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Abstract | Damage detection using guided Lamb waves is an important 
tool in Structural health Monitoring. In this paper, we outline a method of 
obtaining Lamb wave modes in composite structures using two dimen-
sional Spectral Finite Elements. Using this approach, Lamb wave disper-
sion curves are obtained for laminated composite structures with different 
fibre orientation. These propagating Lamb wave modes are pictorially 
captured using tone burst signal.
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1 Introduction
In the recent years, there has been an increased 
use of composites, especially in aerospace vehicles 
due to its high strength-to weight and stiffness-to-
weight ratio.1 Unlike metals, composites exhibit 
many different failure modes such as delamination, 
fibre breaks, matrix cracks, debonds etc. In addi-
tion, composites are susceptible to host of manu-
facturing environmental induced defects such as 
porosity, moisture absorption etc.2 These prob-
lems associated with composites demands that 
these structures be regularly inspected. Moreover, 
the design philosophy of composites are markedly 
different when compared metals. Most compos-
ites are today designed based on safe life design 
philosophy wherein the structures are designed 
with increased factor of safety. This will make the 
structures heavier and bulky thereby defeating 
the very purpose of using composites, which is to 
make lighter and structurally efficient structures. 
Hence, more and more designers are now mov-
ing towards damage tolerant design philosophy, 
wherein the design margins are drastically reduced 
with the condition that the structures designed 
with such philosophy are periodically inspected. 
The periodic inspection of structures using Non 
Destructive Evaluation (NDE) methods is termed 
as Structural Health Monitoring (SHM).

There are many NDE methods such as eddy 
currents, ultrasonics, computer tomography, 
computer thermography etc3 that are tradition-
ally used for structural inspections. Most of these 

are passive or sensor only methods and its appli-
cations in aerospace inspections are highly time 
consuming having very high life-cycle cost, poor 
damage detection sensitivity and they also require 
that the structures be out of service. Most of the 
SHM systems are active or sensor and actua-
tor systems which act both as sensors and trig-
ger systems. Many active SHM systems are based 
on a number of different sensors such as piezo-
electric sensors (both ceramic and crystal forms) 
fibre optic sensors, magnetostrictive sensors such 
as TERFENOL-D, MEMS sensors are quite well 
developed. Reference4 gives a good overview of 
these developments. Many of these SHM sys-
tems works in the principle of wave propagation, 
wherein an incident wave interacts with a damage 
and produces a unique signature that will help in 
identifying the location of the flaw (crack) using 
the wave dispersion and time of arrival of reflec-
tion information. Among the wave propagation 
based technique, the method based on Lamb wave 
is extensively used in SHM because of its ability 
to traverse large distances with very little attenu-
ation. These are generated in a doubly bounded 
isotropic thin solid that have stress free boundary 
at the top and bottom surfaces as shown in Fig. 1.

In the Fig. 1, z is the thickness direction, where 
the total thickness of the plate is shown as 2h. 
SHM process involves in triggering an incident 
wave in a structure that has stress free boundary at 
the top and bottom surfaces. There are two catego-
ries of Lamb waves; symmetric and antisymmetric 
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depending upon the nature of propagation and 
type of propagation medium. There are many 
propagating Lamb waves in structures that are 
either symmetric or antisymmetric and the speeds 
of each of these wave modes depends on the fre-
quency and hence these wave modes are highly 
dispersive in nature. The lowest of them are called 
the A

0
 or S

0
 depending upon the nature of waves 

and these are shown in Fig. 2.
Lamb wave modes were first obtained by 

Lamb,5 for isotropic doubly bounded media by 
considering one of the dimensions of solid as infi-
nite. Lamb wave modes can be obtained by solving 
the governing partial differential of a 2-D solid for 
a stress free boundary at the top and bottom sur-
faces. However the solution of the governing cou-
pled partial differential equation is not trivial. For 
an isotropic structure, the governing equation is 
transformed into two independent partial differ-
ential equation, using Helmholtz decomposition. 

These partial differential equations have scalar 
and vector potentials as independent variable. 
These uncoupled equation are solved to obtain 
the Lamb wave modes. References,6–8 give a good 
account of Lamb waves along with theoretical/
analytical procedure to determine its dispersion 
relations in isotropic waveguides.

Understanding wave propagation is an order 
more complex compared to isotropic structures. 
Here, the wave propagation and its interactions 
depend on composite material properties, its 
ply orientation, its geometry, frequency, direc-
tion of propagation, and interfacial conditions. 
If the wavelengths are significantly longer than 
the smallest dimension in composites, namely the 
fibre diameter and their spacing, then each lamina 
can be considered as an equivalent homogenous 
that is orthotropic with axis of symmetry coin-
ciding with the fibre orientation. Reference9 per-
formed experiments on boron/epoxy laminated 

Figure 1: Coordinates for Lamb wave propagation.

Figure 2: Lowest symmetric and antisymmetric Lamb wave modes in an isotropic waveguide.
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composites to study its dispersion and found 
that, for extensional waves, scattering began to 
show when the wavelength is of the same order 
of magnitude as the diameter of the fibre, while 
the flexural wave started to scatter when the ratio 
of wavelength to fibre diameter is about 40. In 
addition, composites are characterized by differ-
ent interface conditions due to different proper-
ties across the laminae. Due to this, in addition 
to reflections from the interfaces, there will be 
refractions between layers that manifests in the 
form of resulting waves propagating along the 
plane of the plate. The direction of wave propaga-
tion dictates the velocity of wave and the mate-
rial anisotropy makes the pure wave modes loose 
its properties. The dependence of wave velocity 
on the direction of propagation implies that the 
direction of group velocity does not generally 
coincide with the wave vector. Also, for a gener-
ally unsymmetric laminate, the material anisot-
ropy makes the distinction between symmetric 
and antisymmetric modes very difficult and they 
are generally coupled. In design of composites, 
symmetric laminate is normally preferred and in 
such laminates, the symmetric and antisymmet-
ric Lamb wave modes are uncoupled and they are 
normally termed as quasi symmetric or antisym-
metric Lamb wave modes. Due to the above rea-
sons, one cannot use Helmholtz decomposition 
(as was used for isotropic waveguides) to uncou-
ple the governing 2-D equation of motion in 
terms of scalar and vector potentials.

