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Abstract

Dual integral equations involving Legendre and associated Legendre functions as kernels are considered in this
paper. Except for one pair, these dual integral equations are first reduced to solving some appropriate ordinary
differential equations. Invoking the inversion formulae for Abel integral equations, closed-form solutions to
these dual integral equations are obtained in most cases and in other cases they are reduced to some appropri-
ate Fredholm integral equation of the second kind. For the exceptional dval integral equations pair which in-
volves the associated Legendre function as kemel, a direct method of the use of Abel integral equation is
applied to obtain the closed-form solution. As an example of application of these dual integral equations a
blem arising from math ical physics is considered.

Key words: Dual integral equations, Legendre and associated Legendre function kernel, Fredholm integral
equation of the second kind.

1. Introduction

Dual integral equations involving Legendre functions as kernels are encountered in the
study of certain mixed boundary value problems in mathematical physics. Babloian' first
considered some dual integral equations involving Py, (cosha) as kemel. He solved
these equations by using the Mehler-Fok inversion formulae and applied these to solve a
torsion problem involving a spherical segment in the theory of elasticity. Certain dual in-
tegral equations involving the associated Legendre function P%),,;,(cosha), where
m=0,1,2,..., were considered by Rukhovets and Ufliand?, who reduced these equations
to the solution of a Fredholm integral eqaution of the second kind. They also applied these
to solve the problem of an elastic half-space twisted by a hollow cylindrical die. Later,
Pathak® considered some dual integral equations involving P4, (coshe) as kernel,
where x4 is not an integer. He exploited the results of 'some integrals involving
P4, . i-(cosha) to handle these dual integral equations and obtained the closed-form solu-
tion in some cases and in other cases expressed the solutions in terms of one unknown
function which satisfies a Fredholm integral equation of the second kind. For 4= 0, the
corresponding integral equations were mostly considered by Babloian®. Recently, Mandal*
also considered certain dual integral equations involving P%,,;, (coshcr), where Re u < +
and obtained a closed-form solution.
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In this paper we consider some new classes of dual integral equations involving both
Legendre function P, (coshc) and the associated Legendre function P, (cosha)
(~+<Re u<0) as kernels. These dual integral equations are solved by a method based on
reducing them to solving ordinary differential equations, followed by an appropriate in-
version formula for Abel integral equations. A somewhat similar idea has recently been
used by Srivastava and Srivastava® for studying some dual integral equation involving
Bessel functions as kerpel. We obtain the closed-form solution in some cases and in other
cases the dual integral equations are reduced to solving Fredholm integral equations of the
second kind. As an application to physical problems, a boundary value problem in elastic-
ity involving a half-space under torsion due to an attached rigid annular die is considered.

2. Dual integral equations invelving the Legendre function as kernel

In this section, we consider three pairs of dual integral equations with the Legendre func-
tion as kernel.

(A) The first is
_[: T2 A(D) Py (cosher) a7 = F(ed), 050t <a,
a (1)
J’o Ttanh it AT, . (cosha)dr =0, aSa <o,
where f(a) is a prescribed fimction and A4(7) is an unknown.
To solve these, we assume that
J:‘nanhm A(DP. . (cosha) dT = 9(00), 0S X S g, )

where #() is an unknown for 0 € & < a. It follows from the second equation of (1) and
(2), by using Mehler—Fok transform formulae (see Sneddon®), that

Ay = L “0(0) P13, (cosha)sinher dax. ®
Substituting this expression for 4(7) in the first equation of (1), we find
[ Ppeteoshor [jo ) P.mm(coshﬁ)sinhﬂdﬁ]dr - f@), 0sasa @)
Equation (4) is now equivalent to the differential equation
;gi?g%(smh“%)%“—f(“)’ 5)
where

() = J'o " P ypeio (coshar) [ jo $(B)P.y)3.1. (cosh B)sinh ﬁdﬁ] dr, 0<a<a.  (6)
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The solution of (5), by the method of variation of parameter, is

u(e) = C Py, (cosha) + Cr 0.y (cosha) + Py o (cosh a)j:f(i) Q. 5 (cosht)sinhz dz

~Q 1 (cosha) || 76)Pyy(coshr)sinhr s, ™

where the constants €, and C, are arbitrary. They are to be determined from physical
considerations of the problems. Of these, the constant C, must be zero in order that u(e) is
finite for @ = 0. The constant C; will be determined later.

