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Abstract 

kourth-order nonlinear evuluuon cquatlons, which are good starting point for the study of nonhnear water 
wavca, are dcrived for a deep-water surlace capillary gravity wave packet m the prexnce oi  a second 
wave packet. Stahrliry analyals is made for a uniform wave tram in the presencc of a second uniform wave 
cram. Graphs are plotted for maxlmum growth rate of mstabil~ty and for wave number at marginal stability 
against wave atcepnzss Significant devriltions are noticed from lhe reaults obtamed from the third-order 
evolution equations which consxst of tu'o coupled nonlinear Schrodmger equations. 
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1. Introduction 

A reawnable approach of studying stability of Iinile amplitude surface gravity waves 
in deep water is through the application of lowest order nonlinear evolution equation 
which is the nonlinear Schrodinger equation. This analysis is suitable for small wave 
steepness and for long wavelength perturbat~ons. But, for wavc steepness greater 
than 0.15, predictions from nonlinear Schrodinger equation do not agree with the 
exact resulta of Iaonguet-Higgi~~s'~2. Dysthe3 has shown that stability analysis made 
from fourth-order nonlinear evolution equation which is one order higher than non- 
linear Schrodinger equation, gives results consistent with the exact results of Longuet- 
IIiggins'~2 and with the experimental results of Benjamin and F e d  for wave steepness 
up to 0.25. The fourth-order effects give a surprising improvement compared to ordi- 
nary nonlinear Schrodinger effects in many respects, and some of these points have 
been elaborated by Janssens. The dominant new effect that comes in the fourth order 
is the influence of wave-induced mean flow and this produces a significant deviation 
in the stability character. So it can be concluded that a fourth-order evolution 
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quation is a good stating point for studying nonlinear cffects of surface gravity 
waves in deep water. Fourth-order nonlinear evolution equations for deep-water sur- 
face gravity waves in different contexts and stability analysis made from them were 
derived by several 

These analyses are for a single wave only. Stability analysis of a surface gravity 
wave in deep water in thc presence of a sccond wave has been made by Koskesg. 
based on the lowest order nonlinear evolution equation which consists of two coupled 
nonlinear Schriidinger equations. In his investigation, modulational perturbation is 
restricted to a direction along which group velocity projections of the two waves 
overlap and it is argued that the modulation will grow at a faster rate along this 
direction when the angle between two propagation directions of two waves lies bet- 
ween 0 and 70.5". 

The stability analysis of two Stokes wave trains in deep water starting from fourth- 
order nonlinear evolution equations has been made in a recent paper by Dhar and 
 as'! An extension of this paper to include capillarity is made in this paper. It is 
found that there is instability when 13 lies in the intervals O" 5 I3 i 74.53' and 80.21" 
< fl 5 180" for waves of wavelength 0.2 cm and in the intervals O" 5 0 < 31.62' 
and 149" < 0 5 180" for waves of wavelength 5 cm, where I3 is the angle between 
the propagation directions of the two waves. Graphs are plotted for maximum growth 
rate of instability and for wave number at marginal stability against wave steepness 
for some different values of 0 and for two values of ko (ko = 31.32 cm-', 1.25 cm-I). 

2. Basic equation 

We take the free surface of the water in the undisturbed state as the z = 0 lane 
We consider that the two waves move in the x-y plane with wave numbers $ and x2, respectively. M7e take the x axis in a direction along which group velocity projec- 
tions of the two waves overlap and consider the modulations along this line only. 
Let z = <(x, y, t )  be the equation of the free surface at any time t in the perturbed 
state. We introduce the dimensionless quantitics i p * ,  <*, (x*, y*, z*), t*, s* which 
are, respectively, the perturbed velocity potential in water, elevation of the free sur- 
face, space coordinates, time and surface tension. These dimensionless quantities are 
related to the corresponding dimensional quantities by the following 

where k ,  is some characteristic wave number. In future, all these quantities will be 
written in their dimensionless form but with their stars dropped. 