Attempts have been made to obtain Lamb wave 
modes in composites both by exact solution of 3-D 
elasticity equations and through numerical solu-
tions. Researchers10–13 have attempted to solve 3-D 
elasticity equations to obtain Lamb wave modes in 
different composites waveguides. Although exact 
solutions provide accurate estimation of Lamb 
wave dispersion, their computations is compu-
tationally very intensive because, their solution 
involve solving highly nonlinear transcendental 
equations. Hence, many researchers have tried to 
use numerical solutions to determine the Lamb 
wave modes. In this direction, References14–17 can 
be mentioned, who have attempted to solve the 
3-D equations of motion numerically to obtain 
the Lamb wave modes.

In this paper, we will solve the govern-
ing equation through Spectral Finite Element 
Method (SFEM). Spectral finite element method 
is a finite element method that is formulated in 
the frequency domain. Fast Fourier Transform 
(FFT), which basically an implementation of Dis-
crete Fourier Transform (DFT) is used to trans-
form any time dependent variable back and forth 

between time and frequency domain. Unlike 
conventional finite element, SFEM requires 
strong form of the governing equation in the fre-
quency domain, whose solution will be used as 
interpolating function for spectral finite element 
formulation. Dynamic stiffness matrix (which 
is single matrix, as opposed to conventional 
FEM, where two matrices, namely the stiffness 
and mass matrix will be required) is generated 
using the same procedure normally adopted to 
generate finite element matrices. Over a big fre-
quency do-loop, the dynamic stiffness is gener-
ated, assembled and solved for a unit impulse, to 
obtain the Frequency Response Function, which 
is convolved with the load to obtain the frequency 
domain output. The time history of the output 
is then obtain by taking inverse FFT. Since exact 
solution to the governing equation is used as the 
basis function, one element is sufficient between 
any two joints. This is because the inertia dis-
tribution is exactly represented and as a result, 
the small wavelengths at high frequencies are 
very well captured. Hence SFEM problem sizes 
are many orders smaller than conventional finite 
elements. However SFEM can only be applied 
to linear problem due to the restriction of FFT 
and it can handle only simple domains where the 
wave equation can be solved exactly. Details of 
this method are given in.6,7

The procedure described above is valid only 
for 1-D wave equations, where the transformation 
of the governing partial differential equation to 
frequency domain will result in a set of ordinary 
differential equations with constant coefficients, 
whose solutions are well known. In 2-D wave equa-
tion, which is normally of Posson’s type, transfor-
mation of the time variable to frequency domain 
does not result in ordinary differential equations. 
One more transform in one of the space variable is 
required to transform the governing partial differ-
ential equation to ordinary differential equations. 
This puts the restriction that one of the spatial 
domain is unbounded with an additional wav-
enumber introduced in the coordinate direction 
where the transform was taken. In this paper, we 
will use such a model to construct a 2-D spectral 
element for both in-plane and out-of plane loads 
and use the dynamic stiffness matrix of these ele-
ments to generate the Lamb wave dispersion plots 
for laminated composite structures.

The Spectral finite elements for isotropic 2-D 
waveguides were developed using the method of 
potentials, which is however applicable only for 
isotropic waveguides. Reference18 gives a detailed 
outline of the 2-D spectral element for isotropic 
solids. For anisotropic media such as composites, 
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among the available methodologies, Partial Wave 
Technique (PWT) is an attractive option. In this 
paper, spectral finite elements are formed using 
the PWT, where we use the Singular Value Decom-
position (SVD) method (please see6 for more 
details) to obtain the wave amplitudes, which is 
essential for constructing the partial waves. Once 
the partial waves are found, the wave coefficients 
are made to satisfy prescribed boundary condi-
tions, i.e., two non-zero tractions specified at the 
top and bottom of the layer. Here, it differs from 
other formulations based on the PWT, as no spe-
cific problem oriented boundary conditions are 
imposed. Thus a system matrix is established, 
which relates the tractions at the interface to the 
interfacial displacements. This generalization 
enables the use of the system matrix as a finite ele-
ment dynamic stiffness matrix, although formu-
lated in frequency/wavenumber domain. These 
matrices can be assembled to model different 
layer of different ply-orientation or inhomogene-
ity, which obviates the necessity of cumbersome 
computation associated with multilayer analysis, 
(e.g.,19).

This paper is organized as follows: First the 
derivation of Lamb waves in metallic structures is 
presented. Although its derivation is available in 
classic text books,7,19 the aim here is to two fold; 
one is to see how the Lamb wave modes in metal 
differ from composites and the second is to see 
how the present approach of determination of 
Lamb wave modes using PWT is different from 
the method of potentials normally used for metal-
lic waveguides. Next, spectral element formulation 
for layered composites is presented. This is fol-
lowed by a presentation on the detailed procedure 
to compute Lamb wave modes using the formu-
lated spectral elements. Finally, some numerical 
examples are provided for determination of Lamb 
wave modes and their time responses as function 
of ply orientation.

2  Lamb Waves in Doubly Bounded 
Metallic Waveguides

To derive the Lamb wave modes in metallic struc-
ture, we will have to start from the governing dif-
ferential equation, which in terms of stress tensor 
σ

ij
 and body force b

i
 is given in tensorial notation

∂
∂

+ =
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ρij

j
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three coordinate directions and ρ is the den-
sity and ui are the component of acceleration 

in the three coordinate directions. The relation 
between the strains, rotations and displacements 
are given by
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Most metallic structures are assumed isotropic 
and the Hook’s law for isotropic structures in 
tensor notation is given by

σ µ λ δij ij kk= ∈ + ∈2  (3)

where µ and λ are the Lame’ constants and δ
ij
 is 

the Kronecker delta. Using the strain displace-
ment relationship and the Hook’s law, one can 
express stresses in terms of displacement, which 
can be substituted in Eqn. (1), to get the governing 
equation in terms of displacement and this equa-
tion is called the Navier’s Equation, which can be 
expressed in tensorial notation as

