J. Indian Inst. Sci., Nov.-Dec. 1993, 73, 591-596. [®] Indian Institute of Science.

Semi-pseudo Ricci symmetric manifold

M. TARAFDAR AND MUSSA A. A. JAWARNEH⁴ Department of Pure Mathematics, University of Calcutta, Calcutta 700 019.

Received on October 27, 1993

Abstract

Semi-pseudo Ricci symmetric manifold has been defined and studied.

Key words: Semi-pseudo Ricci symmetric manifold (SPRS)_n, Einstein (SPRS)_n, conformal curvature tensor of (SPRS)_n, quarter symmetric metric connection on (SPRS)_n.

1. Introduction

In a recent paper¹, Chaki introduced pseudo-Ricci symmetric manifold (PRS)_n, *i.e.*, non-flat *n*-dimensional Riemannian manifold whose Ricci tensor *s* satisfies

 $(\nabla_{x}s)(y,z) = 2\pi(x)s(y,z) + \pi(y)s(x,z) + \pi(z)s(x,y)$

where π is a 1-form, ρ is a particular vector field such that

 $\pi(x) = g(x, \rho)$

and ∇ is the covariant differentiation.

Consider a non-flat n-dimensional Riemannian manifold with its metric g, whose Ricci tensor s is such that

$$(\nabla_x s)(y,z) = \pi(y)s(x,z) + \pi(z)s(x,y)$$
 (1)

where ∇ , ρ and π are already defined. Such a manifold shall be called semi-pseudo Ricci symmetric *n*-dimensional manifold and will be denoted by (SPRS)_n.

The existence of such a structure on a Riemannian manifold is first established. It is shown that, on such an $(SPRS)_n$, the scalar curvature is zero. Some conditions satisfied by the Ricci tensor with respect to the vector ρ are established and it is shown that an $(SPRS)_n$ cannot be conformally flat. Also, a particular type of quarter

^{*} For correspondence.

symmetric metric connection \overline{D} has been introduced on (SPRS)_n. The curvature tensor \overline{R} , the Ricci tensor \overline{S} and the scalar curvature tensor \overline{r} with respect to \overline{D} have been derived in the last section.

2. Existence of an $(SPRS)_n$

For the existence of such structure, defined in (1), consider a Riemannian manifold M^n with metric tensor g which admits a linear connection D defined by

$$D_x y = \nabla_x y + \pi(y) x \tag{2}$$

and

$$(D_x s) (y, z) = 0.$$
 (3)

Then, from (2) and (3), we can have,

$$(\nabla_x s) \ (y,z) = \pi(y) s(x,z) + \pi(z) s(x,y). \tag{4}$$

Hence, $\nabla s \neq 0$, since D is not identical at ∇ . Therefore, structure (1) exists on a Riemannian manifold if it admits a linear connection which satisfies (2) and (3).

3. Preliminaries for (SPRS)_n

From (1), we can have

$$(\nabla_{x}s)(y,z) - (\nabla_{y}s)(x,z) = \pi(y)s(x,z) - \pi(x)s(y,z).$$
(5)

Contracting (5), with respect to y and z, we get

$$dr(x) = 2\pi(s'x) - 2\pi(x)r \tag{6}$$

where s' is the symmetric endomorphism of the tangent space at each point of (M^n, g) corresponding to the Ricci tensor s.

Next, contracting (1) with respect to y and z we get

$$dr(\mathbf{x}) = 2\pi \ (s'\mathbf{x}). \tag{7}$$

Hence, from (6) and (7), we get

$$\pi(x)r=0.$$

Hence, r=0, since $\pi(x) \neq 0$.

Thus, we can state

Theorem 1: The scalar curvature is zero on $(SPRS)_n$

4. Ricci tensor and the vector ρ on an (SPRS)_n

Since r=0 on $(SPRS)_n$, we get from (6),

$$\pi(s'x) = 0. \tag{8}$$

Hence,

$$g(s'x, \rho) = 0,$$

that is

$$s(x,\rho) = 0, \tag{9}$$

Now,

$$\nabla_x s) (y,z) = x \ s(y,z) - s(\nabla_x y,z) - s(y,\nabla_x z).$$

Taking $z=\rho$ in the above equation, we get by virtue of (9)

$$(\nabla_x s)(y,\rho) = -s(y,\nabla_x \rho).$$

By virtue of (1) the above equation takes the form

$$\pi(\rho)s(x,y) + s(y, \nabla_x \rho) = 0. \tag{10}$$

Now, let ρ be a torse-forming vector field⁵ given by

$$\nabla_{\mathbf{x}} \rho = a\mathbf{x} + \omega(\mathbf{x})\rho \tag{11}$$

where a is a non-zero scalar and ω is a 1-form.

