J Indian Inst Sci, Jan.-Feb 1992, 72, 15-22 © Indian Institute of Science

Structural aspects in naturally occurring phenolics using ¹H nmr acylation and alkoxylation shifts

HEMLATA AND S. B. KALIDHAR

Department of Chemistry and Biochemistry, Haryana Agricultural University, Hisar 125 004, India.

Received on December 11, 1990, Revised on March 20, 1991

Abstract

The trends for ¹H mmr acylation shifts [ΔH (OAc OH)] have been shown to be similar to those for alkoxylation [ΔH (OAc OMe)] and glycosyloxylation [ΔH (OAc Ogly Ac)] shifts. This observation is heipful for structural determination in naturally occurring phenolics

Key words: ¹H nmr, acylation shifts, alkoxylation shifts, glycosyloxylation shifts, anthraquinones, flavones, pterocarpans, xanthones, coumarins, chalcones, chromones

1. Introduction

Alkoxylation [Δ H(OAc:OMe)] and glycosyloxylation [Δ H(OAc:O-glyAc)] shifts have been shown to be useful for structural studies in flavones¹, anthraquinones^{2,3}, isoflavones⁴, xanthones⁵ and coumarins⁶. In this paper, chalcones and chromones are shown to conform to this pattern. It also shows similarities amongst alkoxylation, glycosyloxylation and acylation [Δ H(OAc:OH)] shifts.

2. Discussion

¹H nmr (δ , CDCl₃) of physcion (1)⁷ shows signals at 7-08(H-2), 7-60(H-4), 7-35(H-5) and 6-65(H-7), and its acetate (2)⁷ at 7-05(H-2), 7-85(H-4), 7-55(H-5) and 6-75(H-7). The acylation shifts [Δ H(OAc:OH)] from 2:1 are Δ H-2 = -0-03, Δ H-4 = + 0-25, Δ H-5 = +0-20 and Δ H-7 = +0-10. Structures 2 and 1 differ at C-1 and C-8 and protons H-4 (*para* to C-1) and H-5 (*para* to C-8) have undergone larger changes in chemical shifts.

The acylation shifts from 9-hydroxyfuro (2', 3':3, 2) pterocarpan (3)⁸ and its acetate (4)⁸ are $\Delta H.1 = -0.04$, $\Delta H.4 = -0.02$, $\Delta H.7 = +0.12$, $\Delta H.8 = +0.25$, $\Delta H.10 = +0.22$, $\Delta H.4' = -0.03$ and $\Delta H.5' = -0.02$ (4:3). Structures 4 and 3 differ at C-9, with no proton *para* to C-9. The two protons, H-8 and H-10, which are *ortho* to C-9, have undergone larger changes in chemical shifts. The acylation shifts from

Subst	tuents					Chem	cal shifts	(8, CDCl	3)	
ОН	ОМе	0Ac	Me	Other groups		H-2	H-3	H-6	H-7	H-8
5-0x;	ygenated	chromo	nes							
-	-	5		2-CH≃CH ₂ 3-CH(COOMe) ₂	11113		-	7.01	7-64	7.38
5	-	-	-	$2-CH=CH_2$ 3-CH(COOMe)_2	12 ¹³	-	-	6-90	7.52	6.78
5,7-D	loxygena	ted chro	mones							
-	-	5	2	7-0-gluAca	13 ¹⁴	-	6.12	6.71	-	6-84
5	_	-	2	7-0-gluAc₄	14 ¹⁵	-	6.00	6-64	-	6.42
		5,7	-	8-CHPh2	15 ¹⁶	7.60	6.09	7.12	-	-
5	7	_	-	8-CHPh ₂	16 ¹⁶	7 63	6.14	6-32	-	-
-	5,7	-	-	8-CHPh ₂	1716	7.40	6-06	6-42	-	-
-	-	5,7	-	6-CHPh ₂	18 ¹⁶	7.58	6-12	-		6.82
5,7	-	-	-	6-CHPh ₂	19 ¹⁶	7.49	6-01	-	-	6-66
5	7	-	-	6-CHPh ₂	20 ¹⁶	7.44	5-96	-	-	6-36
-	5,7	-	-	6-CHPh2	21 ¹⁶	7.66	6.17	-	-	6-65
-	-	5,7		6-CH ₂ Ph	22 ¹⁷	7.58	6.01	-	~	6.72
5,7	-	-	~	6-CH ₂ Ph	23 ¹⁷	7-73	6-17	-		6 34
~	-	5,7	-	8-CH ₂ Ph	24 ¹⁷	7.55	6.03	6-90	-	-
5,7		-	-	8-CH ₂ Ph	25 ¹⁷	7 57	6.06	6-08	-	-
5,6,7	Trioxyge	enated c	hromon	es						
	7	5.6	2	-	2615	-	-	-	-	6·77
-	5,6,7	-	2	-	27 ¹⁵	-	-	-	-	6.30
6', 6'	-Dimethy	ylpyrano	[3',2'	6,7] chromones						
_	-	5	2	-	28 ¹⁸		5.93	_	_	6-65
5	-	_	2	-	29 ¹⁸	_	6.00	-	-	6.27
-	-	5	2.3		3019	-	_	_		6.44
5	_		2.3	-	3119	-	-	***		6.22
_	5	-		2-Ph, 3-Ph	32 ²⁰	_	_	-	-	6.75
5	-	~	-	2-Ph, 3-Ph	33 ²⁰	-	-	-	-	6.38
6',6'-	Dımethyl	dıhydroj	oyrano	[3',2' · 6,7] chromoi	ies					
5'	-	5	2	_	3421		5.93	_	_	6-75
5,5'	_	-	2	-	35 ²¹	_	5.97	_	_	6.28
	5	-	2	_	36 ²²	-	6.00	_	_	6.30