Interchanging the order of integration and then using the result (which can be estab-
lished by using the integral representation of the Legendre function})

oo 1 pmin(a, ) ds

Py, (cosha) Py .. (cosh B)dT =—-J

j.ﬂ 12 vasie (Cosh = {(cosha — cosh?) (cosh B~coshr)}

7 (&

and again interchanging the order of integration, (6) reduces to the Abel’s integral equa-
tion

J-a dr J"' 9(B)sinh BdB =mu(e)), 0<x<a,

o (cosha—~cosht)? J¢ (cosh - coshs)?

so that
¢(B)sinh Bdp
-[ x (cosh B~ coshx; )1/ 7=V,
where
w(x) = smhxj' S O N— ®

0 (coshx —cosh?)

Another use of Abel’s inversion formula® gives

1d e y()sinhs

7 dx Jx (coshz - cosh x) 2
This gives the complete solution of dual integral equations (1) provided the constant C;

is determined. This is found from the fact that y(e) = 0, which arises from the physical

requirement involving the continuity of ¢() at o= a. Hence, the constant C, is deter-

mined by the equation

sinhx ¢(x) = (10)

jam—i‘@—dz=o. an

0 (cosha —coshf)"?
(B) The second pair is
fo " (1% = 4 A(B) Py pp (cosha)dr = £ (), 0Sa<a,
12)
J; Ttanh 77 A(T)P. 15,4, (cosha)dT =0, a<a <o,
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where u is real. The pair (12) is a generalisation of the pair (1) in the sense that for u=0
these are reduced to the pair (1).

To solve the pair (12), we assume
j:nanhm A(DP. gy, (coshe) dT = §(a), 0a<a, a3
where ¢(a) is unknown for 0 < a < a. Thus,
A(0) = [§(BIP.y3.15(cosh B)sih § 4F. D)
Substituting (14) into the first equation of (12), we find

[, @ =) Pz eoshon) [ [errs (coshﬁ)sinhﬁdﬁ} dr=f(e), 0<a<a (15)

This is equivalent to the differential equation

1od(. . au), (1, .} _
ma(sﬂﬂlaﬁji-(’&-%-u )u~-f(a), 0sasga, (16)
where now
=3 a
@)= [ 2 oo [ 6P ilcom P paee. am
The solution of (16) is

u@) =GPy, (cosha) + G0 1245 (coshar)
a i
+P.yjp.5, (cosh o) j |7 (00 11245, (cosh) sinh 1 dr (18)

{1
Q1724 (coshex) J;) J(OP.y3,y (coshi)sinhzdr.
Since #(a) must be finite at o = 0, the constant C, must be equal to zero. Now, proceeding
as before, the solution of the pair (12) can be obtained.
(C) Next we consider the pair

[Feotinr APy e coshaar = £ (@), 05 <a,
- @19
_[0 [AT+ 1(1? +¢*) coth7r] A() P.yjp;p (coSha)dT =0, a <t < on,

where 4, 12 are real constants and ¢ > &

When u=0, equation (19) reduces to the pair considered by Babloian' (writing
B(7) = coth z7 A(7)).
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When A = 0 but ¢ * 0, (19) reduces to the pair

[ oot a7 AP y30ic (0sh) b7 = £ (), 05 @ Sa,
° 20

r (2% +c?)coth BT A(D) Py ;o (c0sha)dT =0, a S o< oo,

o

whose solution can be obtained in a similar manner as in case (A), and the solution in this
case is given by (after utilizing the result (2) on p. 170 of Erdelyi ez al” involving Legen-
dre functions in the simplification)

