
INVESTIGATION OF STRESSES AROUND A HOLE IN 

THIN ROTATING DISKS OF HYPERBOLIC 

AND PARABOLIC PROFILES 

BY S. KUMAR AND C. V. JOGA RAO 
(Department of Aeronautical Engineering, Indian Institute of Science, Bongolorb-3) 

Introduction 

Stresses in rotating disks have been investigated by several 
workers in the past few years. Chree was one of the earliest 
investigators and his paper on stress in a rotating ellipsoid has 
become a classic. Stresses in thin rotating disks of hyperbolic 
profiles have been mentioned by Stodola2, Biezeno and Gramme. 
Stresses in a rotating disk of exponential variation of thickness have 
been investigated recently by Lees. 

Symbols Used: 

r$ 0 -- polar co-ordinates. 

to 	-- angular velocity of the disk. 

P 	re density of the material of the disk. 

r 	radial stress. 

cr e 	tangential stress. 
Tro = shearing stress in the r, U plane. 

=--- body force. 
thickness of the disk. 

= stress function. 

-- a parameter used to define the profile of the disk. 

ns 	=-- a singularity of n. 

I 	=a-- the variable part of ge at the inner boundary. 

L 	=" - 
Poisson's ratio of the material of the disk 93 
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Summary 

Hyperbolic and parabolic profiles used in defining a rotating 
disk and having a circular hole at the centre are obtained by the 
same law of thickness distribution, i.e. 

h = Cr n  

only by giving negative and positive values to n (Fig. I & 2). For 
the simplification of the complete process, the scale is taken.such 
that the radius of the hole is unity. It is investigated as to how the 
stress concentration at the hole varies with the shape of the disk. 
Indeterminacy sets in at 

8 
ns — 3 + v 

Leaving this point, the curve of f vs. n is continuous from 
, to + . The curve corresponding to parabolic profiles shows 
nearly• a linear variation. In the negative n region the curve goes 
asymptotically to I = o with decreasing n, showing that the stress 
concentration at the hole is reduced with n. 

A circular rotating disk being symmetrical about its axis of 
rotation, polar coaordinates are suitable in such investigations. 

In polar co-ordinates the equations of equilibriums are 

ac t 	1 aT ro 	gr —at) 
—ar 	30 	r  - 	R 0  

(I) 
1 atTe 	aT 6) 	21r0 

=-- 0 r ao 	 r 

If the thickness of the disk is small in comparison to its radial 
dimensions, we can neglect the variation of the tangential and radial 
stresses over the thickness of the disk. Also the stress distribution 
being symmetrical about the axis of rotation, Tro is zero and the 
stresses are not dependent on o but on r alone. 
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In case of a disk of a variable thickness 

R--:--  Pw 2r2h 

and the first of the equations (1) becomes } 

—a
— (hra r )— hen + A w'r2h =--* 0 ar 

The second of equations (1) vanishes 

define the stress function F such that 

(2) 

altogether. We now 

a r — 
F 
hr 

g 	1 ( a F \ e 2 2  
° =Ii 	---a---  - 	i-  l + ' ''' r  

which evidently satisfy equation (2). From these and the expres- 

sion for the strain components 

compatibility equation: 

in polar co-ordinates, we get the 

(3) 

2  ci2F 	dF 

r _clh 	dF .  
ii cii- (1.  dr  

This 
Since, here r is the only variable 19F  1---F- and 9  

jr 	
= -d--2F- -. 

ar dr 	ar2  dr' 

differential equation is easily solvable in case of the substitution 

h=-- Cr n  

C being an arbitrary constant and n any real number. 
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If we keep n positive we get parabolae of different degrees all 

passing through h= r = 0 and tangential to h = 0, at the origin, 

Again if n is negative the curves are hyperbolae of different degrees 
(Figs. 1 and 2). In the solution of the differential eauation 
the complementary function is 

Cirsbi+ C2 r°2 

where C„ C2 are arbitrary constants and q, 02 are the roots 
of the equation 

a 

y2  — ny + vn — 1 0 

and the particular integral is 

(3 ±  v) pw 2C • rn' 
(3n 	+ 8) 	

met" say 

Therefore the general solution of equation (3) is 

F = me+ 3 	+C2r 441 2 

Now let the disk have a circular concentric hole of 
at the centre of the disk the radius of the disk being b1. 
From equation (2), 

(5) 

(6) 

radius al 

1 dF 
ge  = 	ht1/4)2  r  2  

Substituting the value of F and h we have 

1 	(n+3)(3±V)P  (0 2C  n+2 
Crn (v n In + 8) r + C 141 -1  

+ C2 4/ 2 r 116 2 1  ]+P02 r2 	 (7) 

We know that stress concentration 
hole and in the case of a rotating disk, 
aries, only ffe exists. Since the maxii 
at the inner boundary of the disk, i.e., 
the stress concentration at the hole 
give way. 

exists at the boundary of the 
C r being zero at the bound- 
num tangential stress occurs 
at r -r- a„ let us investigate 
where the disk is liable to 
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From equation (5) 

'1+ 
= 

n 
and •4,2  = 

n2 . 4n v 4  
n p 

say 2 
n2. 4n v  4 p 

2 
	 aill• saes- 

2 

From the boundary conditions we have, 

(ar) r=a 1 = e7r) 	=0r=b 1  

Therefore ma,n +3  + 	ca,02 0 

and mb, n 3  + Ci 	C.,b, th re 0 

Solving these simultaneous equations we have 

± 3  
Fon  pi2h1 p12(ai -p121., 2 	_hi  spi2 	

+ 3 
n  2 

g-11-141- 	 4"  1  	 ) 

and a similar expression for C2. 