Table I ¹H nmr literature data for nuclear protons in chromones

8-hydroxy-1,2,6-trimethoxyxanthone (5)⁹ and its acetate (6)⁹ are Δ H-3 = -0.06, Δ H-4 = -0.09, Δ H-5 = +0.31 and Δ H-7 = +0.15 (6:5).

The acylation shifts from 7-hydroxy-6-methoxycoumarin (7)¹⁰ and its acetate (8)¹⁰ are Δ H-3 = +0.12, Δ H-4 = +0.06, Δ H-5 = +0.04 and Δ H-8 = +0.24 (8:7).

Table II

Alkowylation	IAH(OA OMo)]	and	omintion	TAR(OA -OPD)	chifte in	obromonor
AIROXVINIUU	TAROACOMEN	ana	acviation	(ADDOACOD)	SDUITS IN	chromones

Comparison	Δ <i>H-2</i>	Δ <i>H-3</i>	ΔH -6	ΔH -7	Δ <i>H-8</i>
5-Alkoxylation shifts					
28:36	-	-0-07	-		+0.35
5,6-Dialkoxylation shifts					
26:27	-	-	-	-	+0-47
5,7-Dialkoxylation shifts					
15:17	+0.20	+0.03	+0.70	-	_
18:21	-0.08	-0.05	-	-	+0.17
5-Acylation shifts					
11:12	_	-	+0.11	+0.12	+0-60
13:14	-	+0.12	+0.07		+0.42
28:29	-	-0.07	~	-	+0.38
30:31	-	-	-	-	+0.22
32:33	-	-	-		+0-37
34:35	-	-0.04	-	-	+0.47
5,7-Diacylation shifts					
18:19	+0 09	+0.11	***	-	+0.16
22:23	-0.15	-0.16	~		+0 38
24:25	-0.05	0-03	+0.82	-	~
5-Acylation-7-alkoxylation shifts					
15:16	-0.03	-0.05	+0.80	-	~
18:20	+0.14	+0 16		~	+0.46

The acylation shifts from 3-hydroxy-5,6,8,4'-tetramethoxyflavone (9)¹¹ and its acetate (10)¹¹ are Δ H-7 = +0.03, Δ H-2' = -0.34, Δ H-3' = +0.03, Δ H-5' = +0.03 and Δ H-6' = -0.34 (10:9). This comparison exhibits similarities amongst 3-acylation/alkoxylation/glycosyloxylation shifts in flavones¹. Numerous other examples of this type may be found in Horie *et al*¹². The shifts are different and distinct because of negative and numerically larger values of Δ H-2' and Δ H-6'. When there is 3-OAc in flavones, H-2' and H-6' lie in the diamagnetic cone of > C = O ($-O-C-CH_3$) resulting in the upfield absorption of these two protons. When there is no 3-OAc, these two protons are downfield and thus the aforesaid trends for Δ H-2' and Δ H-6' are observed.