A(t) = Ttanh? mf: F(OP_ .. (coshor) simhardor

Ttanh? #t.sinha. f(a)

_ua(cosha) Py, .. (cosha
(160, .y (cosha) [Qc 12 ( ) Py € )

—P. 1345 (cosha)Q} 5 (cosh “)} . 2y
When both A and u are not zero, we can write the second equation of (19) as
o At
2 2 . = < o0,
_L @+ ){1"‘ v tmhm’:| coth T A(T) Py, (cosha)dT =0, aS @ <o (22)

This is equivalent to the differential equation

Siﬂ}laa%[ mha-(?—;ji-(%—cz)u:q aso <o, (23)
where now .
u(er) = J‘: [1 +————;ETianbm:! COt T A(T) P11, (cOSh ). (24)
H(r +c%)
The solution of (23) is

u(ot) = C\ P,_y5(cosha) + C, 0, y5(cosha), a<a<oo,

Since u(a) must remain finite as « tends to infinity and ¢ > 4, we must have C; = 0.
Thus, (24) gives

j:A(r) cotht Py, (coshor)dz

=G0, ,,(cosha)— Py (cosha)dy, aSa<m. (25)

5

A r yA®)
Lo (y2+ch)

The first equation of (19) and (25) produces 4(7) by Mehler—Fok inversion. Afier some
simplification, we find
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A(r) _ . tanh’ 7T

=G (—r§+——;§mh a [Q,,1 n(cosha) Py i (cosha) — P, . (cosha) Ol (ccsha)}
[

2
+tank? 77 f F(0)P 1 (coshar)sinharda - 200 ’”[ A

n (% +c*)tanh 7t

't yA(y)sinha
b {

P /545, (cosha Y2 12+iy (cosha)

—Pipp4i7(cosha )P31/2+1r (COShﬂ)}dV } 26)

The continuity requirement at @ = a gives

fla) 1 - YA(V)
C = — ha)d 27
o m(cosha)+uQ,I,Z(cosha)J'O PR P.yjpsiy(cosha)dy. @7

Using (27) in (26), we obtain the Fredholm integral equation (FIE) of the second kind
for A(7) as

At = 4 '
20 [ 4D kg, 5y = 1o, @8
(4
where
2 2
inha - tank
Ky, 7=y gt LT
(7 +c) {Avtanh mr + pu(t* + %)}
P 1241, (cosha)
x Lol {P—luzm (cosha) Q. yp{cosha) - P55 (cosha)
Q. 12 (cosha)
X Qo (COSha)} TS (O {P—ll/2+iy (cosha)P. ;. (cosha)
—P ey (cosha) Pl (cosha)}J
and
tanh? 77 inh
L(r)= = [ Siond { i r2+ic (Cosha )0, (cosha)

Artanhnr + p(t? +c*) LQM,Z(cosha)

~Pipsisloosha)Qly(cosha)) f@)+ (1 +%) fa ® F()P ypuso(coshar)sinher da:{.
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3. Dual integral equation involving associated Legendre function as kernel

In this section, we consider four pairs of dual integral equations with associated Legendre
function as kernel.

(A) The first pair is

J' A(T)PE .. (cosha) dT = f(a), O<cr<a,
29)

J'D TG~ p+in) [~ p~it)sinhzr AP, (coshe) dT =0, a< 0t <oo,

where 1 < Re #<0.