( ) , ,λ µ µ ρ+ + + =u u b uk ki i kk i i  (4)

Equation (4) represents three highly coupled 
partial differential equations in terms of displace-
ments, which are extremely difficult to solve. 
Hence, we use the method potentials or Helm-
holtz decomposition to solve the above equation. 
The Helmholtz decomposition enables the dis-
placement of the isotropic solid to be expressed in 
terms of a scalar potential Φ and the vector poten-
tial H

i
 = H

1
, H

2
, H

3
 as

 0u
x

H
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xi
i
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where ∈
ipq

 is the permutation symbol. Equa-
tion (5) represents three displacements u

1
 = u, 

u
2
 = v, u

3
 = w with four potentials Φ, H

1
, H

2
 and 

H
3
. Note that the second condition in Eqn. (5) 

uniquely determines the vector potential H
i
. On 

substituting Eqn. (5) in Eqn. (4), we get after 
rearranging

∂
∂
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These equations are satisfied if the terms inside 
the square brackets are zero. That is if Φ and H

q
 

are chosen such that

c c H Hp s q q
2 2 2 20 0∇ − = ∇ − =Φ Φ ,         (8)

where c
p
 is called the P-wave or dilatational or Lon-

gitudinal wave speeds and c
s
 is called the S-wave 

or distortional or Shear wave speed and they are 
given by

c
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2 1
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Solution of Eqns. (8) are lot simpler compared 
to the original highly coupled partial differential 
equation Eqn. (4).

The solution of Eqn. (8) is of the following 
form

Φ x y z t Y y e

H x y z t Y y e
P

i kx t

z S
i kx

, , , ,

, , ,

( ) = ( )
( ) = ( )

− −( )
− −

ω         
ωωt( )  (10)

where the x, y, z are the coordinate directions 
shown in Fig. 1. In the above equation, the solu-
tion of Y

P
(y) and Y

S
(y) are different for symmetric 

and antisymmetric modes and they take the fol-
lowing form:

(a) Symmetric Modes:

Y y A y Y y B yP s( ) cos( ), ( ) sin( )= =η η       (11)

(b) Antisymmetric Modes:

Y y C y Y y D yP s( ) sin( ), ( ) cos( )= =η η       (12)

where the constants A, B, C and D needs to be 
determined through stress free boundary condi-
tions, which needs to be imposed. We will now 
outline the procedure for symmetric modes. 
Knowing the potentials, we can write the dis-
placement fields from Eqn. (5), which for 2-D 
case becomes

u x y t
x

H

y
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Substituting the value of potentials from Eqn.
(10), the displacements can be rewritten as

u ikA y y e i kx t= + 
− −( )cos( ) cos( )η η η ω  (14)

v i A y ikB y e i kx t= − + 
− −η η η ωsin( ) cos( ( )  (15)

It is apparent that the specific choice of Y
P
 and 

Y
S
 gives displacements in x direction that are sym-

metric with respect to y direction. Next, we will 
evaluate strains using the strain displacement 
relations given by Eqn. (2). This is then used in 
the hooks law given by Eqn. (3), which can be sim-
plified as

σ µ η
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xx p

i kx t
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= − +( )

− 
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2

2
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Now we will enforce stress free conditions at 
the boundary y = ±h, that is, at y = ±h, we have 
σ

yy
 = 0 and σ

xy
 = 0 is enforced. In doing so, we get 

following matrix equation
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Setting the determinant of above matrix to 
zero will get us the following transcendental equa-
tion for solution of horizontal wavenumbers η 
and η

tan( )
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η
η

ηη

η

h

h
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4 2

2 2 2
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Following the same procedure and starting 
with Eqn. (12), we can get the following tran-
scendental equation for obtaining antisymmetric 
modes
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In the above equations, η and η  are given by

 ,        η ω η ω=
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k
p s
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2
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 (22)

where c
p
 and c

s
 are given by Eqn. (9).

Solution of Eqns. (20) and (21) is not trivial 
and requires numerical methods to solve in order 
to determine the Lamb wave modes. We see that for 
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a given value of ω, Eqns. (20) and (21) specifies the 
value of wavenumbers η and η  that the waves can 
allow and hence the speeds of these waves. These 
wavenumbers have nonlinear relationship with fre-
quency ω indicating that the waves are dispersive. In 
addition, Eqns. (20) and (21) are in terms of prod-
uct ωh, normally called frequency-thickness product 
and hence it is traditional to plot the wave speeds of 
the Lamb waves as a function of frequency-thickness 
product. Also, if we look at these equations, we see 
that the relationship between η and η  and hence 
the wavenumber k and the frequency ω  is obvi-
ously  multivalued and these needs to be obtained 
numerically. Each of these values obtained is called 
a mode and the lowest symmetric mode is called 
the S

0
 mode, while the lowest antisymmetric mode 

is called the A
0
 mode. As ωh increases, new wave 

modes appear and these are labelled as S
n
 and A

n
 

modes according to the order in which they appear. 
Using a Newton-Rhapson technique, Eqns. (20) 
and (21) were solved and the phase speeds, which is 
equal to ω/k and the group speeds, which is equal to 
dω/dk are extracted. The phase speed plot is shown 
in Fig. 3.

