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Abstract

Fourth-order nonhrear evolution equations, which are good starting point for the study of nonlinear water
waves, are derived for a deep-water surface capillary gravity wave packet in the presence of a second
wave packet. Stabality analysis is made for a uniform wave train in the presence of a second uniform wave
wain. Graphs are plotted for maximum growth rate of instability and for wave number at marginal stability
against wave steepness. Significant deviations are noticed from the results obtamed from the third-order
evolution equations which consist of two coupled nonlinear Schrodinger equations.
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1. Introduction

A reasonable approach of studying stability of finite amplitude surface gravity waves
in deep water is through the application of lowest order nonlinear evolution equation
which is the nonlinear Schrodinger equation. This analysis 1s suitable for small wave
steepness and for long wavelength perturbations. But, for wave steepness greater
than 0.15, predictions from nonlinecar Schrédinger equation do not agree with the
exact results of Longuet—Higgins'?. Dysthe® has shown that stability analysis made
from fourth-order nonlinear evolution equation which is one order higher than non-
linear Schrédinger equation, gives results consistent with the exact results of Longuet—
Higgins'? and with the experimental results of Benjamin and Feir* for wave steepness
up to 0.25. The fourth-order effects give a surprising improvement compared to ordi-
nary nonlinear Schrédinger effects in many respects, and some of these points have
been elaborated by Janssen®. The dominant new effect that comes in the fourth order
is the influence of wave-induced mean flow and this produces a significant deviation
in the stability character. So it can be concluded that a fourth-order evolution
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equation is a good starting point for studying nonlinear cffects of surface gravity
waves in deep water. Fourth-order nonlinear evolution equations for deep-water sur-
face gravity waves in different contexts and stability analysis made from them were
derived by several authors™®.

These analyses are for a single wave only. Stability analysis of a surface gravity
wave in deep water in the presence of a second wave has been made by Roskes’
based on the lowest order nonlinear evolution equation which consists of two coupled
nonlinear Schrédinger equations. In his investigation, modulational perturbation is
restricted to a direction along which group velocity projections of the two waves
overlap and it is argued that the modulation will grow at a faster rate along this
direction when the angle between two propagation directions of two waves lies bet-
ween 0 and 70.5°.

The stability analysis of two Stokes wave trains in deep water starting from fourth-
order nonlinear evolution equations has been made in a recent paper by Dhar and
Das?’. An extension of this paper to include capillarity is made in this paper. It is
found that there is instability when 8 lies in the intervals 0° < 6 < 74.53° and 80.21°
< § = 180° for waves of wavelength 0.2 cm and in the intervals 0° = 6 < 31.62°
and 149° < 6 = 180° for waves of wavelength 5 cm, where 6 is the angle between
the propagation directions of the two waves. Graphs are plotted for maximum growth
rate of instability and for wave number at marginal stability against wave steepness
for some different values of 8 and for two values of ky (ky = 31.32 cm™, 1.25 em™).

2. Basic equation

We take the free surface of the water in the undisturbed state as the z = 0 plane.
We consider that the two waves move in the x-y plane with wave numbers {1 and
¢y, respectively. We take the x axis in a direction along which group velocity projec-
tions of the two waves overlap and consider the modulations along this line only.
Let z = I(x, y, ) be the equation of the free surface at any time ¢ in the perturbed
state. We introduce the dimensionless quantities ¢*, {*, (x*, y*, z*), ¢*, §* which
are, respectively, the perturbed velocity potential in water, elevation of the free sur-
face, space coordinates, time and surface tension. These dimensionless quantities are
related to the corresponding dimensional quantities by the following

o* = (kg)'"e, [* = kol 1* = (gko)"” ¢, m
(%, y*, 2%) = (kox, koy, k,z), s* = Tk/g,

where %, is some characteristic wave number. In future, all these quantities will be
written in their dimensionless form but with their stars dropped.

The perturbed velocity potential ¢, from which perturbed velocity 7% of water can
be obtained from the relation # = V¢, satisfies the following Laplace’s equation

Vi =0in —o < z < [. @

The kinematic boundary condition to be satisfied at the free surface is
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Further, ¢ should satisfy the following condition at infinity

¢—>0asz-—» —x (%)

The linear dispersion relations for the first and second waves with wave number Z,
and frequency o, (i = 1, 2), where { = 1 and i = 2 correspond, respectively, to the
first and second wave, are given by

= (K + )" = s(Etie) = 0, (0 = 12). ©)

A case of interest occurs if we make the simplifying assumption that the wave num-

bers of the two waves are the same, which implies that |k | = | % | = k (say).

