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Abstract

Semi-pseudo Ricci symmetric manifold has been defined and studred.

Key words: Semi-pseudo Ricei symmetric manifold (SPRS),, Einstein (SPRS),,, conformal curvature tensor
of (SPRS),, quarter symmetric metric connection on (SPRS),.

1. Introduction

In a recent paper!, Chaki introduced pseudo-Ricci symmetric manifold (PRS),, i.c.,
non-flat n-dimensional Riemannian manifold whose Ricci tensor s satisfies

(Vis) (2 = 20(x)s(y,2) + w(¥)s(x,2) + m(2)s(x,y)
where m is a 1-form, p is a particular vector field such that
m(x) = glx, p)
and V is the covariant differentiation.

Consider a non-flat n-dimensional Riemannian manifold with its metric g, whose
Ricci tensor s is such that

(Vis) 0n2) = m(p)s(x,2) + w(2)s(x.y) ey

where V, p and = are already defined. Such a manifold shall be called semi-pseudo
Ricci symmetric n-dimensional manifold and will be denoted by (SPRS),.

The existence of such a structure on a Riemannian manifold is first established. It
is shown that, on such an (SPRS),, the scalar curvature is zero. Some conditions
satisfied by the Ricci tensor with respect to the vector p are established and it is
shown that an (SPRS), cannot be conformally flat. Also, a particular type of quarter
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symmetric metric connection D has been introduced on (SPRS),. The curvature ten-
sor R, the Ricci tensor S and the scalar curvature tensor 7 with respect to D have
been derived in the last section.

2. Existence of an (SPRS),

For the existence of such structure, defined in (1), consider a Riemannian manifold
M" with metric tensor g which admits a linear connection D defined by

Dy = Vy + wly)x (2)
and
(D) (1,2) = 0. &)
Then, from (2) and (3), we can have,
(V) (,2) = m(¥)s(x,2) + m(2)s(x,)- *

Hence, Vs # 0, since D is not identical at V. Therefore, structure (1) exists on a
Riemannian manifold if it admits a linear connection which satisfies (2) and (3).

3. Preliminaries for (SPRS),
From (1), we can have
(Ves)(3:2) = (V3)(x,2) = m()s(x,2)~m(x)s(y,2). )
Contracting (5), with respect to y and z, we get
dr(x) = 2m(s'x)—2w(x)r 6)

where s’ is the symmetric endomorphism of the tangent space at each point of (M",
g) corresponding to the Ricci tensor s.

Next, contracting (1) with respect to y and z we get
dr(x) = 2w (s'x). ()
Hence, from (6) and (7), we get
w(x)r = 0.
Hence, r=0, since ={x) # 0.
Thus, we can state

Theorem 1: The scalar curvature is zero on (SPRS),

4. Ricei tensor and the vector p on an (SPRS),
Since r=0 on (SPRS),, we get from (6),

w(s'x) = 0. ®)
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Hence,
g(s'x, p) =0,
that is
s(xp) = 0,
Now

(V) 0h2) = x 5(,2) — s(Vay,2) — 5(3, V,2).
Taking z=p in the above equation, we get by virtue of (9)
(V5)(3.p) = =50, Vip).
By virtue of (1) the above equation takes the form
m(p)s(x,y) + s(v, Vap) = 0.
Now, let p be a torse-forming vector field® given by
Vip = ax + w(x)p
where a4 is a non-zero scalar and o is a 1-form.
By virtue of (10) one can have
{a + m(p)} sx,y) = 0.
Since s # 0 it follows that
a + aw(p) = 0.

Thus, we can state,
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Theorem 2: If on an (SPRS), the vector p is a torse-forming vector field given by

(11), then, the scalar ¢ must be equal to —m(p).

5, Einstein (SPRS),

It is known that in an Einstein space (M",g) (n>2) the scalar curvature r is constant

and the Ricci tensor is given by
r
s(y) = - g(x3).
Since on (SPRS),, r = 0, we have from above

s(x,y) =0 - .

which contradicts the hypothesis of the definition of (SPRS),. Thus, we state,

Theorem 3: An (SPRS), (n>2) cannot be an Einstein manifold.

6. Conformal curvature tensor of (SPRS),

It is known® that in a conformally flat manifold
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(Ve)n2) = (V)xy) = - {dr(x)g(y.2) — dr(2)g(x.2)}-

1
n(n—1)
Using Theorem 1. we get

(Visi(y 2} = (Vs)(my) = 0.
Thus, the Ricci tensor is of Codazzi type®.
By virtue of (1), one gets from the above
w(z)s(xy) = w(x)s(z,y).
Taking x=p, in the above equation, we get on using (9)
w(p)s(y,2) = 0.
Since w(p)#0, we have s=0. Thus, we can state,

Theorem 4: An (SPRS), (n>3) cannot be conformally {lat.