3  Spectral Element Formulation 
for Laminated Composites

The general elasto-dynamic equation of motion 
for three dimensions is given by

σ ρ σij j i ij ijkl kl ij i j j iu C u u, , ,, , ( )/= = ∈ ∈ = + 2
 

 (23)

where comma (,) and dot over a variable denote 
partial differentiation with respect to the spatial 
variables and time, respectively. For 2-D model 
with orthotropic material construction, complex-
ity of the above equation can be further reduced 
by the following assumptions. The non-zero 

displacements are u
1
 = u and u

3
 = w in the direc-

tion x
1
 = x and x

3
 = z, respectively (see Fig. 4). Then 

the non-zero strains are related to these displace-
ments by

∈ = ∈ = ∈ = +xx x zz z xz z xu w u w, ,
 

(24)

The nonzero stresses are then related to the 
strains by the relation

σ
σ
σ

xx xx zz

zz xx zz

xz xz
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Q Q
Q

= ∈ + ∈
= ∈ + ∈
= ∈

11 13

13 33
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where Q
ij
s are the stiffness coefficients, which 

depend on the ply layup, its orientation and z 
coordinate of the layer. The expressions of the Q

ij
s 

are given in.20 Substituting Eqn. (25) in Eqn. (23) 
and imposing the assumptions, the elastodynamic 
equation for 2-D inhomogeneous orthotropic 
media is given by

Q u Q Q w Q u u
Q w Q Q u Q w

xx xz zz
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11 13 55 55
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The displacement field is assumed to be a 
synthesis of frequency and wavenumbers, both 
horizontal and vertical, as
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x
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where ω
n
 is the discrete angular frequency, η

m
 is the 

discrete horizontal wavenumber and j2 = -1. As the 
assumed field suggests, for M → ∞, the model will 

Figure 3: Dispersion curves for symmetric and antisymmetric Lamb wave modes in Aluminium.
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have infinite extent in positive and negative X direc-
tion, although of finite extent in the Z direction, 
i.e., it will be a layered structure. In particular, the 
domain can be written as Ω = [-∞, + ∞] × [0, L] 
where L is the thickness of the layer. The boundaries 
of any layer will be specified by a fixed value of z. 
The X dependency of the displacement field (sine or 
cosine) will be determined based upon the loading 
pattern. In all subsequent formulation and compu-
tation, symmetric load pattern will be considered. 
The real computational domain is where X

L
 is the 

X window length. Discrete values of η
m
 depend 

upon the X
L
 and the number of mode shapes (M) 

chosen.
Assuming the displacement filed as given 

in Eqns. (27) and (28), the governing PDE is 
reduced to

ˆ ˆ ˆ ˆ ˆ ˆ[ ] [ ] [ ] 0, { }A u B u C u u u w+ + = =′′ ′
 

(29)

where prime denotes differentiation with respect 
to z. The matrices [A], [B] and [C] are
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The solution to these ODEs are of the form u
o
e-jkz 

and w
o
e-jkz, which yields the Polynomial Eigenvalue 

Problem (PEP) (for details of PEP please refer to6)

[
[
W u
W k A jk B C
u u w
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where W, the wave matrix is
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The singularity condition of [W] yields
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The above equation which relates vertical 
 wavenumber k to the horizontal wavenumber η fre-
quency ω is the spectrum relation. It is to be noted 
that for each value of η

m
 and ω

n
, there are four val-

ues of k, denoted by k
lmn

, l = 1.4, which is obtained 
by solving the spectrum relation. Explicit solution 

of the wavenumber k is k b b aclmn = ± − ± −2 4 , 

where a, b and c are the coefficients of k4, k2 and k0, 
respectively, in Eqn. (33).

There are certain properties of the wavenumbers 
which will be explored now. As can be seen from 
Eqn. (33), for η

m
 = 0, the equation is readily solv-

able to give the roots ± ±ω ρ ω ρ/ / .Q Q33 55and  
Since, none of the ρ, Q

33
 or Q

55
 can be negative or zero, 

these roots are always real and linear with ω. When 
η

m
 is not zero, k becomes zero for ω satisfying

Q Q Q Q

Q Q

m n m n

m m

11 55
4 2 2

11 55
2 4

11
2 2

55
2

0η ρω η ρ ω

η ρω η ρω

− + + =

− −

( )

( )(

or
22 0) =  

 

(34)

which gives

ω η ρ η ρ= m mQ Q11 55/ /,
 

(35)

Before these frequencies, the roots are imaginary 
and non-propagating and after these frequencies, the 
roots are real and propagating. These frequencies are 
the cut-off frequencies. For isotropic materials they 
are given by Cpη and c

s
η.18 The current expressions 

Figure 4: Spectral layer element: Sign conven-
tions of (a) throw-off spectral element (b) finite 
composite layer element.
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for the cut-off frequencies are also reducible to that 
of isotropic materials if we identify Q

11
 and Q

55
 with 

λ + 2µ and µ, respectively, where λ and µ are the 
Lame’s parameters. If we identify QP wave with Q

33
 

(or Q
11

) and QSV wave with Q
55

, then as the cut-
off frequencies suggest, for the same value of η, it is 
the QSV wave that becomes propagating first, since 
Q

11 
> Q

55
. The wavenumbers of positive roots denote 

forward propagating modes and the negative roots 
denote backward propagating modes. In Fig. 5, the 
wavenumbers are plotted for three different ply-
angles, 0°, 45°, and 90°. For all the ply-angles, Q

33
 

and Q
55

 are assumed 9.69 GPa and 4.13 GPa, respec-
tively. For Q

11
 and Q

13
, following values are assumed. 

For 0°, Q
11

 = 146.3 GPa and Q
13

 = 2.98 GPa, for 45°, 
Q

11
 = 44.62 GPa and Q

13
 = 1.62 GPa and for 90°, 

Q
11

 = 9.69 GPa and Q
13

 = 2.54 GPa. In Fig. 5, imagi-
nary part of the wavenumbers is plotted in horizon-
tal plane and real part in the vertical plane. Further, 
the imaginary part of the wavenumbers for 0° and 
90° are plotted in the positive side, whereas for 45° 
it is plotted in the negative side, for distinction. Two 
different η values are taken. The linear variation of 
the real part of the wavenumbers is for η = 0 and 
rest of the plots are for η = 10. The slope of the lin-
ear portion depends upon Q

33
 and Q

55
 and as they 

are equal for all the ply-angles, this part is common 
for all the ply-angles. The difference comes in the 
imaginary part and cut-off frequencies. Two differ-
ent cut-off frequencies are seen in the figure for each 
ply-angle, where the largest value is for 0° ply-angle 
because of its largest Q

11
. Further, the shear cut-off 

frequency is same for all the ply-angles as Q
55

 is 
equal in all the cases.

