
VA

Jour. Ind. Inst. Sc. 61(A), May 1979, pp. 123-133
© Printed in India

Development of a structured program for conversion to prenex normal
fnrmform

N. CHAKRAPANI*, S. V. RANGASWAMY* and V. G. TIKEKAR**
Indian Institute of Science, Bangalore 560 012

Received on February 9, 1979; Revised on May 24, 1979

Abstract

The method of structured prograrnming or program development using top-down, stepwise refinement
technique, provides a systematic approach for the development of programs of considerable complexity.
The aimof thispaper is to present the philosophy of structured programming through a case study of a
non-numeric programming task. The problem of converting a well-formed formula in first-order logic
into prenex normal form is considered. The program has been coded in the programming language
Pascal and implemented on a Dec-10 system. Theprogram has about 500 lines of code and comprises
11 procedures.

Key words : Structured programming, non-numeric computation, stepwise refinement, Pascal.

1. Introduction

Structured programming or program development using top-down stepwise refinement
is gaining importance in theprogramming profession, as it provides a systematic approach
to the development of fairly complex programs in .an elegant and efficient manner.
Problems currently considered for computerisation are fairly complex and many computer
implementations require modifications due to improvements conceived in the original
problem statement. This requires that programs be developed in a.hierarchical manner,
so that the changes conceived in the original problem definition can be realized bychang
ing only a relevant segment in a large program without altering its general structure.
This paper presents the design of a moderately complex program using stepwise refine
ment. Following the statement of the problem, a top-down design of an algorithm,
for solving the problem using the stepwise refinement approach, is presented in detail,

♦ School of Automation.

** Department of Applied Mathematics.

123

II
I '

!l'i
! I

I :]

I'M
ill

II!

Ill

• i 24 N. CHAK.RAPAN1 ft ai

to bring out the fact that the program developed using this algorithm, is well-structured
from the point of view of ease of comprehension of the program and its logic,

2. Structured programming

Programming of early digital computers was mainly restricted to the use of machine
language; even simple problems resulted in reasonably large programs. Subsequent
to the introduction of high level languages, the digital computers were utilized extensively
in diversified fields of activity. Programming continued to be an art to a large extent,
and every programmer had his own ' bag of tricks' in writing programs. There was a
need for the programs to be extremely efficient, in that they utilize minimum execution
time and main memory of the computer ; saving of bits and microseconds was treated
as great virtues.

With the advents in hardware technology the basic hardware of a computer became
extremely fast. This, in turn, enabled users to consider problems of greater complexity
for processing on computers. Development of such complex programs posed problems of
their reliability. The need for systematic procedures to enable the development ofreliable
software was felt and one such technique for achieving this goal, due to Dijkstra, is
called structured programming1.

Structured programming aims at developing a computational algorithm for a given
problem by breaking down the problem into subproblems, the complexity of each sub-
problem being much less than that of the original problem. This method of program
development is also known as the method oftop-down stepwise refinement, since in this
approach one starts from the problem specification, splits the problem into subproblems,
until the details involved in a given subproblem are of a manageable size and complexity.
A recursive definition of stepwise refinement2.3 is the following :

Solve (problem) : . . ,

1. Obtain a precise statement of the specifications to be met.

2. Formulate a simple, iterative solution naming as subproblems, any trouble spots
encountered along the way.

3. While any subproblem remains unsolved

Solve (subproblem):

The method of top-down design is of great help as it permits one to defer the consi
deration of the details of solving the subproblems until the major steps involved in the
solution of the problem are clearly identified. It also has the advantage that each time
an error in any part is found or an improved method of solving that part is discovered,
one can refine that particular part of a computational algorithm without having to

:q

nhandc

daman*

tlirougl
lied, w

so that

•tnd Ja<

rcpetiti
constru

level in

ments :

stepwis

With

non-nu

of proj

3. Soi

First-oi

matics5

symbol:

00

I. Ate

An (« -
yldual i

i well-structured

» logic

use of machine

ns. Subsequent
lized extensively
> a large extent,
s. There was a

.imum execution

mds was treated

jmputer became
atcr complexity
>sedproblems of
jment of reliable

to Dijkstra, is

im for a given
;ity of each sub-
hod of program
;nt, since in this
to subproblems,
and complexity.

