shell GDQ, with k5, G, 6) 2D Shell GDQ, with kS, k), 7) 2D Shell GDQ,
with k) k$),. G); 8) 2D Shell GDQ, with k{7, k(). ké;;:,; 9) 2D Shell GDQ, with k5, k$),, k)5, G,
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Figure 8: Through-the-thickness variation of all the stress components [Pa] at the point ¢ = (0.25((111 - af?),
0.25(a) — &), for a C-C-C-C square plate of Table 1 with a (30/65/45) lamination scheme when uniformly
distributed load q(;’ =-10kPa is applied at the top surface: 1) 3D FEM (16000 Bricks with 20 nodes), with no

foundation; 2) 3D FEM (16000 Bricks with 20 nodes), with kg"; 3) 2D Shell GDQ, with no foundation, 4)
2D Shell GDQ, with k$; 5) 2D Shell GDQ, with k$7, G\, 6) 2D Shell GDQ, with k), k{.),: 7) 2D Shell GDQ, with

k$), k), G 8) 2D Shell GDQ, with k), k), k{).: 9) 2D Shell GDQ, with k{7, k() k0. GO,
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Figure 9: Through-the-thickness variation of the displacement component vector [m] at the point ¢ =
(0.25 (e - @?),0.25(a5 - @) for a C-C cylindrical shell of Table 2 with a (Zirconia/FGM,

1 . . ' ) - (a(2i:1/.b|2)':1/cl£‘):
2/plz,)/erCOﬂla) lamination scheme, for different values of the exponent p = p®, when uniformly distributed

load g =10 kPa is applied at the bottom surface and a foundation k9,65 k) k) is applied at the top
surface.
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Figure 10: Through-the-thickness variation of all the strain components at the point c=(0.25(cf — &?),

0.25(a - @), for a C-C cylindrical shell of Table 2 with a (ZirconialFGM, c)_, e _y o1, ,y/ZirCONIa) lami-

nation scheme, for different values of the exponent p=p®, when uniformly distributed load q‘s»"‘ =10kPa is
applied at the bottom surface and a foundation k{”, G k(') k{1 is applied at the top surface.
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Figure 11: Through-the-thickness variation of all the stress components at the point c=(0.25(cf - &7),

0.25(exy — ), for a C-C cylindrical shell of Table 2 with a (Zirconia/FGMH (2,)/Zirconia) lami-

a®=1/p®=1/c® =2/ p

nation scheme, for different values of the exponent p = p®, when uniformly distributed load q§’> =10kPa is

applied at the bottom surface and a foundation k{”, G*), k{),,, k1), is applied at the top surface.
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Figure 12: Through-the-thickness variation of the displacement component vector [m] at the point

c=(0.25(cf - &7),0.25(e; — &), for a C-F conical shell of Table 3 with a (Zirconia/FGM, (@D =160 =0/ =

)/Zirconia) lamination scheme, for different values of the exponent p = p®, when uniformly distrib-

0/p® .
uted load q(;) =-10kPa is applied at the top surface and a foundation kg’),G}’), ké}’,z,kg’n% is applied

at the bottom surface.
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Figure 13: Through-the-thickness variation of all the strain component at the point ¢ =(0.25(cx — &),

0.25(a — &), for a C-F conical shell of Table 3 with a (Zirconia/FGMZ( @ JMQ,:O/C@.:O/W\)/Zirconia) lamina-

a
tion scheme, for different values of the exponent p = P2, when uniformly distributed load q(s*) =-10kPa is
applied at the top surface and a foundation k3, G,H, kg;),g, ké}ia is applied at the bottom surface.
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Figure 14: Through-the-thickness variation of allthe strain component [Pa] atthe pointc = (0.25(41/11 - a?),

0.25(ay — 2)), for a C-F conical shell of Table 3 with a (Zirconia/FGl\/l2(am:ub(g.zo/o'g,zo/p@, /Zirconia)

lamination scheme, for different values of the exponent p = p®, when uniformly distributed load
g% =-10kPa is applied at the top surface and a foundation kG, k{),, k$), is applied at the bot-

tom surface.
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/Zirconia/FGMH

2(a"=0.8/b"=0.2/c" =
lamination scheme, for different values of the exponent

a':":0‘8/13‘3’:0‘2/c"’"’:3/p‘3')) .
p = pM = p® when uniformly distributed load q‘;' =-10kPa is applied at the top surface and a foundation

k), G) k)0, K )a is applied at the bottom surface.
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Figure 16: Through-the-thickness variation of all the strain component at the point c=(0.25(c} - &),

0.25(as —-ag)), for a C-F spherical shell of Table 4 with a (FGM, 00_o.6 o 2/0[“:3/p“')/
Zirconia/FGIVl”au o8/b‘3’:oz/c'f”:3/p‘3’)) lamination scheme, for different values of the exponent p =
p" = p®, when uniformly distributed load q‘;’ =-10kPa is applied at the top surface and a foundation

k), G kS0, kS is applied at the bottom surface.
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0.25(crh—a?)), for a C-F spherical shell of Table 4 with a (FGM,, /

Z|roon|a//-"GI\41 (69=08/69=0.2/cP=3/

pP®, when uniformly distributed load qg*’ kPa is applied at the top surface and a foundation
kS, GO kG, KS ), is applied at the bottom surface.