Once, the required wavenumbers k are obtained, 
for which the wave matrix [W] is singular, the solu-
tion u

0
 for frequency ω

n
 and wavenumber η

m
 is

û R C e R C e
R C e R C e

nm
jk x jk x

jk x jk x
= +

+ +

− −

− −
11 1 12 2

13 3 14 4

1 2

3 4  (36)

ŵ R C e R C e
R C e R C e

nm
jk x

x
jk x

jk x jk x
= +

+ +

− −

− −
21 1 22

23 3 24 4

1 2

3 4  (37)

where R
ij
 are the amplitude coefficients to be 

determined and they are called wave amplitudes, 
which are determined using the method of SVD 
(Please see6 for more details). R

ij
 are obtained from 

the wave matrix [W] evaluated at wavenumber k
i
.

Once the four wavenumbers and wave ampli-
tudes are known, the four partial waves can be con-
structed and the displacement field can be written 
as a linear combination of the partial waves. Each 
partial wave is given by

a u
w

R
R e x

x e ii
i

i

i

i

jk z m

m

j ti n= { } = { } { } =− −1

2
1 4sin( )

cos( ) , ...η
η

ω

 
  (38)

and the total solution is

u C
i

i i=
=
Σ

1

4
a   (39)

Now, two different spectral element, one that 
is doubly bounded, which we call as Finite Layer 
Composite Element and the second, which is sin-
gly bounded media, which we call as Infinite Layer 
Composite Element. These are shown in Fig. 4. 
Unlike conventional finite elements, these ele-
ments are edge elements, that is the entire surface 
is designated as nodes. Each ply of the laminated 
composite is considered as an element in this 
approach. Infinite layer elements are those which 

Figure 5: Variation of wavenumber with ωn (for ηm = 10).
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are non resonant, that is, the incident waves does 
not get reflected as the boundary rests at infinity.

3.1 Finite layer composite element
Once the solutions of u and w are obtained in the 
form of Eqns. (36) and (37) for each value of ω

n
 

and η
m
, we need to determine the dynamic stiff-

ness matrix, that related the frequency domain 
displacements and the surface tractions. Thus, 
nodal displacements are related to the unknown 
constants by

1 1 2 1 1 2 3 4ˆ ˆ ˆ{ } [ ] { }T T
nm nm nm nmu w u T C C C C=  (40)

That is,

1ˆ{ } [ ] { }nm nm nmu T C=  (41)

Using Eqn (25), nodal tractions are related to 
the constants by

2 1 1 2 2
ˆ ˆ{ } [ ] { } , { } { }T

nm nm nm nm zz xz zz xzt T C t σ σ σ σ= =

 (42)

Explicit forms of [T
1
]

nm
 and [T

2
]

nm
 are

[ ]

( ) ( ) (

T

R R R R

R R R R

R e R e R ejk L jk L

1

11 12 13 14

21 22 23 24

11 12 13
1 21

=

− − − jjk L jk L

jk L jk L jk L j

R e

R e R e R e R e

1 2

1 21 1

14

21 22 23 24

) ( )

( ) ( ) ( ) (

−

− − − − kk L2 )























 (43)
and

T p Q jR k R
T p jQ R k Q R

T p

p p p

p p

2 55 1 2

2 33 2 13 1

2

1
2

3

( , ) ( )
( , )

( , )

= − − −
= −
=

η
η

QQ jR k R e

T p jQ R k Q R e
p p p

jk L

p p
jk

p
55 1 2

2 33 2 13 14

( )

( , ) { }

( )

(

− −
= − +

−

−
η

η ppL)

where p ranges from 1 to 4.
Thus, the dynamic stiffness matrix becomes

1
2 1

ˆ[ ] [ ] [ ]nm nm nmK T T −=  (44)

which is of size 4 × 4 and having ω
n
 and η

m
 as 

parameters. This matrix represents the dynamics 
of an entire layer of any length L at frequency ω

n
 

and horizontal wavenumber η
m
. Consequently, 

this small matrix acts as a substitute of the glo-
bal stiffness matrix of FE modelling, whose size, 
depending upon the thickness of the layer, will be 
many orders larger than the formulated spectral 
finite element size.

3.2 Infinite layer composite element
This is the 2D counterpart of the 1D throw-off ele-
ment (see6 for details on the throw-off elements). 
The element is formulated by considering only the 
forward moving components, which means no 
reflection will come back from the boundary. This 
element acts as a conduit to throw away energy 
from the system and is very effective in modelling 
infinite domain in the Z direction. This element is 
also used to impose absorbing boundary condi-
tions or to introduce maximum damping in the 
structure. The element has only one edge where 
displacements are to be measured and tractions 
are to be specified. The displacement field for this 
element (at ω

n
 and η

m
) is

û R C e R C enm nm
jk z

nm
jk z= +− −

11 1 12 2
1 2  (45)

ŵ R C e R C enm nm
jk z

nm
jk z= +− −

21 1 22 2
1 2  (46)

where it is assumed that k
1
 and k

2
 are having posi-

tive real parts. Following the same procedure as 
before, displacement at node 1 can be related to 
the constants C

i
, i = 1…2 as

û T C
nm nm nm{ } = [ ] { }1

 (47)

Similarly, tractions at node 1 can be related to 
the constants as

1 1 2 1 2

2

{ } [ ] { } , or
ˆ{ } [ ] { }

T T
x y nm nm nm

nm nm nm

t t T C C
t T C

=
=

 (48)

Explicit forms of the matrix [T
1
] and [T

2
] are

T T
T T

ILE FLE

ILE FLE

1 1

2 2

1 2 1 2
1 2 1 2

( ) ( )

( ) ( )

( : , : ),
( : , : )

=
=  (49)

The dynamic stiffness for the inhomogeneous 
infinite half space becomes

1
2 1

ˆ[ ] [ ] [ ]nm nm nmK T T −=  (50)

which is a 2 × 2 and the entries of this matrix are 
always complex.