By virtue of (10) one can have

$$\{a + \pi(\rho)\} s(x, y) = 0.$$
(12)

Since $s \neq 0$ it follows that

$$a + \pi(\rho) = 0.$$

Thus, we can state,

Theorem 2: If on an (SPRS)_n the vector ρ is a torse-forming vector field given by (11), then, the scalar *a* must be equal to $-\pi(\rho)$.

5. Einstein (SPRS)_n

It is known that in an Einstein space (M^n,g) (n>2) the scalar curvature r is constant and the Ricci tensor is given by

$$s(x,y)=\frac{r}{n}g(x,y).$$

Since on $(SPRS)_n$, r = 0, we have from above

$$s(x,y)=0$$

which contradicts the hypothesis of the definition of (SPRS)_n. Thus, we state,

Theorem 3: An $(SPRS)_n$ (n>2) cannot be an Einstein manifold.

6. Conformal curvature tensor of $(SPRS)_n$

It is known² that in a conformally flat manifold

$$(\nabla_x s)(y,z) - (\nabla_z s)(x,y) = \frac{1}{n(n-1)} \{dr(x)g(y,z) - dr(z)g(x,y)\}.$$

Using Theorem 1, we get

 $(\nabla_x s)(y,z) - (\nabla_z s)(x,y) = 0.$

Thus, the Ricci tensor is of Codazzi type2.

By virtue of (1), one gets from the above

$$\pi(z)s(x,y) = \pi(x)s(z,y).$$

Taking $x=\rho$, in the above equation, we get on using (9)

$$\pi(\rho)s(y,z) = 0.$$

Since $\pi(\rho) \neq 0$, we have s=0. Thus, we can state,

Theorem 4: An $(SPRS)_n$ (n>3) cannot be conformally flat.

Theorem 5: The Ricci tensor of $(SPRS)_n$ (n>3) cannot be of Codazzi type.

Further, it is known² that on a Riemannian manifold

$$(\text{div } c) (x, y, z) = \frac{n-3}{n-2} \{ (\nabla_x s)(y, z) - (\nabla_y s)(y, x) \} + \frac{1}{n(n-1)} \{ g(x, y) dr(z) - g(y, z) dr(x) \}$$

where c is the conformal curvature tensor of the manifold.

Now, if the conformal curvature tensor of the manifold is conservative³, then since r=0 in $(SPRS)_n$, we have,

 $(\nabla_x s)(y,z) - (\nabla_z s)(y,x) = 0.$

Using Theorem 5, we can state,

Theorem 6: An $(SPRS)_n$ cannot be of conservative conformal curvature tensor.

7. Quarter symmetric metric connection on (SPRS)_n

Consider a Riemannian manifold M^n with its Levi-Civita connection ∇ and quarter symmetric metric connection⁴ \overline{D} . Then, the torsion tensor \overline{T} is given by

$$\overline{T}(x,y) = \pi(y)s'x - \pi(x)s'y.$$
(13)

Let,

$$\overline{D}_{x}y = \nabla_{x}y + H(x,y); \tag{14}$$

then, since $(\overline{D}_x g)(y, z) = 0$, we can have

$$g(H(x,y),z) + g(H(x,z),y) = 0.$$
(15)

594

From (13) and (14), one can have

$$H(x,y) - H(y,x) = \pi(y)s'x - \pi(x)s'y.$$
 (16)

It is easy to see from (15) and (16) that

$$H(x,y) = \pi(y)s'x - s(x,y)\rho$$

So that, from (14) one can write

$$\overline{D}_{x}y = \nabla_{x}y + \pi(y)s'x - s(x,y)\rho.$$
(17)

Let

$$\overline{R}(x,y,z) = \overline{D}_x \overline{D}_y z - \overline{D}_y \overline{D}_x z - \overline{D}_{[x,y]} z$$

be the curvature tensor with respect to the quarter symmetric metric connection \overline{D} . Then from (17) one can have

$$\begin{split} \bar{R}(x,y,z) &= R(x,y,z) + (\nabla_x \pi)(z)s'y - (\nabla_y \pi)(z)s'x + \\ &+ \pi(z)\{(\nabla_x s')y - (\nabla_y s')x\} - \{(\nabla_x s)(y,z) - (\nabla_y s)(x,z)\}\rho \\ &- s(y,z)\{\nabla_x \rho + \pi(\rho)s'x\} + s(x,z)\{\nabla_y \rho + \pi(\rho)s'y\}. \end{split}$$