Theorem 5: The Ricci tensor of (SPRS), (n>>3) cannot be of Codazzi type.

Further, it is known? that on a Riemannian manifold

. -3
(@iv ) (ry,9) = - = {(T)(d) = (V) +
+ ) (BN ~ 80 Aar)
where ¢ is the conformal curvature tensor of the manifold.

Now, if the conformal curvature tensor of the manifold is conservative®, then since
=0 in {SPRS),, we have,

(Ves)(y,2) — (VsS)(r.x) =

Using Theorem 3, we can state,
Theorem 6: An (SPRS), cannot be of conservative conformal curvature tensor.

7. Quarter symuetric metric connection on (SPRS),

Consider a Riemannian manifold M" with its Levi-Civita connection V and quarter
symmetric metric connection® D. Then. the torsion tensor 7 is given by

T(x,y) = w(¥)s'x ~ m(x)s'y. (13)
Let,
Dy = Yy + H(xy); (19

then, since (D,g)(y,z) = 0, we can have
g(H(xy).z) + g(H(x,2),y) = 0. (15)
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From (13) and (14). one can have
H(x,y) — H(y,x) = w(y)s'x — w(x)s'y.
1t is easy to see from (15) and (16) that
Hixy) = 70)s's ~ s(y)p
So that, from (14) one can write
Dy = V. -+ w(y)s'x — s(x,y)p.
Let
R (5,y,2) = D.Dyz — DDz — Dp 2
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(16)

(17)

be the curvature tensor with respect to the quarter symmetric metric connection D.

Then from (17) one can have
R(r.y,z) = R(x.y,2) + (Van)(@)s'y = (Vym)(2)s'x +
+m@UVas Yy — (V,5)x} = {(V)02) — (Vi) 2)be
= s, 2{Vap + w(p)5'x} + s(,2){Vyp + wlo)s'y}-
Using (5) and also the relation
(Vs Yy—(V,8)x = m()s'x — w(x)s'y
we get from above
R(oy.2) = R(x,3,2) + {(Ver)(2)—n(@)w(z) + 5 s(x.2m(p)}s'y
~{(Vym)@)=m()w(2) + 3 s 2)w(p))s'x +
+ (62 Vyp = w()p + 5 w(p)s'yh—s(v,2) {Vip —
— w(@)p + 5 m(P)'R}.
Let us write
Ax2) = (Vm)(2) — w(@)w(z) + 5 s(6,2m(p) = g(Lx,2)-
Hence, we can have
R(x,y,z) = R(x,y,2) + Mx,2)s'y — My,2)s'x + s(x,2)Ly — s(y,2)Lx.
Contracting (19) with respect to x, we get, on using Theorem 1,
5(,2) = 5(3,2) + MN&'»,2) + MNp5 D~ 5(2,2)
where

r—2
a = trace L=div 7 + 7—2—— w(p).

(18)

(19

(20

@V



596 M. TARAFDAR anp MUSSA A.A. JAWARNEH

Contracting (20) and using Theorem 1, we get
F =71+ Ms'xx) + Mx,8'x%). (22)
Using (8), we get from (18)
Mxs'y) = (Tam)s'y + 5 m(P)s(es'y)
Meny) = (Toem)y + 5 7(0)s(5'5.).
Also, on using (4) and (8), we get
(Ven)s'y = —m(p)six,y).
Consequently (22) reduces to, as
7 = (Veymx + mw(p)s(x,s'x). (23)
Thus, we can state

Theorem 7: If an (SPRS), admits a quarter symmetric metric connection D, then we
have (19), (20) and (23).

Theorem 8: On an (SPRS), with quarter symmetric metric connection D, the neces-
sary and sufficient condition for \(x,y) defined by (18) to be symmetric is that 7 be
closed.

Theorem 9: On an (SPRS), with quarter symmetric metric connection D the necessary
and sufficient condition for R = R is that

Az, 2)s'y — My, 2)s'x + s(x,z)Ly — s(y,z)Lx = 0
Corollary 1: On an (SPRS), with a quarter symmetric metric connection D, if R = R
then, we have
a 5(y,2) = Ms'y,2) + Ay,5'z)
Axs'x) + As'x,x) = 0, and
(Vyem)x = —a(p)s(x,s'x).
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