Therefore 

( ff  O r = a   P = 	4-  P (02  C 
(vn÷3n 4-8-j-  -Caa

np +3 )
a

1
n 4- 2 

n n 

+ a P 12b Patn -P 12  b  
____ _ .3 	vps, 	1 _ 	_ _ —_i_______-____________, . ---- • 40, 

2 	1 
P 	P 

fl -p 
a 1  Pi 2  b

2 	‘ 
in

isi, 
n 1 2+3 bi pi2 	A n ( 2+3 a  p 12) n—p 	 2 

a
1 	

-t- 	
e
te
n  

,
pto 

2-   
• 
	 a,P 	b1 P 

• • • 
	 (8) 
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This expression for owe can be simplified by taking our unit of 

length to be the radius of the inner circle i.e. setting 

b= and 
1 a, 

(6°) rman
+ Pc.ot  

kvn + 3n ±iy [n + 3 + b
p12 /0+3 	-p12 

b 	—b  
) ?H-P 

1 —b p 
 

P  142 	+ 3  

F b2- 	
n—P 

-lam 	+ pw2 
1—b 

+ 3  
2 

,  + p wz 	 b  
(vn + 3n + 8)[n + 	

—
1  . n+ p 

1—be 

n+P 
p 	2 

b b 	 + 
1—b "  

n —pl
s j +  Pw  

(9) 

Since we want to find the mode of variation of (cre ) r=a= for 
different shapes of the disk which are here obtained by the variation 
of the parameter n in equation h=Crn , constants multiplying the 
variable terms in equation (9) can for the present, be neglected. 
Also the constant p(0 2, which is a separate term can similarly be 
neglected. So for studying the variation of ee let us consider the 
equation 

(vn + 3n + 8) 

n F p + 3 
2 

1 — b" 
n p • -- -- 

2 

n p 
+3 

b 
1 — bP 

(10) 
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Sof and go are connected by the equation 
+ 	p (13 2  f p (0 2  

1 	a 
or f = 	 -1 ) 

(11) 
For convenience of calculation let us take v to be a constant. 

Now if we differentiate (9) with respect to n and then equate 
, 	A'_ 	_ 	‘___ 	_ r 	 I  • 	 a 

to zero to nna tne vatue 01 n corresponamg to the maxima and 
m;nimn of t T n_ we find that the roots come to he + co Ana — er, 

II 7 
	 _ 	 ve a Ina 	 • 

This shows that the curve of f vs. n will not have maxima or 
minima in the finite region. 

Equation (10) can further be simplified and rewritten as 

r  n 

	

1= - 	 ± 3n + 8)  

	

P 	n  4P  + 3 	b 
P  

± 2 1.--lb (2b 
2  

1)- 	 — 1) 	
(12) 

Now to find the behaviour of f with the variation of n, let us 

give some specific value to b. Let b. 5. 

-4 	 -2 

rici . 3 . Atypical mode of variation of the stress at the hole of disks CO( responding to 

h=Cr ,  n , for different values of n 
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It was felt that, if the expression in parenthesis in equation (12) 
remained finite and negative throughout the variation of n in the 
finite region, f would become infinite at two points, i.e., at 

and ns -=--- 	3  + v  

Hence a minimum of f should have appeared between these two 
values of ii. On investigating it is found that the expression in 
parenthesis in equation (12) also goes on decreasing as the deno- 
minator tends to zero. But exactly at ns the numerator as well as 
the denominator are both exactly zero and so f at ns  may be said to 
be indeterminate. Again as we proceed below ns, the points are 
obtained in continuation to the previous curve. Hence we decide 
to call the value of its only as a singularity and smoothen the graph 
over this particular value also. (Fig. 3 for steel). 

Conclusion. As we find, that the disks of a parabolic profile 
and a hole at the centre, have a high stress concentration at the 
inner boundary they are not the advisable shapes. The disks with 
a hyperbolic profile do have a small stress concentration. The 
higher the degree (here n) of the hyperbola, the smaller is the 
stress concentration. But this value cannot be increased indefinitely 
due to some practical reasons, e.g., a thim metallic sheet at the 
periphery is not advisable, since it cannot take high loads either 
when the disk is rotating or when it is stationary. So the final 
shape of the disk should be an outcome of a compromise between 
the practical requirements and the degree of the hyperbolic profile. 

Finally we thank Prof. Tietjens for his permission to publish 
this article. We also thank Mr. S. M. Ramachandra for making a 
number of suggestions and Mr. Galileo Baniqued for helping in the 
lengthy arithmetical calculations. 
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