Using (5) and also the relation

$$(\nabla_x s')y - (\nabla_y s')x = \pi(y)s'x - \pi(x)s'y$$

we get from above

$$\begin{split} \bar{R}(x,y,z) &= R(x,y,z) + \{ (\nabla_x \pi)(z) - \pi(x)\pi(z) + \frac{1}{2} s(x,z)\pi(\rho) \} s' y \\ &- \{ (\nabla_y \pi)(z) - \pi(y)\pi(z) + \frac{1}{2} s(y,z)\pi(\rho) \} s' x + \\ &+ s(x,z) \{ \nabla_y \rho - \pi(y)\rho + \frac{1}{2} \pi(\rho) s' y \} - s(y,z) \{ \nabla_x \rho - \\ &- \pi(x)\rho + \frac{1}{2} \pi(\rho) s' x \}. \end{split}$$

Let us write

$$\lambda(x,z) = (\nabla_x \pi)(z) - \pi(x)\pi(z) + \frac{1}{2}s(x,z)\pi(\rho) = g(Lx,z).$$
(18)

Hence, we can have

$$\overline{R}(x,y,z) = R(x,y,z) + \lambda(x,z)s'y - \lambda(y,z)s'x + s(x,z)Ly - s(y,z)Lx.$$
(19)

Contracting (19) with respect to x, we get, on using Theorem 1,

$$\overline{s}(y,z) = s(y,z) + \lambda(s'y,z) + \lambda(y,s'z) - a s(y,z)$$
(20)

where

$$a = \operatorname{trace} L = \operatorname{div} \pi + \frac{r-2}{2} \pi(\rho).$$
(21)

595

Contracting (20) and using Theorem 1, we get

$$\overline{r} = r + \lambda(s'x, x) + \lambda(x, s'x).$$
⁽²²⁾

Using (8), we get from (18)

$$\begin{aligned} \lambda(x,s'y) &= (\nabla_x \pi) s' y + \frac{1}{2} \pi(\rho) s(x,s'y) \\ \lambda(s'x,y) &= (\nabla_{s'x} \pi) y + \frac{1}{2} \pi(\rho) s(s'x,y). \end{aligned}$$

Also, on using (4) and (8), we get

$$(\nabla_x \pi) s' y = -\pi(\rho) s(x, y).$$

Consequently (22) reduces to, as

$$\overline{r} = (\nabla_{s'x}\pi)x + \pi(\rho)s(x,s'x).$$
(23)

Thus, we can state

Theorem 7: If an $(SPRS)_n$ admits a quarter symmetric metric connection \vec{D} , then we have (19), (20) and (23).

Theorem 8: On an (SPRS)_n with quarter symmetric metric connection \overline{D} , the necessary and sufficient condition for $\lambda(x,y)$ defined by (18) to be symmetric is that π be closed.

Theorem 9: On an (SPRS)_n with quarter symmetric metric connection \overline{D} the necessary and sufficient condition for $\overline{R} = R$ is that

$$\lambda(x,z)s'y - \lambda(y,z)s'x + s(x,z)Ly - s(y,z)Lx = 0.$$

Corollary 1: On an $(SPRS)_n$ with a quarter symmetric metric connection \overline{D} , if $\overline{R} = R$ then, we have

$$a \ s(y,z) = \lambda(s'y,z) + \lambda(y,s'z)$$
$$\lambda(x,s'x) + \lambda(s'x,x) = 0, \text{ and}$$
$$(\nabla_{s'x}\pi)x = -\pi(p)s(x,s'x).$$

Acknowledgement

The authors are grateful to the referee for helpful comments.

References

 CHAKI, M. C. 	On pseudo Ricci symmetric manifolds, Bulg. J. Phys., 1988, 15, 6.
2. EISENHART, L. P.	Riemannian geometry, 1967, Princeton University Press.
3. HICKS, N. J.	Notes on differential geometry, 1969, Affiliated East West Press.
4. MISHRA, R. S.	Structures on a differentiable manifold and their application, 1984, Chandrama Prakashan, Allahabad.
5. Schouten, J. A.	Ricci calculus, 1954, Springer-Verlag.

596