To solve (29), we assume the right-hand side of the second equation to be equal to the
unknown function #(e) for 0 < @ < a, so that by applying generalized Mehler-Fok inver-
sion formulae (cf. (2.14) and (2.15) of Pathak’) we find

7 4(1) = [ 9(BYP .52 (cosh B sinh B 4. (30)

Using (30), then interchanging the order of integration and using the result (which can
be established by using the integral representation of associated Legendre function)

[ Phuicteoshan B2, (cosh By de

:[TG- Jr[sinha sinh 81"

ija,m d (Rep< 1) 361
e
o {(cosha — coshr) (cosh f— coshr)} /27 | #

in the first equation of (29), we obtain the Abel’s integral equation

[ d [ LOL e N

0 (coshe~cosh)# i (cosh B coshz)/?+#

rd-mr
:”—[—(M; 0<a<a, ~—1~<RayS0, 32)
sinh* o 2
so0 that
a inhlt# r 2 r()sinhH 1
Jm¢(ﬁ)SIm €2+u df= cos;m: * LG -mI/C )Slm_u dr=¥(x), 0<x<a
x (cosh B — cosh x) dxJo  (coshx—coshz)

(33)
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Another Abel’s inversion gives

B(x)sioh* x = - SOSHT J‘:(COSh'fffz:Ii:)

T2 (34)

Hence, the solution of the dual integral equations (29) is obtained, after some elemen-

tary calculations and using the result (2412) of Pathak’ as

N7 sinh'™ o f(a) 1

AT ——F cos cosx‘r - dorjdx, —=<Reu<o.

= T G- sycosu j o (coshx—cosha)”z‘” 2 #
(35)

This result was earlier obtained by Pathak®. For g = 0, this also reduces to the known re-
sult obtained by Babloian'.

(B) Next we consider the pair

J 72 A(T) P! Hiasic(cosha)dt = f(a), 0<a<a,
o
(396)
j T~ gD - g —i7)sioh 27 A(T) Py, (cosha)dT =0, a<a<on,
o
where 1 <Re y<0.

As before, we assume the right-hand side of the second equation (36) to be the unknown
function ¢(a) for 0 < o < a. Then by the generalized Mehler—Fok inversion formulae (cf.
(2.14) and (2.15) of Pathak®), we obtain

T A(T) = fn S(@) P ;- (cosha) sinhar dar. 67
Substituting 4(z) in the first equation of (36), we have
1 P,mﬂf(cosha) U O(BIPY ) ir (coshﬁ)sinhﬂdﬁ:l dr=nf(xx), 0<a<a (38)

This is equivalent to the differential equation

1 d du 1 #2 B
sinhor da{smhada] (Z*m}u——frf(a), (39)

where now
wo) = j PH . (coshar) U S(BYP~ .;x (cosh B)sinh B dﬁ} dr, 0<a<a (40)

The solution of {39} is
rg-smreg-+

woy=C P, (coshor)+ 2(cosha) +27 ¢ pe g8 a2
(0= G, P45 (cosh )+ G0 (coshr) rG+imra+ip



DUAL INTEGRAL EQUATIONS 573
o
x [me (coshar) jo sinht O, (cosh 1) £ (£)di — 0¥, (cosh )

><J;asinhtP_‘{/z(cosht)f(t)dt:!, 0<e<a, @D

where C; and C; are arbitrary constants to be determined from physical considerations of
the problems. Since #() must be bounded at &= 0 and —4 < Re £ <0, C; must be zero.
The constant C; will be determined later.

As before, (40) gives rise to
J“" dr I“ $(B)sinh™* B dB= [P - wiue)

= . @)
o (cosha—cosh?)*** Jr (coshB—coshr)V/>*# sinh” o ¢

from which we find another Abel integral equation

[ pB) st B o TG & o u(n)sinh*¢
= (cosh f—coshux) >+ I(3+u) dx J (coshx —coshi) V> #

=Y¥(x), say, for -1 <Reu<0, 0<x<a,
so that
cosurn d (@ ¥(f)sinh?
% & Jx(cosht~coshx)2F

sinh"* x ¢(x) = (43)

This gives the complete solution of dual integral equations (36) provided the constant
C, is determined. This constant C; is obtained from the fact that ¥(a) = 0 if g(x) is to be
continuous at x = a. Therefore, the constant C, is obtained from the equation

Jn 2 {u(s)sinh* 1}

dr=0. 44
o (cosha —coshr)!/?# “

For g=0, the dual integral equations together with the solution are the same as in
Section 2(A).