A similar trend for acylation/alkoxylation shifts is observed in the case of chromones and chalcones also. For example, the acylation shifts calculated from 5-hydroxy-2-methylchromone-7-0-glucoside acetate $(14)^{15}$ and its acetate $(13)^{14}$ are

10

Subsn	tuents		Chemical shifts (8, CDCl:								
ОН	ОМе	OAc	Other groups		H-2	H-3	H-4	H-5	H-6	H-3'	H-5'
2',4',6	6'-Trioxyger	ated ch.	alcones								
_	6'	21,41	3'-Me	3723	7 45	7 45	7 45	7 45	7 45		6 58
2'	4'.6'		3'-Me	3824	7.43	7 43	7 43	7 43	7 43		6.03
**	4'	2',6'	3' ~	39 ²⁵	7 53	7.38	7 38	7.38	7 53	-	6.58
2'.6'	4'	-	3" ->	40 ²⁵	7 63	7.40	7 40	7 40	7.63		6 09
-	4'	2',6'	3'-prenvi	4126	7 52	7-38	7.38	7.38	7.52	_	6.58
2',6'	4'	-	3'-prenyl	42 ²⁶	7 57	7-35	7 35	7 35	7 57	-	5.99
2'	4',6'		3'-prenyl	43 ²⁷	7 55	7 55	755	7 55	7 55	-	6 10
6′	2',4'		3'-prenyl	44 ²⁸	7 51	7 51	7 51	7 51	7.51	-	6.27
2',3',4	l',6'-Tetraox	ygenate	d chalcones								
_	2',3',4'	6'	-	45 ²⁹	7 55	7.39	7.39	7 39	7 55	-	6 49
6'	2',3',4 '	-	-	46 ²⁹	7 65	7 42	7 42	7 42	7 65	-	6 31
3,4,2'	3',4',6'-He	aoxyger	nated chalcones								
6′	2',3',4'	-	3,4-OCH ₂ 0	47 ³⁰	7 18			6 83	7 10	-	6 30
3,4,6,.	2',4',6'-Hex	aoxygen	ated chalcones								
_	3.4.6.4′.6	2'	-	48 ³¹	7 20		_	6.47	-	6 30	6 40
2'	3.4.6.4'.6	·	-	49 ³¹	7 09			6.49	_	6 07	5 92
_	3.4.6.2'.4'.	.6′ –		5031	7.00	-	_	6 43		6.12	6 12

Table III 'H nmr literature data for aromatic protons in chalcones

 Δ H-3 = +0·12. Δ H-6 = +0·07. Δ H-8 = +0·42. Thus, H-8, which is *para* to H-5, undergoes highest shift due to acetylation of 5-OH. Similarly, a comparison of the ¹H nmr data for 2'-hydroxy-3,4.6,4',6'-pentamethoxychalcone (49)³¹ and its acetate (48)³¹ reveals highest shift for H-5', which is at *para* position to the site of acylation. IH nmr data for nuclear protons of chromones from literature are presented in Table I and the shifts determined are given in Table II. The chemical shift values for aromatic protons of chalcones are given in Table III and the acylation/alkoxylation shifts are shown in Table IV. It may be mentioned here that the differences in concentration or temperature may change the numerical values of Δ H, but the overall trend remains unchanged^{1.6} and useful.

The only exception to the above trend has been observed in the case of 3'-(3"-methyl-4"-hydroxy)butyl-5.7.4'-trihydroxy-3,5-dimethoxyflavone (51), isolated from *Dodonaea viscosa*²². The acylation shifts from 51 and its acetate (52)³² are Δ H-8 = +0.44, Δ H-2' = -0.29, Δ H-5' = -0.10 and Δ H-6' = -0.20 (52:51). These Δ H values suggest that 52 and 51 differ at C-3 and not at C-4'. If 51 and 52 had differed at C-4', Δ H-5' would have been positive and large.

It has to be mentioned here that the trioxygenation pattern³³ in the A-ring of **52** has already been shown to be inconstitent with literature data. H-8 and H-6 signals are observed³³ around $\delta7.20.7.40$ and $\delta6.73.6.80$ in 5,7-diacetoxy-6-methoxy- and 5,7-diacetoxy-8-methoxyflavones, respectively. In **52**, the lone aromatic proton of the