4 Determination of Lamb Wave Modes
As mentioned earlier, Lamb waves are guided waves 
(see Fig. 1), propagating in a free plate and the two 
lateral guiding surfaces are traction free. There are 
two main approaches to the analysis of the Lamb 
waves. The first one is the method of potentials, 
which was explained in Section 2. In this method, 
Helmholtz decomposition of the displacement 
field is used and the governing equations are 
uncoupled and written in terms of the potentials. 
Solutions are sought for these potentials, which 
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contain four arbitrary constants. The displacement 
field and the stresses are expressed in terms of the 
potentials and the imposition of the tractions free 
upper and lower surfaces generates the necessary 
condition for finding the unknown constants and 
the dispersion equation. The advantage of this 
method is that the symmetric and anti-symmetric 
modes can be isolated during formulation, (see 
Fig. 2). However, the method is applicable only 
to the isotropic materials. This approach was pre-
sented in Section 2.

The second approach is based on Partial Wave 
Technique, which was used to derive the spectral 
finite element for laminated composites, and this is 
discussed below in detail. In the spectral finite ele-
ment formulation, there are two summations in 
the solutions (see Eqns. (27) and (28)). The outer 
one is over discrete frequencies and the inner one 
is over discrete horizontal wavenumbers. Each par-
tial wave of Eqn. (39) satisfies the governing PDEs 
(Eqn. 26) and the coefficients C

i
 as a whole satisfy 

any prescribed boundary conditions. As long as the 
prescribed natural boundary conditions are non-
homogeneous, no restriction upon the horizontal 
wavenumber η

m
 is imposed and that leads to double 

summation solution of the displacement field. How-
ever, that is not the case for traction free boundary 
conditions on the two surfaces, which are the neces-
sary condition for generating Lamb waves. The gov-
erning discrete equation for finite layer (Eqn. 44) in 
this case becomes

ˆ ˆ[ ( , )] { } 0m n nm nmK uη ω =  (51)

and we are interested in a nontrivial {u}. Hence, 
the stiffness matrix ˆ[ ]K  must be singular, i.e., 
det ˆ( ( , )) 0m nK η ω = , which is the required relation 
between ω

n
 and η

m
. Since, ω

n
 is made to vary inde-

pendently, above relation must be solved for η
m
 to 

render the stiffness matrix singular, i.e., η
m
 can-

not vary independently. More precisely, for each 
value of ω

n
 there is a set of values of horizontal 

wavenumber η
m
 (one for each mode) and for 

each value of ω
n
 and η

m
 there are 4 vertical wav-

enumbers k
nm

. Normally for the wave propagation 
response problem, will assume η as

ω π π
η π π

n

m L

n T n N t
m X m M x

= =
= − = −

2 2
2 1 2 1

/ /( ),
( ) / ( ) /( )

∆
∆  (52)

where ∆t and ∆x are the temporal and spatial 
 sample rate, respectively. The difference in this 
case is in the value of η

m
, which is to be solved 

for, as opposed to its expression in Eqn. (52) and 
M is the number of Lamb modes considered 

rather than Fourier modes. Now, for each set of 
(ω

n
, η

m
, k

nml
), l = 1....4, K̂  will be singular and will 

be in the null space of ˆ .K  Now using Eqn.(39), 
total solution can be constructed. For prescrib-
ing traction free conditions at the top and bot-
tom surfaces, we need to extract stresses from 
the displacements. From the displacement field 
(Eqns. (36) and (37), strain-displacement rela-
tion, Eqn. (24), stress-strain relation Eqn. (25), 
the matrix of strain-nodal displacement relation 
and stress-nodal displacement relation can be 
established as

{ }
1 1

1 1ˆ ˆ{ } [ ][ ] { },   { } [ ][ ][ ] { },   
{ } , , ,    { }={ , , }xx zz xz xx zz xz

B T u Q B T uσ
σ σ σ σ

− −∈ = =
∈ = ∈ ∈ ∈  (53)

where the elements of [B](size 3 × 4) are described 
in terms of the wave amplitude matrix [R]as

B p R e B jR k e

B p jR k R
p

jk z
p p

jk z

p p p

p p( , ) , ( , ) ,

( , ) (

1 2

3
1 2

1 2

= = −
= − +

− −η ρ
ηη) , ,...,e p

jk zp− = 1 4

 
 

 (54)

where z is the point of strain measurement. The 
elasticity matrix [Q] is

[ ]Q

Q Q

Q Q

Q

=
















11 13

13 33

55

0

0

0 0

 (55)

Following the normal practice, the traction 
free boundary conditions (i.e., σ

zz
, σ

xz
 = 0) are pre-

scribed at z = ∓h/2. Using Eqn. (53), the governing 
equation for C

i
 and η

m
 becomes

[ ( , )] ,

}

W C

C C C C C
m n nm

T
2

1 2 3 4

0η ω { } =
= { }

  

{ (56)

where [W
2
] is another form of the stiffness matrix 

[K] and is given by

W p Q R p jQ R p k e

W p Q R
p

j k hp
2 11 13

2

2 11

1 1 2

2 1

( , ) ( ( , ) ( , ) ) ,

( , ) ( (

( ) /= −
=

η
,, ) ( , ) ) ,

( , ) ( ( , ) ( ,

( ) /
p jQ R p k e

W p Q R p k jR p
p

j k h

p

pη −
= − +

−
13

2

2 55

2

3 1 2 )) ) ,

( , ) ( ( , ) ( , ) )

( ) /

( ) /

η
η

e

W p Q R p k jR p e

j k h

p
j k h

p

p

2

2 55
2

4 1 2= − + −

The dispersion relation is det[W
2
] = 0, which 

will yield η
m
(ω

n
) and the phase speed for Lamb 

waves c
nm

 will be given by ω
n
/η

m
. Once the values 

of η
m
 are known for the desired number of modes, 

the elements of {C}
nm

 are obtained by the tech-
nique of SVD as described earlier to find the ele-
ments of [R]. Summing over all the Lamb modes, 
the solution for each frequency is obtained.
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5  Lamb Wave Modes in Composite 
Waveguides

In this section, we present some dispersion curves 
for laminated composites structures for different 
ply orientations using the formulated spectral ele-
ment. The developed model requires that every 
ply be considered as a spectral element, in other 
words, if there are n plies in a laminated compos-
ite structures, then such a structure will have to be 
modelled by n spectral elements.