aV=0.8/6M=0.2/cM=3/pM)

(3,)) lamination scheme, for different values of the exponent p = p\" =
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)/Zirconia/FG/\/l2(
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k), GO kS0, K )4 is applied at the bottom surface.
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Figure 19: Through-the-thickness variation of all the strain component at the point
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Figure 20: Through-the-thickness variation of all the
c=(0.25(cf — &), 0.25(e% — &3)) for a C-C-C-C elliptic paraboloid of Table 5 with a (FGM

stress component [Pa] at the point
1(@"=1/p"=

)/Zirconia/FG/\/l lamination scheme, for different values of the exponent

O/CHP:O/pHi 2(a("‘"ZW/D‘E':O/C(G):O/Q'&‘)) ;
p = p™ = p®, when uniformly distributed load g5 = —10kPa is applied at the top surface and a foundation
kg_), Gﬁ_), kg;’,z, ké}’w is applied at the bottom surface.
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Figure 21: Through-the-thickness variation of the displacement component vector [m] at the
point ¢=(0.25(cf - &), 0.25(czy — @) for a C-C-C-C hyperbolic paraboloid of Table 6 with a

(FGMZ( pm)/Zirconia/FGMHa@, lamination scheme, for different values of

a{.?}:1/b(2) (2) b“?‘:1/c“?’:4/p‘2‘))

the exponent p = p = p®, when uniformly distributed loads qg” =-10kPa, ql;’ = q({) =5kPa are applied
at the top surface and a foundation k{? = k5 = k§, G, k), = k5)p = K)o, Koy = Koo = K4 is applied at
the bottom surface.

Journal of the Indian Institute of Science IVOL 93:4 | Oct.—Dec. 2013 | journal.iisc.ernet.in

681



Francesco Tornabene and J.N. Reddy

g 8
=3 £ 9 4
N3 Ny
02} 4
0.4} -
06 E
-0}
1 1 1 1 1 S
05 1 15 2 25 3 35
5, x10”
T T T T T T
08F —p=1/20 08f
—p=1/5
06 —p=1/2 06
p=1
04 —p=2 0.4f
p=5
02 —p=20 02+
N N3
-02} 02F
04 04
06} 08
-0.8) -0}
s L s
5 E) 2 0 4 6 8
Y12 x10®
T T T
038} g —p=1/20| 4
—p=1/5
osf E —p=1/2 1
p=1
04k g —p=2 4
p=5
02 E —p=20 1
o
02F E E
-04 4 4
08 g 4
-0} 4 i
L L L L L L L L
02 04 0§ 08 12 4 16 18 05

Figure 22:
O.25(a; —ag)) for a C-C-C-C hyperbolic paraboloid of Table 6 with a (FGMz(

FGM

1(a®

16®)=1/c® =4/ p® , .
formly distributed loads qg” =-10kPa, Q({) = Q(QH =5kPa are applied at the top surface and a foundation

A=) =i =

Through-the-thickness variation of all the strain components at the point c=(0.25(0/11 —a?),
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Figure 23: Through-the-thickness variation of all the stress components [Pa] at the point
c=(0.25(cf - a?),0.25(c —ad)) for a C-C-C-C hyperbolic paraboloid of Table 6 with a

(FGM2( )/Zirconia/FGM” lamination scheme, for different values of

3'2):1/13[2)=1/C‘2):4/p(2'))
the exponent p = p» = p®@, when uniformly distributed loads g% = —10kPa,gS" = g% = 5 kPa are applied

a®=1/p@=1/c?=4/p o
_ +)
ion kP = k&) = k&) GO k) = k)= (O g ) O ) ;
at the top surface and a foundation ki ) 3 Gr ' Kiniz = Kaniz = Kapjos Kinia = Kaniz = Kaniz is applied at
the bottom surface.

Journal of the Indian Institute of Science IVOL 93:4 | Oct.—Dec. 2013 | journal.iisc.ernet.in

683



684

Francesco Tornabene and J.N. Reddy

laminated square plate, due to the fact that the material properties continuously vary through the thick-
ness of the structure. Furthermore, the behaviour in terms of displacement, strains and stresses is included
between the two limit cases of the zirconia and aluminum materials as expected due to the fact that the
functionally graded materials considered are mixtures of the two isotropic constituents themselves.

6 Conclusions

The static analysis of functionally graded and laminated doubly-curved shells and panels resting on lin-
ear and nonlinear elastic foundations has been investigated using the GDQ method coupled with the
Newton-Raphson scheme. All the effects of the nonlinear elastic foundation are separately introduced.
New results are presented showing the effects of various parameters of the elastic foundation on the behav-
ior of laminated doubly-curved and degenerate shells. The first-order shear deformation shell theory has
been generalized considering the curvature effect in the computation of thickness-integrated shell stiff-
nesses, and the shear correction factor has been eliminated using a parabolic thickness function. The fun-
damental equilibrium equations have been discretized with the GDQ method giving a standard nonlinear
problem for the static analysis. Numerical solutions are presented and compared with the ones obtained
using the finite element method. The comparisons conducted with the FEM codes confirm how the GDQ
simple numerical method provides accurate and computationally low cost results for all the structures
considered. New results regarding six different structures are presented in this paper that can be used for
further verification by numerical analysis performed by others and validated by experimental studies.
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