(C) Next, we consider the pair

_[" (€2 V) AT P, (cOsha)dT = £ (@), 0L <a,
’ @5)
T - u+it) M(E - p—it)sinhat A(T)PY ., (cosha)dT =0, asa<os,
o 2 2 1/2+iT

where —% <Re 4 < 0and vis real.

As before, we assume the right-hand side of the second equation of (45) to be the un-
known function ¢(a) for 0 < @< a. By using the generalized Mehler-Fok inversion for-
mulae cited above, we find
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T A7) = J‘: S(BIPY5... (cosh B)sinh B dB.

Substituting this into the first equation of (45) we find

oo [ ea
jo (Z2-vH)PE .. (cosha) JLJ‘“ sinh 8 P4 5.;. (cosh B) 9(f) dﬁ:| dr=nf(a), 0<a<a

(46)
This is equivalent to the differential equation
Vod (L du) (1, P
-— e | VS~ = 4
sinher da( adajﬂ\nt Vie U= (@) @7

where now
ua) = [ Phyic(cosha) U $(B)PY,, . (cosh B)sinh B dﬂ} dr, 0sa<a  (48)
0 iJo
The solution of (47) is

TGr-H =%

rE+2+5Hrg++9H

u(e) = C P4 ., (coshar) + Gy 0% 1 o5, (coshar) + 272 e 47
. .
x| Phz.ay(coshar) [['sinhr 0. (eoshir)£(0) dt

~Qb .1 (cosh ) j: sinht P, . (cosht)f(7) dt} ) 49)

Since u( ) must be finite at =0 and -4 < Re 4 < 0, the constant C; = 0. Now proceed-
ing as in Section 3(B) we obtain ¢(x) (0 <x < a) and the constant C; by the equations (43)
and (44), respectively, with u(a) given by (49). This gives the complete solution of the
dual integral equations (45).

(D) Finally, we consider the pair

o~ ~1
jo [I‘(%—u +HD TG —p— it)] cosech 2T A(T)PY 5, . (cosh7) dT = f(e), O <a

J:[AIT+ 2@+ YOG = it T — - ir)}~1 cosech m‘} (50)
AP, (cosha)dT =0, a<o<os,

where —1 <Re £ <0, 4,, 11, are real and c>3.

For 4 =0, the equations (50) are reduced to the pair (29) by redefining A(7)
appropriately.



DUAL INTEGRAL EQUATIONS 575

When A, =0 but g = 0, the solution to the dual integral equations can be obtained as
before and is given by (after utilizing the result (1) on p. 169 of Erdelyi ez al’ involving
associated Legendre functions in the simplification)

7 A(z) = 7sinh® w7 [P - p+it) FG—p-in)]"

x [Eéi_(flz—;{(ir —c)cosha PH,, . (cosha) Q¥ , (cosha)
c

+{u+c- 1P, ;. (cosha) O 4, (cosha)

~(u+ir-1) P4, (cosha)Q¥  , (cosha )}
a
+ )'0 F(@) Pl (cosha)sinhada} 51

When both A, and g4 are not zero, we can write the second equation of (50) as

@ ed[rg-prinreg-u- i)] " - cosechr

AT
x{l+—2 e sinhmr G — pg+in) F'E-y—ir
{ ) I'G-p+in) I'G-u I)J

X A(7) P45, (cosho)dr =0, aSa <o (52)

As before, equation (52) is equivalent to the differential equation

1 d (. du 1, u? _
P~ (smhaa—x—)+[z~c e u=0, 53
where now

= AT X : .
u(a):Jo [Hmsmhm T(F—p+in) I‘(—;——,u—lr):|

x[P=p+i0) I = u=in)]” cosech 77 A(D) P ., (cosh@)dz, a<a<es. (54)
The solution of (53) is given by
u(o) = G PE, , (coshar) + C,QF 4, (cosh ).