ay trouble spots

defer the consi-

involved in the
; that each time

rt is discovered,
out having to

'A-

w
STRUCTURED PROGRAM FOR CONVERSION TO PRENF.X NORMAL FORM 125

abandon the entire program developed so far. This method of program development
demands writing down the various levels of details of a specific problem as one goes
through the development process. In the literature, certain constructs have been identi
fied, which can be conveniently used to represent this top-down design at every level,
so that thefinal write-up corresponds to a program in a programming language. Boehm
andJacopini* have identified three language constructs, viz., sequencing, conditional, and
repetitive statements that are sufficient for designing any program. Hence these three
constructs are normally utilized to represent the various details involved in a particular
level in the stepwise refinement design. Programming languages like Pascal have state
ments for each one of the above-mentioned constructs and hence, the final level in the
stepwise refinement approach lends itself easily tobecoded asa program in such languages.

With a view to present the philosophy of structured programming, a case study of a
non-numeric programming task is presented in section 4, indicating the various stages
of program development.

3. Some definitions in first-order logic

First-order logic is a formal language useful for symbolizing logical argument? in mathe
matics5-8. The sentences in this language are called well-formed formulas (wffs). The
symbols from which wffs are constructed are listed below :

(a) Truth symbols: T and F.

Connectives: ~ (not), d (implication), A (and), V (or).

Punctuation marks: ((left parenthesis),) (right parenthesis), , (comma);

(b) Quantifiers: V- (universal quantifier) and 3 (existential quantifier);

(cj A denumerable set of symbols called individual variables;

(c2) A denumerable set of symbols (not in c{) called individual parameters;. and

(d) For each positive integer n, a denumerable set of symbols called «-ary predicates.

1. Atomic formula (atf) :

An (n + l)-tuple Pcu..., c„ where P is an n-ary predicate, and cu-• ., c„ are any indi
vidual symbols (variables or parameters), is called an atomic formula.

2. Well-formed formula (wff) :

A wff is recursively defined as follows :

(a) Each atf is a wff.

(b) If A is a wff then so is ~ A,

I':

1 Mi
in

. i

!'•'!
. !• i

•Ijl

ill •

' J i

126 N. chakrapani el al

(c) If A and B are wffs, then so are

(A A B), (A v B) and (XdB).

(rf) If A is a n# and x is a variable, then

(3x)A and (V*M are m#.

3. Prenex normal form (pnf) :

A wff is said to be in pnf, if it is of the form

(q1x1)...(qnxm)(M)

where each qt is one of the quantifier symbols '3 ', ' V ' and x{j= x,iot i¥=j and
A/ is a quantifier-free formula.

Any wff can be converted into its pnf equivalent. The proof is based on the following
pnf basic equivalences. In these equivalences, </> (x) is any formula, y, is a formula, j is a
variable which has no free occurrence in <j> (x) or W, and ^ (j>) is the result ofsubstitut.ng
y for all free occurrences of x in <•/> (x).

~ (v*)<M*)- (ff*) ~tf>(*)

~(3Tx)0(x)s(V*)~*(*)
(Vx)<t> (x) AV - (V*) [</> (*) Ay]

-/A (V*)tf> (*) ^ (V*) l>A<£ (*)]
(3-x) <j> (x) Ay s (ffpO 0 00 AV]
VA (3X) 4> (x) = (;y;0 [yAtf) (»]

(v«)*(*) vv - (vjO wwvifi

yv (v») * (*) ^ (¥j0 tvv* 00]

(arx) 4> (*) Vy 2i (ffjO W> 00 V(y)\

yV(3x) <l>(x)^(ay) [yV<f> (y)]
V D (ax)<t> (x) ~ (3y) i> D tf> GO]

(jx) <f> (x) Dy/ ~ (Vy) [</> C) Dy]

V D (¥*)<£(*) s (Vy) [VDifW]

(Vx)ifi(x)Di/=(tfJ>) [<£ (y) D V]-

These equivalences enable us to move interior quantifiers to the front of a formula.
Prior to the use of basic pnf equivalences, the wff is rewritten with a view to eliminate
redundant quantifiers, e.g., (qx) A is equivalent to A if ?c has no free occurrence in A,

and b

no v<

4. A

The?

steps.

