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ABSTRACT 

Stress system in a rotating aelotropic shaft has been obtained within the theory 
of finite strain. A numerical study of the above stress system has been made. 

1. INTRODUCTION 

1 .1. The theory of finite strain in elastical problems has been 
developed on the hypothesis that the second order terms in the components 
of strain may not be neglected [1, 4]. 

Like the body-stress equations these components have been referred 
to the actual position of a point P of the material in the strained condition, 
and not to the position of a point considered before strain. Many appli- 
cations of this theory have been already worked out [2]. 

Seth [3] has developed the stress of a rotating isotropic shaft in finite 
strain. The object of the present paper is to find out the stress of a rotating 
aelotropic shaft in finite strain. A numerical example has been considered. 

1 .2. We treat the problem as one of the plane strain, with an allowance 
for uniform longitudinal extension a. Since the shaft is strained symmetri- 
cally we can take the components of displacements 

v = y(l- ft), w=az 
	

(I) 

where fit is a function of r = (x 2  ± y9" 2. 
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Using cylindrical polar co-ordinates the components of displacements 
are given by 

Ur  = II cos 0 --1- v sin 0 

Ue  = — ti sin 0 ± v cos 0 

Uz  = az. 	 (2) 
The stress-strain relation (for finite strain) in Cartesian co-ordinates are given 
by 

ea. 
XX -= Cii€XX C12  Eyy C13€272 

•••—■ 
yy = Cuexx Cn eyy Cu ezz 

zz = Cl2 Exx + C13  Eyy C33 ezz 

xy= 86ay 

yz = zx =-- O. 	 (3) 

In cylindrical polar co -ordinates the stress corresponding to given dis- 
placements (2) are given by 

. c„ 0 — p2) 	• ci, (312 + 2-17) + 	(l 132) 

+ C13  (2a — a 2) 

1 	 1 
= . C 1 (1 — f3 2) + C

12 
(I - 13 2) + 	C" (2a — a 2) 

2 	 2 	 2  
201 

— 2-
1 

- Cur2  • (13' 2  

za = 2  . C3 8 (1 — 13 2) — . Cutr 2  • (18 '2  + 2- PP') 
2 

+ 2 C" (2a a2)  

re = rz = Oz = O. 
	 (4) 

The only stress-equation of equilibrium which is not identically satisfied 
is given by 

be; brz rr 06 
+ 	± 	pr0 2  --= 0 	 (5) 
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which, on substituting from (4), reduces to 

' [(C 	a) f32 	r" . 	. (f3 	20)- it 	C1. 

r 2 	(do — Cll ) 	 r 2/9fi t) dr] = 

where co is the angular velocity of the shaft. The differential equation 
satisfied by ft is therefore 

± ('12) P2  + r2  C11 (p'" 2/313) 

I 

	

r2 po,2 	(C.12  — cu ) j (rf3 1 2 + 2fifn dr = K1 	 (6) 

K2  being a constant. 

In the present paper, for mathematical simplicity we propose to dis- 
cuss only the particular solution obtained by putting c = 0. 

We get 
2 -Pa) Ar = (0 -,,- 	 . (7) 

The radial displacement is therefore given by 

r [1 	r-22--terr ) 1/2  U 	— ( 	 3 

	

— -12 	
(8) 

The boundary condition over the curved surface is rr = 0 over r = a, a 
being the radius of the shaft in the strained condition. Using (4), we get 

A' a' (4C11  + C12) = K C13 (1 — a) 2 	 (9) 

K= Cn  ± C12 ± C13 

The boundary condition over the plane ends is zz = 0 over x = ± 1 
21 bieng the length of the shaft. This cannot be exactly satisfied. But we 
can make the resultant longitudinal stress vanish over the plane end 

This requires S r zzdr 
0 

which gives 

2a 2  A 2  Ci3 Ci3 = (I — 0 2  C33 C33 
	 (10) 
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So, the stress system is given by 

rrr — 1  C (1 — p2). 1  r2 . c (pf2 + 2#13: — 	 ) 2 n 	2 	u \ 	r 

+ 2 Cu (I - P2
) + C a (2a — a 2) 

2 i  

11 
=-- 	 p2) 	c 1 	

1. 	p2) 	( 
2 1 	2 1 2

( 	2 213 (- 	" 2  ) 

2ppt )  

	

2  c 	p + les 

elm" 	1 C13 	 /313' 
zz = 2  C13 (1 p2)— - 2 .) (p + 2 	+ C3g (2a — a2) 

rO = 	Bz 	O. 	 (11) 

A and a are obtained from (9) and (10). 

1.3. Numerical Study of the Stress: 

Though the elastic constants are C1j (i = 1, 6; j = 1, 6), here the stress 
components and dependent only on four elastic constants, vi:., C' _11, C129 

Cu, C. Here we consider an aelotropic material, having the elastic con- 
stants. 

• 
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CDs  = • 2, C12  = ' 1 , C13= . 25, C3:;  --= • 15. 

Let radius of a quartz shaft be 60 units. 

tat  Odal „--.. 
Now we compute the stress rr, 00 zz of the shaft at different radius 

vector (from I to 50). The magnitude of the stress components are shown 
in a multiplot. The plotting has been made by IBM 360/44 computer. 

The stress and the radii vector may be expressed in any of the system, 
viz., either C.G.S. or F.P.S. 
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