Comparisons	Δ <i>H-2</i>	Δ <i>H-3</i>	∆ <i>H-4</i>	Δ <i>H</i> -5	Δ <i>H-</i> 6	Δ H-3 ′	Δ <i>H-5'</i>
2'-Alkoxylation shift 48:50	+0.20	_	_	+0-04		+0.18	+0.28
2'-Aculation shift	10.20			10.04		10.10	10.20
48:49	+0-11	-	-	0-02	_	+0.23	+0.48
6'-Acylation shift							
45:46 45:47	-0-10 -	-0-03 -	0-03 	-0-03 -	-0 10 -	-	+0·18 +0 19
2',6'-Diacylation shift							
39:40 41:42	-0-10 0-05	-0-02 +0-03	-0-02 +0-03	0-02 +0-03	0·10 0·05	-	+0·49 +0·59
2'-Alkoxylation-6'-acylation shift							
41:44	+0.01	-0.13	-0.13	-0.13	+0.01	-	+0.31
4'-Alkoxylation-2'-acylation shift 37:38	+0.02	+0.02	+0.02	+0.02	+0.02	_	+0.55
6'-Alkoxylation-2'-acylation shift							
41:43	-0-03	-0.17	-0.17	-0.17	-0-03		+0-48

Table IV Alkoxylation [Δ H(OAc:OMe)] and acylation [Δ H(OAc:OH)] shifts in chalcones

A-ring absorbs at $\delta 6.86$. On the basis of literature data, the structure for the aforesaid compound from *D. viscosa* should be 3'-(3"-methyl-4"-hydroxy)butyl-3,5,7-trihydroxy-8,4'-dimethoxyflavone (53) and its acetate (54). It is pertinent to mention here that the structure of a flavonol glycoside from *Rudbeckia bicolor* has already been reassessed on similar lines³⁴.

References

1.	KALIDHAR, S.B.	Structural elucidations of flavones using the ¹ H nmr spectral shifts of the peracetates, J Chem. Res.(S), 1989, 311 and J. Chem. Res.(M), 1989, 2416-2433
2.	Kalidhar, S.B.	Location of glycosylation and alkylation sites in anthraquinones by ¹ H nmr, <i>Phytochemistry</i> , 1989, 28, 2455-2458
3	Kalidhar, S B.	Structural elucidation in anthraquinones using ¹ H nmr glycosyla- tion and aikylation shifts, <i>Phytochemistry</i> , 1989, 28, 3459-3463
4	Kalidhar, S B	Structural studies in isoflavones using ¹ H nmr alkoxylation and glycosyloxylation shifts, Proc Indian Natn. Sci Acad. A, 1990, 56, 217-223.
5.	KALIDHAR, S.B.	Location of alkoxylation sites in naturally occurring xanthones, J. Indian Inst. Sci., 1990, 70, 525-530
6	Kalidhar, S.B.	A distinction between 5-alkoxy and 8-alkoxy furo $[3',2',6,7]$ coumarins using ¹ H nmr alkoxylation shifts, Indian J. Chem. B., 1990, 29, 980–983.
7.	KALJDHAR, S.B.	Phytochemical investigation of some plants from Solan: Study of polyphenolics, Ph.D. Thesis, University of Delhi, Delhi, India, 1982