Let this common wave number be equal to k,, the characteristic wave number. So

we have k = | k| = | k| =1 and consequently the linear dispersion relation (6)
using k£ = 1 becomes

Mo) = @?-1-5 = 0. 7)

3. Evolution equation

By a standard procedure (Dhar and Das'®) we find that §; = e{yo1 + €1, Lo = €lon,
+ €012, Where {4 and & are the complex amplitudes of the first and second wave,
respectively, for the elevation of the free surface from the undisturbed state, satisfy
the following fourth-order nonlinear evolution equations.

Ly e

e
ZT}?+YH Pro + iy 2 =LBul &>+ Bel&]?

N & . &t . a . 2
+zan§1§’f§ + lalzﬁa—é-l + lMszCi‘g% + zxuzlai—ai—z

+ iAslilz —é— + }LC1H — (lex) + M§1H v (Cz@z) ®
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where the coefficients vi1, Y12, Bu. Br2s @11, @32, M1, Mg, Mg, b are given in Appendix
A, and where
f=elx — V), 7= €t (10)

where V is the component of group velocity of any of the two waves along the x
axis and is given by V = cos(0/2) dw/dk, the derivative dw/dk is to be evaluated from
(6), and H is the Hilbert’s transform given by

H(Y) = = T f kil )dg, (1)

For 8 = 0, and in the absence of the second wave the two coupled evolution equa-
tions given by (8) and (9) reduce to a single equation which becomes the same as
equation (2.20) of Hogan’ for one-dimensional case.

4. Stability analysis

The evolution equations (8), (9) admit Stokes wave solutions
i = (—; exp ({Awrm), = %E exp (iAwyT) (12)

where «y, oy are real constants and Aw,, Aw, are the nonlinear frequency shifts of
the two waves. As the two waves have the same wave number equal to 1, i.e., |4 |
= | k2| = 1, the change in the phase speeds of the two waves Ac; and Ac; are given
by

Ao 1 2
Acy = ‘..zﬁ = Aw; = — —4—- (Bt + 3120‘%)
Ac—sz—A = 1( 3+ Buod .
TR AT T Buet ot Bacd), ()

The change in the phase speeds of each wave train is therefore made up of two
parts. The first correction to ¢; is given by — (311041 which is the well-known Stokes
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correction. This term is due to the nonlinearity of the wave train itself and is present
even if the other wave train is absent. The second correction is given by —7[3,2&%
and is entirely due to the presence of the other wave train. It is of the same order
as the usual Stokes correction.

If in the two expressions given by (13) for the change in phase speeds of the two
waves we set s = 0, we recover the expressions derived by Longuet-Higgins and
Phillips'' for the change in the phase speeds of the two waves in the absence of
surface tension. Only we are to set 0y = w, 0, = w, B = 180°~0/2 in their expressions
and also to make corrections in their expressions as noted by Willebrand®™.

In the particular case, oy = 03 = o, k; = k = k and B = 180° —6/2, the expression
for the change in the phase speed given by equation (5.25) of Hogan et al reduce
to an expression for Ac, given by our equation (13) for the change in the phase speed
of the second wave in the presence of the first wave.

To study modulational instability of this uniform wave train, we introduce the fol-
lowing perturbations in the uniform solution.

L= % (1 + &) expi(Awyr + 8)) (14

L= 20 (1 + 1) expilAon +8) 15)

where (i, {3, 67, 05 are small perturbations in amplitudes and phases, respectively,
and are real. Substituting (14) and (15) in (8) and (9), linearizing and then assuming
space time dependence of ], 8,, (i = 1,2) to be of the form expi(Af — Q' 1), we
arrive at the following nonlinear dispersion relation, the details of derivation of which
are given in Appendix B.

_ S _lz OLZ 12
Py =~ | o¥(ay + Ay + Aiz) " | Py Py + Z(Bn + Bz — 2pA) 16)

where
Pi=Q ~ VA + N an
Py = yu\?

and Q=Q'+ V\.