An angle-ply lamina of 2 mm thickness is con-
sidered for the study of propagating Lamb wave 
modes. Analysis is performed for three different 
fibre-directions, 0°, 45°, and 90°. Material proper-
ties of the composite are as in Section 3 used for 
computing wavenumbers. The dispersion relation 
(relation between C

p
 = ω/η and ω) is obtained and 

plotted for each of the above ply orientation men-
tioned above. Apart from the choice of algorithm 
there are other subtle issues in root capturing for 
the solution of wavenumbers as the solutions are 
complicated in nature.

Moreover, except the first one or two modes, 
all the other roots escape to infinity at low fre-
quency. For isotropic materials, these cut-off fre-
quencies are known below which the phase speeds 
are infinite. However, no expressions can be found 
for composite waveguides and most of the times, 
the modes (solutions) should be tracked back-
ward, i.e., from higher frequency to lower fre-
quency. In general two strategies are essential to 
capture all the modes within a given frequency 
band. Initially, the whole region should be swept 
for different values of the initial guess, where the 
initial guess should remain constant for the whole 
range of frequency. These sweeping opens up all 
the modes in that region, although they are not 
completely traced. Subsequently, each individ-
ual mode should be followed to the end of the 
domain or to a pre-set high value of the solution. 
For this case, the initial guess should be changed 
for each frequency to the solution of the previous 
frequency step. Also, sometimes it is necessary to 
reduce the frequency step in the vicinity of high 
gradient of the modes. Once the Lamb modes are 
generated, they are fed back into the frequency 
loop to generate the frequency domain solution 
of the Lamb wave propagation, which through 
inverse FFT produces the time domain signal. As 
the Lamb modes are generated first, they need to 
be stored separately. Towards this end, data are 
collected from the generated modes at several dis-
crete points in the whole range of frequency. Next, 
a cubic spline interpolation is performed for a very 
fine frequency step within the same range. While 

generating the time domain data, interpolation is 
performed from these finely graded data to get the 
phase speed (and hence, η).

To get the time history of propagating Lamb 
waves, a modulated pulse of 200 kHz centre fre-
quency is applied at one end of an infinite plate and 
X and Z velocities are measured for a propagating 
distance of 320 h, where h is the thickness of the 
plate. While studying the time domain representa-
tion, the thickness of the plate is taken as 10 mm, 
which amounts to a frequency-thickness value of 
2. This increased thickness is taken because for 
this value, at least three modes will be excited in all 
the cases, as shown by their respective dispersion 
curves (Figs. 6, 8, 10). To get the same frequency-
thickness value otherwise, we have to increase the 
frequency content of the load to 750 or 800 kHz, 
which is computationally prohibitive.

In all the plots of Lamb modes, the abscissa is 
given in terms of frequency times the thickness. 
Figure 6 shows the first 10 Lamb modes for fibre 
angle 0°. As is seen in there, first anti-symmetric 
mode (Mode 1) converges to a value of 1719 m/s 
in a range of 1 MHz-mm, where all the other 
modes converge at various later values of fre-
quency. In analogy to the isotropic case, this is the 
velocity of Rayleigh surface waves in 0° fibre lami-
nae. The first symmetric mode (Mode 2) starts 
above 10000 m/s and drops suddenly at around 
1.3 MHz-mm to converge to 1719 m/s, before 
which it has fairly constant value. All the other 
higher order modes escape to infinity at various 
points in the frequency range. Also the symmet-
ric and anti-symmetric pair of each mode escapes 
almost at the same frequency.

Propagation of these modes are plotted in 
Fig. 7 for first three modes (A

0
, S

0
, and A

1
), here 

referred as Mode 1, 2 and 3 respectively. In left of 
Fig. 7, the Z velocity history is plotted, whereas in 
the right of Fig. 7, the X velocity history is plot-
ted. The figures readily show the different propa-
gating modes, each corresponds to one blob. It 
is to be noted that, wave propagation velocity 
is given by the group speed (and not the phase 
speed). Hence, Fig. 6 will not help us to predict 
the appearances of different modes. However, as 
Fig. 7 suggest, mode 2 has a lower group speed 
than mode 1 and mode 3 has a group speed much 
higher than both mode 1 and 2. One difference 
in the u and w history can be observed. For u, the 
higher mode generates velocity of comparatively 
lesser magnitude, whereas, for w, the magnitude 
is highest.

Next the fibre angle is changed to 45° and 
the Lamb modes are plotted in Fig. 8. Here, the 
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phase velocity of Mode 1 (A
0
) is lower than the 

previous values for 0° (1690 m/s). Also, initial 
phase velocity of Mode 2 (S

0
) has come down 

to less than 6000 m/s in comparison to its 0° 
counterpart (10000 m/s). Further, the cut-off 
frequencies of all the higher modes are smaller 
compared to the previous case. Also there are 
considerable differences in these cut-off fre-
quencies for each pair of symmetric and anti-
symmetric modes, which is absent in the 0° case. 
Also the number of modes is increased to 11 
from 10 in the previous case. The time domain 
representations of the propagating waves are 
shown in Fig. 9. In this case, however, the sec-
ond mode has higher group velocity than the 

first mode and the third mode has the highest 
group speed.

Finally, the fibre angle is changed to 90° and the 
resulting mode shapes are plotted in Fig. 10. The 
shifting of the modes to the left of the figure con-
tinues as the number of modes is increased to 12. 
Further, the first symmetric mode has come down 
to 2600 m/s and the first anti-symmetric mode 
is reduced to a converged speed of 1510 m/s. For 
these modes the propagating Lamb wave is plot-
ted in Fig. 11 for u and w, respectively. As the fig-
ures suggest, mode 2 again has lower group speed 
compared to mode 1 and mode 3 has higher speed 
than both mode 1 and 2. However, the differ-
ence between the mode 3 group speed and mode 

Figure 6: Lamb wave modes for 0° ply angle.

Figure 7: Lamb wave propagation for 0° ply angle laminate for L = 320 h.
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Figure 8: Lamb wave modes for 45° ply angle.