Since u(a) must be finite as & tends to infinity and ¢ > 4, we must have C; = 0. Hence,
by (54), we have

jo “[F@ - p+in) F(h—u—in)]" cosech 77 A(R)PE .. (coshe)dr
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YA(J’)

D Phpaiycosha)dy, aso<w, (55)

=G0 (cosha) ~21 Jo
Equation (55) and the first equation of (50) gives, after using the generalized Mehler—
Fok inversion formulae cited above,
: 1 ]2 2 A
7:[1“(%— R+ T G- u—n)] cosech” 77—~
aad "
= Cz.[ Ph s ip(cosho)QE , (coshar) sinhor doH—.[0 f(@) PH, . (cosher)sinh o dox
a

A= ; =_Y4AW)
_Z:—J; P45 ic(coshor) sinh o {J-o ey

)1’_‘{,2+iy(cosha) dy} da. (56)

The continuity requirement at @ = a gives

S AC)) A = _YAW)
G=— Y J 3
QOfla(cosha)  w,OF o (cosha) 0 7 +c )

Substituting the value of C; in (56) and after some simplification, we find the FIE of the
second kind for A(7) as

Ph 241y (cosha)dy.

A(”) /1_[ A(Y)K(y T)dy = B(z), 7
where
Y2+ - prin) P - p-i0)] sinh? e
7:{111 I(t=p+it) TG~ p-it)sioh e+ u (e +c2)}

Ky, 1) =

% {(11' ¢)-cosha- P4, . (cosha) Q¥ ,(cosha)
+(u+e~3) Py (cosha) O 1, (cosha)
~(u+ir-3) P4,.; (cosha) O* ,(cosha o}

+(@ +&)y* ~2*) i —y)cosha PA, . (cosha)

X Ph iy (cosha)+(p+iy —%) PA, . (cosha) P4y, (cosha)

(/J +it _'l)P 2415 (coSha ) Py ~2+iy (cosha) }:‘
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and
1 . 1 )
ul[r(i—uﬂr)l“(i—u-n)] sinh® T
n{llrl‘(%—;wir) (- p-ir)sinhar + py (o +c2)}

f@
0¥ 2 (cosha)

B(7)=

x[ (r +c)f(e) P, (cosha)sinhe der+
X {(17 c)cosha P4, . (cosha) Q¥ , (cosha)

+ (u +c—4)PH ) (cosha) O 5, (cosha)

- (#+iT -1) P4, (cosha) OF (cosha)}}

It is easy to verify that by putting 4 = 0 in the dual integral equations of Section 3, some
results obtained in Section 2 for the solutions of dual integral equations involving Legen-
dre function as kernel are recovered.

4. An example

As application of the dual integral equations, we consider a mixed boundary value prob-
lem involving a half-space due to torsion of an attached rigid annular die. Using toroidal
coordinates {«, B, 8) where

csinh or 2= ¢sin 8
cosha+cos B’ °  cosha +cos B

r=(x2+y?)2 = (c>0),

0<a<w, 0<f<m the half-space is z20, and the die is represented by z=0,
@ < @ < . The state of stress and strain does not depend on the angular coordinate & and
is determined by the non-zero component of displacements, up = u(r, 2) . u(r, z) satisfies

PEArra A e
with the boundary conditions
Ju
=0, 0Sosay, ul, =k, dg<o<e, u, =0
8ﬂﬁ=0 B0 for

where k is the angle of rotation of the die.
We seek a solution of the above mixed boundary value problem in the form

sinh (z ~ B)7

1
—shr L -lvic (cosha) dr,

u = ke (cosha + cosﬁ)mf A(7)
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then the boundary conditions produce the dual integral equations
Jm T A(z’)P_l”p,iz (cosha)dr =0, O0<sa<ay
o

tanha/2

V22

r tanh T A(T)PY e (cOSh ) AT = P
o (cosha +1)

Oy <0 < oo,

for the unknown function 4(z). Using the formula P'j,; (cosha)=d/da P, (cosha)
and taking 7 8(7) = A(1), we obtain the dual integral equations discussed in Section 2(A).
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