8	BRINK, A J., RALL, G.J.H AND EngelBrecht, J.P	Structures of some minor pterocarpans of Neorautanemae edulis, Phytochemistry, 1974, 13, 1581-1585.
9.	Stout, G.H , Reid, B.J. and Breck, G.D	The xanthones of Macrocarpaea glabra, Phytochemistry, 1969, 8, 2417-2419
10.	BOHLMANN, F. AND JAKUPOVIC, J	8-Oxo-α-selinen und neue scopoletin-derivate aus Conyza-arten, Phytochemistry, 1979, 18, 1367-1370
11	Horie, T , Kourai, H , Osaka, H. and Nakayama, M.	Studies of the selective O-alkylation and dealkylation of flavonoids. V The synthesis of 5,6-dihydroxy-3,4'.8-trimethoxy-flavone and a revised structure for the flavone from Conyza stricta, Bull. Chem. Soc Jap, 1982, 55, 2933-2936.
12	Horie, T., Tsukayama, M , Kawamura, Y and Yamamoto, S.	3,5-Dihydroxy-7,8-dimethoxyflavones and revised structures for some natural flavones, <i>Phytochemistry</i> , 1988, 27, 1491-1495
13.	Assante, G., Camarda, L., Merlini, L. and Nasini, G.	Mycochromone and mycoxanthone Two new metabolites from Mycosphaerella rosigena, Phytochemistry, 1979, 18, 311-313
14.	Gujral, V K., Gupta, S R. and Verma, K.S	A new chromone glucoside from Tecomella undulaia, Phytochem- ustry, 1979, 18, 181-182.
15	GHOSAL, S., SINGH, S , BHAGAT, M P AND KUMAR, Y.	Three chromones from bulbs of Pancratum biflorum, Phytochemistry, 1982, 21, 2943-2946.
16	Jain, A.C., Gupta, S.M. and Bambah, P	Aromatic benzhydrylation. Part III Synthesis of chromones of triphenylmethane type, Indian J Chem B, 1985, 24, 393-397
17	Jain, A.C., Gupta, S.M. and Tyagi, O.D.	Aromatic benzylation of 5,7-dihydroxychromone and 5,7-dihydroxy-2-methylisoflavone, Indian J Chem. B, 1984, 23, 1036-1039.
18.	Bohlmann, F , Jakupovic, J King, R M. and Robinson, H.	Chromones and flavons from Marshallia obovata, Phytochemistry, 1980, 19, 1815-1820.
19.	Jain, A.C., Gupta, S.M. and Tyagi, O.D.	Base-catalysed rearrangement of 5-hydroxy-8,8-dimethyl-8H- pyrano [2,3-h] chromone and its 2,3-dimethyl derivative, <i>Indian J.</i> <i>Chem. B</i> , 1985, 24, 250-253.
20	Jain, A.C., Gupta, A and Kumari, S	A study of the base-catalysed Wessely-Moser rearrangement of angularly condensed 2,2-dimethyl-2H-pyrano denvatives of 5-hydroxy-2-methylchromones and 2,3-diphenylchromones and related 1-hydroxy-xanthone, <i>Indian J Chem. B</i> , 1983, 22 , 365-369
21.	Badawi, M.M. and Fayer, M.B.E.	Natural chromones: Part III Nuclear magnetic resonance spectra of some natural and synthetic products, <i>Indian J. Chem.</i> , 1967, 5, 93-96.
22	Prasad, K.J.R., Iyer, C S.R. and Iyer, P R.	Synthesis of 3,4-dihydro-2,2-dimethyl-2H-pyranochromones and 2,2-dimethyl-2H-pyrano-chromones, <i>Induan J Chem. B</i> , 1983, 22 , 168–170.
23.	ANJANEYULU, A.S.R. AND Raju, S.N.	Stercurensin, a new C-methylchalcone from leaves of Sterculia urens, Indian J Chem. B, 1984, 23, 1010-1011.
24.	Adityachaudhury, N., Das, A.K., Choudhury, A. and Daskanungo, P.L.	Aurentiacin, a new chalcone from Didymocarpus aurentiaca, Phytochemistry, 1976, 15, 229-230.
25.	Shimomura, H., Sashida, Y , Mimaki, Y., Oohara, M. and Fukai, Y	A chalcone derivative from the bark of Lindera umbellata, Phytochemistry, 1988, 27, 3937-3939.
26.	Bohlmann, F., Ziesche, J. and Mahanta, P K.	Neue chalkon-derivate und humulon-ahnliche verbindungen aus Helichrysum-arten, Phytochemistry, 1979, 18, 1033-1036.

- 27 GUPTA, R.K. AND KRISHNAMURTI, M
- 28 GUPTA, R.K. AND KRISHNAMURTI, M
- 29 BOHLMANN, F., MAHANTA, P.K. AND ZDERO, C
- 30 QUIJANO, L., CALDERÓN, J S., GÓMEZG, G. F. AND RIOS, T.
- 31 CHIBBER, S.S., SHARMA, R.P. AND DUTT, S.K.
- 32 SACHDEV, K AND KULSHRESHTHA, D.K.
- 33 KALIDHAR, S.B.
- 34 KALIDHAR, S B.

A prenylated chalkone from Milletia ovahfolia, Phytochemistry, 1977, 16, 293-294.

Ovalichalkone-A and its synthetic analogues, Indian J Chem B, 1979, 17, 291-293

Neue chalkon-derivate aus sudafrikanischen Helichrysum-arten, Phytochemistry, 1978, 17, 1935–1937

Four flavonoids from Ageratum strictum, Phytochemistry, 1982, 21, 2575-2579

Rubone, a new chalcone from Derris robusta seed shells, Phytochemistry, 1979, 18, 2056

Aliarin, a new flavonoid from Dodonaea viscosa Linn, Indian J Chem B, 1982, 21, 798-799

Location of trioxygenation patterns in the A-ring of flavones using ¹H nmr, J. Indian Chem. Soc, 1990, 67, 657-660

Reassessment of structure of a flavonol glycoside from *Rudbeckia* bicolor using ¹H mmr glycosyloxylation shifts, *J Nat Prod*, 1990, 53, 1565.

22