Figure 9: Lamb wave propagation for 45° ply angle laminate for L = 320 h.

Figure 10: Lamb wave modes for 90° ply angle.
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2 group speeds is not very high as opposed to the 
previous cases.

The study of Lamb wave propagation reveals 
some important effects of ply-angle. It is observed 
that increase in the ply-angle increases the number 
of active modes within a defined frequency range, 
reduces the cut-off frequencies and the phase 
speeds of a particular mode. Moreover, the differ-
ence in the cut-off frequencies increases with the 
increase in ply-angle.

6 Conclusions
This paper presents an elegant method of deter-
mining the Lamb wave modes using spectrally 
formulated 2-D finite element. First the method 
of predicting Lamb wave modes for isotropic 
(metallic) structures is presented using the con-
ventional method of solving the governing Navi-
er’s equation. This is done using the method of 
potentials. This method, however, is not appli-
cable for composites, wherein the method of 
Partial Wave Technique is used to formulate 2-D 
spectral finite element, which is then used to 
solve for Lamb wave modes. This method, does 
not explicitly involve solution of transcendental 
equation, which is normally obtained in the case 
of conventional method of solving for Lamb wave 
modes. The formulated method is used to obtain 
Lamb wave dispersion plots in composites for 
different ply angles and the different propagat-
ing Lamb wave modes is shown using time his-
tory plots. The develop method is highly suited 
for automation and can be easily implemented 
in any software dealing with Structural Health 
Monitoring.

Acknowledgement
The part of the work reported here is from the 
thesis of the author’s former graduate student 

Dr. Abir Chakraborty for which the author would 
like to deeply thank him.

Received 11 September 2013.

References
 1. Jones, R.M., Mechanics of Composites Materials, McGraw-

Hill Book Company, Washington, D.C., 1975.

 2. Sohn, H., Farrar, C.R., Hemez, F.M., Czarnecki, J.J., 

Shunk, D.D., Stinemates, D.W. and Nadler, B.R. 2003, 

“A Review of Structural Health Monitoring Literature: 

1996–2001”. Los Alamos National Laboratory Report, 

LA-13976-MS.

 3. Reid S.R., Zhou G., Impact behaviour of fibre-reinforced 

composite materials and structures, CRC Press Cam-

bridge, 2000.

 4. Gopalakrishnan S., Ruzzene M. and Hanagud S., Com-

putational techniques in Structural Health Monitoring, 

Springer-Verlag, London, 2011.

 5. Lamb H. On waves in an elastic plate. Proc R Soc A—Math 

Phys Eng Sci 1917;93(648):114–28.

 6. Gopalakrishnan S., Chakraborty A. and Roy Mahapatra D., 

Spectral Finite Element Method, Springer-Verlag, London, 

2008.

 7. Doyle J.F., Wave Propagation in Structures, Springer-Verlag, 

New York, 1997.

 8. Graff K.F. , Wave Motion in Solids, Dover Publications.

 9. Tauchert T.R., Guzelsu A.N. An experimental study of 

dispersion of stress waves in fiber-reinforced composites. 

J Appl Mech 1972;35(1):98–102.

10. Nayfeh A.H., Chimenti D.E. Free wave propagation 

in plates of general anisotropic media. J Appl Mech 

1989;56(4):881–6.

11. Nayfeh A.H. The general problem of elastic wave propaga-

tion in multi-layered anisotropic media. J Acoust Soc Am 

1991;89(4): 1521–31.

12. Yuan F.G., Hsieh C.C. Three-dimensional wave propa-

gation in composite cylindrical shells. Compos Struct 

1998;42(2):153–67.

Figure 11: Lamb wave propagation for 90° ply angle laminate for L = 320 h.



Lamb Wave Propagation in Laminated Composite Structures

Journal of the Indian Institute of Science  VOL 93:4  Oct.–Dec. 2013  journal.iisc.ernet.in 713

13. Neau G. Lamb waves in anisotropic viscoelastic plates. 

Study of the wave fronts and attenuation. Ph.D. disserta-

tion. L’Universite de Bordeaux; 2003.

14. Moon F.C. Wave surfaces due to impact on anisotropic 

plates. J Compos Mater 1972;6:62–79.

15. Whitney J.M., Sun C.T. A higher order theory for exten-

sional motion of laminated composites. J Sound Vibr 

1973;30(1):85–97.

16. Lima W.J.N., Braga A.M.B. Dispersive waves in compos-

ites, a comparison between various laminated plate theo-

ries. Compos Struct 1993;25(1–4):449–57.

17. Liu G.R., Xi Z.C. Elastic waves in anisotropic laminates. 

Boca Raton (FL): CRC Press; 2002.

18. Rizzi S.A., A spectral analysis approach to wave propaga-

tion in layered solids, Ph.D. Thesis, Purdue University, 

West Lafayette, 1989.

19. Rose J.L., Ultrasonic waves in solid media, Cambridge 

University Press, 1999.

20. Reddy J.N., Mechanics of Laminated Composite Plates, 

CRC Press, USA, 1997;117–118.

Dr. Gopalakrishnan is currently a Professor 
in the department of Aerospace Engineering 
at Indian Institute of Science. He received 
his M.Tech degree in Engineering mechanics 
from IIT, Madras, Chennai and Ph.D degree 

from the School of Aeronautics and Astronautics, Purdue 
University, USA. His main areas of interests are, wave 
propagation in complex medium, structural health moni-
toring and modelling of nano structures. He is the Associ-
ate Editor of Smart Material and Structures and Structural 
Health Monitoring Journals and in addition, he is in the 
editorial boards of 8 other journals. Prof. Gopalakrishnan 
is an elected Fellow of Indian Academy of Engineering 
and Indian Academy of Sciences and he is the recipient of 
Distinguished Alumnus Award from IIT, Madras, Chen-
nai and Distinguished Visiting Fellowship from Royal 
Academy of Engineering, UK. He has authored 5 gradu-
ate level text books, two undergraduate text books, 160 
refereed international journal papers, over 100 interna-
tional conference papers and 8 book chapters.