The perturbed velocity potential 9, from which perturbed velocity 8 of water can 
he obtained from the relation 8 = $ i p ,  satisfies the following Laplace's equation 

The kinematic boundary condition to be satisfied at the free surface is 
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The condition of continuity of pressure at the free surface gives 

when z = 5 

Further, q should satisfy the following condition at infinity 

The linear dispersion relations for the first and second waves with wave number $ 
and frequency w,, (i = 1, 2), where i = 1 and i = 2 correspond, respectively, to the 
first and second wave, are given by 

A case of interest occurs if we make the simplifying assumption that the wave num- 
bers of the two waves are the same, which implies that I I = I & I = k (say). 
Let this common wave number be equal to k,, the characteristic wave number. So 
we have k = I Zl / = I X2 I = 1 and consequently the linear dispersion relation (6) 
using k = 1 becomes 

3. Evolution equation 

By a standard procedure (Dhar and ~ a s l ' )  we find that = ~5101 + E ~ < ~ ~ ~ ,  52 = ~ 1 ; ~ ~ ~  + ~ ~ c ~ ~ ,  where g1 and c2 are the complex amplitudes of the first and second wave, 
respectively, for the elevation of the free surface from the undisturbed state, satisfy 
the following fourth-order nonlinear evolution equations. 
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and 

where the coefficients yll ,  712, &I,  P12, a l l ,  0112, A n ,  A12, A I ~ ,  IJ. are given in Appendix 
A, and where 

5 = e(x - V.t), r = eZt (10) 

where V is the component of group velocity of any of the two waves along tbe x 
axis and is given by V = cos(012) dwldk ,  the derivative d w l d k  is to be evaluated from 
(6) ,  and H is the Hilbert's transform given by 

For 8 = 0, and in the absence of the second wave the two coupled evolution equa- 
tions given by (8) and (9) reduce to a single equation which becomes the same as 
equation (2.20) of Hogan7 for one-dimensional case. 

4. Stability analysis 

The evolution equations (8), (9) admit Stokes wave solutions 

a 1  a 2  
51 = - exp (?Amp) ,  E2 = - exp (iAw,~) 

2 2 

where orl: a2 are real constants and Awl, AwZ are the nonlinear frequency shifts of 
the two waves. As the two waves have the same wave number equal to 1, i.e., I zl I 
= 1 z2 I = 1, the change in the phase speeds of the two waves Ac, and Ac2 are given 
by 

The change in the phase speeds of each wave train is therefore made up of two 
parts. The first correction to cl is given by -+ which is the well-known Stokes 
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correction. This term is due to the nonlinearity of the wave train itself and is present 
even if the other wave train is absent. The second correction is given by - + ~ ~ ~ u $  
and is entirely due to the presence of the other wave train. It is of the same order 
as the usual Stokes correction. 

If in the two expressions given by (13) for the change in phase speeds of the two 
waves we set s = 0, we recover the expressions derived by Longuet-Higgins and 
phillipsfl for the change in the phase speeds of the two waves in the absence of 
surface tension. Only we are to set a1 = o, u2 = w, P = 180"-012 in their expressions 
and also to make corrections in their expressions as noted by WillebrandI2. 

In the particular case, ol = 0 2  = W ,  kl = k2 = k and p = 180" -1312, the expression 
for the change in the phase speed given by equation (5.25) of Hogan el all3 reduce 
to an expression for A q  given by our equation (13) for the change in the phase speed 
of the second wave in the presence of the first wave. 

To study modulational instability of this uniform wave train, we introduce the fol- 
lowing perturbations in the uniform solution. 

where 51, ci, ei, 0; are small perturbations in amplitudes and phases, respectively, 
and are real. Substituting (14) and (15) in (8) and (9) ,  linearizing and then assuming 
space time dependence of 5: ,  01, (i = 1,2) to be of the form expi(h5 - n' T), we 
arrive at the followine nonlinear disoersion relation, the details of derivation of which - 
are given in Appendii B. 

where 

PI = n - VA + y1,k3 

P2 = yllh2 

and Cl = 0' + VX . 