Step

Step

Step

Step

Step

Step

Step

for /#> and

the following
ormula, y is a
)f substituting

jf a formula.

v to eliminate

:urrehce in A,

STRUCTURED PROGRAM FOR CONVERSION TO PRENEX NORMAL FORM 127

and by renaming variables in order all quantifiers in wff will have different variables and
no variable is both bound and free.

4. An algorithm for conversion of a wff to pnf

The algorithm for converting a w#into pnf is presented in the sequel as a sequence of
steps.

Step 1 Eliminate in X all redundant quantifiers :

If a quantified variable does not appear within the scope of the quantifier in
the wff, then such quantifiers will be deleted.

Step 2 Rename variables :

If the wff contains variables which are quantified more than once, then
rewrite the wff so that every quantified variable is distinct. *"

Step 3 Push quantifiers to the left of negation:

If a quantifier appears to the right of a negation operator, then change the
quantifier by its counterpart (replace existential quantifier-by universal
quantifier and vice versa) and move the same to the leftof the negation operator.

Step 4 Push quantifiers to the left of A, V and d and extend scope of quantifier :

If a quantifier appears to the right of a conjunction, disjunction,.or implication,
move the quantifier to the left, so that the scope of the quantifier covers both
the operands of the given operator.

Step 5 Extend scope of quantifier:

If a quantifier has the left hand operand of a conjunction or disjunction for its
scope, extend the scope of the quantifier to both the operands.

Step 6 Replace quantifier and extend its scope:

If a quantifier appears to the left of an implication operator, then replace the
quantifier by its counterpart and extend its scope to both the operands of impli
cation.

Step 7 Repetition of steps for obtaining pnf:...

Repeat steps 3 through 6, until no more applications of these steps arepossible.
This final form will be the pnf version of the given formula.

The algorithm stated above has been presented, as a sequence of steps and it will
become apparent that this helps the program development by stepwise refinement fo' a
very great extent.

jj j

11
;i|
1 n:
ih-i.
1 I'M

i! i

-•q8 •• N. CHAKRAPANI el al

5. Illustrative examples

We illustrate the process of applying the algorithm for agiven wff to arrive at the /m
vers on Three examples are presented in the sequel. The apphcat.on of the algorithm
ZTwff results in asequence of formulas, the last one being the required pnf version.
The number in parentheses against each wff in the sequence refers to the corresponding
step of the algorithm used in the rewriting process.

5.1. Example 1

wff: (jx)FxD(~(tf>0G>O(V0(2J)W (*>,»')
Sequence :

(3X) Fx D(~ (.•?>') Gy D(Sf.v) H(x, v)) 0)
(3w) Fw D(~ (3J) Gy D(jr) H(x, z)) (2)
(3 w) Fw D((¥y) ~ Gy D(3?) H(*. ')) (3)
(3w) Fw D((3D {(¥y) -GvdH (x, z)}) (4)
(Y w) [Fw d (32) {(¥)') ~ Gy DH(x, z)}] (6)
(VW)(?2) [Fw D{(.¥>') ~GyDH(x, z)}] (4)
(V w) (ff*) [^ 3 (^) {~ <*> => H(*•ZM (6)
(vW) (?z) (3j)[FwD{~6^« (*> *)}] W

5.2. Example 2

wff: (3x)P(x,z)-j(Vz) [(ay) P(x, z) D(¥*) (ff*) P(x, y)\
Sequence:

(3X) P(x, z) D(¥2) [P(x, z) D(¥«) (ay) p(*• *)* W
(jx) P(x, 0 D(¥z) [/> (x, z) D(¥w) (ay) p(w> *)] (2)
(Vz)[(^)i3(x,0D[^(^z)3(¥M')(?>')P(tv,3')]] (4)
(¥z) (V*) t^(*. 0 3 [p(*»z) DC¥w) (ffj>) P(w, y)]] (6)
(¥ z) (¥ x) [^(*, 0 D(¥ if) (ffJO [^ (*. 2) 3 P(w, y)]] (4)
(Vz) (Vx) (Yw)(ay) [P (x, t) D[P (x,.z) Di5 (w, y)]'l (4)