From (16) it follows that for instability we must have

o?
711)\2['\’11)\2 + 5 B+ Bz — 2“4)\)} <90 (18)

and if this condition is met, then the maximum growth rate -y is given by
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—(Bu + 1312)012[ e :i
Vi = 1+
4 V=B + B)vn

when y;; > 0, By + Bz < 0,

_ (Bu + Bu)e’ [1 _ po :|
4 V=B + Bu)vn
when v; < 0, By + B > 0. (19

At marginal stability we have
— - al
Py Pz+~2—(Bu + B —2uN) =0

and this gives the following expression for k at marginal stability.

—(By +
= (Bu + Bi) “l:l + pe
v V' =2(B11 + Bz)yn

when vy > 0, By + B <0,

_ [ Bn+ B alzl _ po
2vn V=B + B

when vy < 0, By + Bz > 0, (20)

where o is the common amplitude of the two waves.

From instability condition (18) it is found that there is instability when 6 lies in
the imtervals 0° = 8 < 74.53° and 80.21° < & =< 180° for waves of wavelength 0.2
cm and in the intervals 0° =< 6 < 31.62° and 149° < 8 = 180° for waves of wavelength

S cm.

In Figs 1(a) and 2(a) the maximum growth rate of instability v, and in Figs 1(b)
and 2(b) the wave number A at marginal stability have been plotted against wave
steepness a for some different values of 6 for the case of air water surface and for
k, = 31.32 cm™! and k, = 1.25 cm™’. For waves of wavelength 5 cm and for 0° =
8 < 31.62° it is observed from the graph that the fourth-order effect produces a
decrease in the growth rate giving a stabilizing influence and also a shrinkage of the
instability region in Ao plane. Effects reverse to these are observed for waves of
wavelength 0.2 cm. There is no fourth-order contribution for 6 = 180°, since, when
6 = 180°, the Hilbert transform terms, which only contribute at the fourth order,
vanish identically.
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Fio. 1.k, = 31.32 em™". (a) Maximum growth rate vy as a funcuon of dimensionless wave steepness
a. (b) Plot of perturbed wave number A at marginal stability against wave steepness «. -—- third-order

result, — fourth-order result.
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Fia. 2. k, = 1.25 em™!. (a) Maximum growth rate yy as a function of dimensionless wave steepness a.
(b} Plot of perturbed wave number \ at marginal stability against wave steepness . ——third-order result,

—fourth-order result.
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Appendix A
1 ] ., 0 1 5
Yu = 1+ s)7 | 3s(1 + cos® St s} - = (I+s)72(1+ 3y coszg
1 [} 1 _ 6 . ,0
o= (1 + 8)" y3(1 + 35) cos >t 1+ )™ cos—2~sxn27
[ 9
— 2 — in? —
cos ) (1 + sin 2)
1 -1 -1 2
Bu=z(1729) A+ 25 +s5+8)
2 9
Bp = =508 5 1-2 cos —;) (1+s3) (1 + sin® % —-cosz-g— <1 + 45 cos? %
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~2(1 + 5) sin* 7 sin® — ((1 + 4s sin® 5] 7% cos 8(1 + sin %
5 8 s IR 2
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where 8;, 3y, 8; appearing in the above cxpressions are given by
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Appendix B

Inserting (14) and (15) in (8) and (9) and linearising with respect to £, 9, (i = 1,2)
we get the following four equations

1 1 &
Py + Pty — vy [ed(ey + o) +oday] aél ()\r + }\13)*‘ =0 (&)
P, 1 2 1 08 485
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1., 5 d i
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where
P, i + il ; C5
1= P Y12 8§3 ; (C5)
3
P, = —_— C6
2= Y11 Y (C6)

Now, if we suppose the t-dependence of {;, 8; (i = 1,2) is of the form exp (—i '7),
then equations (C1)~(C4) remain the same as before but P; now stands for
&
Pp==iQ + —. C7
1 i Y1z 8§3 (e5)}

Next taking the Fourier transform of equations (C1)—(C4) with respect to £ defined by

@B BB =— [ @ o G 8 exp (0D g, ()
Vin ¢

we get four linear algebraic equations for Z;, 8 (i = 1, 2). The condition for the

existence of a nontrivial solution of these four equations gives the nonlinear disper-

sion relation (16), where it is assumed that the amplitudes of the two modes are

equal (o = az = o).