From (16) it follows that for instability we must have 

az 
y d 2  + 5 (P11+ P12 - 2ph) < 0 I 

and if this condition is met, then the maximum growth rate y, is given by 
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At marginal stability we have 

and this gives the following expression for A at marginal stability 

where a is the common amplitude of the two waves. 

From instability condition (18) ir is found that there is instability when 0 lies in 
the intervals On 5 0 < 74.53" and 80.21" < 0 5 180" for waves of wavelength 0.2 
cm and in the intervals 0" c < 31.62" and 149" < 0 -C 180" for waves of wavelength 
5 cm. 

In Figs l(a) and 2(a) the maximum growth rate of instability y, and in Figs l(b) 
and 2(b) the wave number A at marginal stability have been plotted against wave 
steepness a for some different values of 0 for the case of air water surface and for 
k, = 31.32 cm-' and k, = 1.25 cm-'. For waves of wavelength 5 cm and for 0" 
8 < 31.62" it is observed from the graph that the fourth-order effect produces a 
decrease in the growth rate giving a stabilizing influence and also a shrinkage of the 
instability region in A-a plane. Effects reverse to these are observed for waves of 
wavelength 0.2 cm. There is no fourth-order contribution for 0 = 18O0, since, when 
6 = 18O0, the Hilbert transform terms, which only contribute at the fourth order, 
vanish identically. 
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Mo. I k, = 31 32 cm-l. (a) Maxlrnurn growth rate yM as a functlon o i  d~mensmnler, wave stccpneas 
o. (b) Plot of perturbed wave number A at maq~nal stnbiliiy agamst wave steepness a. ---- thcrd-order 
~crult. - faurih-ordcr result. 

FIG. 2. k, = 1.25 m- ' .  (a) Mmmum growth rate y, as a function of dimensionless wave steepness u. 
(h) Plot of perturbed wave number A at m a r p a l  stability against wwe steepness u. -~--third-order result, 
-fourth-order result. 
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1 pI1 = - (1 - 2s)-' (1 + s)-I (2s' + s + 8) 
4 

B12 = 2 c o s  b l  2 (I - 2 cos +) +s) + sin2 +I- cos2+ [I + 4s cos2 +) ] 
-.I + sj sin' ;[sin'-$(l + 4s sin2 + sin2+) 

(1 + s)-' (sin' 0 + 3 cos' 8) + 3 cos 0 + 1 

3 0 
all = - (1 + s)-' (1 - h)-' (4.9% 4s3 - 9s? + s - 8) cos - 

I 2 

1 a 
a12 = - (1 + s)-"1 - ?s--' (s - 1)(2s% s + 8) cos - 

8 2 
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a + - cos - 2 cosi - - 2 
4 2 ( 2 

0 
x cos - 5 -7 cos - - 2 

2 " 2 

x + 4s sin2 :os 4 sin2 (5-2 cos2 



588 A.K. DHAR AND K.P. DAS 

where 6,, 8?, E3 appearing in the above expressions are given by 

Appendix B 

Inserting (14) and (15) in (8) and (9) and linearising with respect to tj, 8: (i = 1,2) 
we get the following four equations 
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where 

Now, if we suppose the T-dependence of c:,  0: (i = 1,2) is of the form exp (-i CL'T), 
then equations (C1)-(C4) remain the same as before but P1 now stands for 

Next taking the Fourier transform of equations (C1)-(C4) with respect to e; defined by 

we get four linear algebraic equations for %:, 8: (i = 1, 2). The condition for the 
existence of a nontrivial solution of these four equations gives the nonlinear disper- 
sion relation (16), where it is assumed that the amplitudes of the two modes are 
equal (al = a2 = a). 