5.3. Example 3

m# : '[(ff*) * (*) V(ff*) QMl 3 (ff*) C to V 2 (*))
Sequence:

[(3x)P(x)W(3y)Q(y)]D(av)(P(v)\Q(v)) A®

•• j

M

6. Pj

Level

Level

Th(

Level

Level

ive at the pn
the algorithm
d pnf version,
corresponding

0)

(2)

(3)

(4)

(6)

(4)

(6)

(4)

0)

(2)

(4)

(6)

(4)

(4)

y2)

3T-
"t

i'-iTr

P'I.-j:

STRUCTURED PROGRAM FOR CONVERSION TO PRENEX NORMAL FORM 129

{(ay) Kax) p (x) vq (y)]} d (3v) (p (v) vq (V)y . .(a)
{(ay) (ax) [p (a) vq o)i} d (3v) (p (») vq («)) . (5)

(¥>-) {(ax) [P(x] VQ 0')]} D (ffw) (/' («) Vg («)) (6)

(¥/) (¥x) [P (x) VQ (y)] D (av) (P (v) VQ (v))\ (61

(¥ j') (V.v) (ju) [(P (x) Vg GO) D (^ («) VQ («))]. (4)

6. Program development

In the sequel, using the structured programming approach, a program for converting a
wffin first-order logic into pnf is described; this uses the algorithm presented in
Section 4. The various stages of program development have been identified as
levels. Level 1 is just the problem definition.

Level 1 Develop a program for converting a >w#"in first-order logic into prenex normal
form.

The computation involves examining the formula, term by term, and then rewriting
the terms by resorting to a relevant step of the algorithm stated in the earlier section.
This implies the scanning of the given formula a number of times depending upon the
number of terms in it. It, therefore, becomes essential that the input in conventional
infix notation be rewritten into a suitable form before processing starts. This suggests
the logical sequence of steps stated as level 2.

Level 2 2.1. Accept the given formula and perform necessary preprocessing.

2.2. Rewrite the formula into pnfand print out the pnf version of the formula.

These two subproblems can now be studied in greater detail individually. The pre
processing for input has to be chosen, so that the subsequent computations can be effici
ently realized on a computer. We will refine action 2-2 further, so that we get a better
appreciation of the computations that are involved.

The given algorithm initially removes redundant quantifiers and renames variables.
Level 3 suggests the sequence of steps for the same.

Level 3 3.1. Remove any redundant quantifiers from the formula.

3.2. Rename a quantified variable, if it is quantified more than-once. ~-

3.3. Obtain the pnf version of the formula and output the same.

The refinement of each oneof these actionsin level 3 follows. In the sequel, thevarious
Pascal constructs are utilized for depicting control flow,

'!'l;:!'

''!. I

' ;'i

"•!; i

130 . n. chakrapani el at

Level 4 {Removal of. redundant quantifiers}

begin

for every quantifier do

while (within the scope of the quantifier.) do

begin

if (no occurrence of quantified variable)

then remove that quantifier from the formula

end

end

Level 5 {Renaming}

begin

for every quantified variable do
if (name = another quantified variable or name = a free variable)

then

begin

rewrite name by a new variable name;

while (within tie scope of the quantifier) do

begin

for every occurrence of the name

do rewrite the name by the same new name

end

end

end

Level 6 (Obtain pnf version)

begin

6.1. while move possible do

begin

for every quantifier do

begin -

>;

I

h*

Ha>

upon

of thi

suitab

the f(

refine

Level

]£*••'•

ile)

•••-:.' .STRUCTURED PROGRAM FOR CONVERSION TO PRENEX NORMAL FORM 131

// (quantifier's scope is the right of negation)

then begin

change quantifier to its counterpart; move it to the left of
negation extending its scope to include negation.

end

else

if (quantifier's scope is the right operand of conjunction, disjunc
tion or implication)

then move the quantifier to the left so that its scope includes both
the operands of the operator

else

//(quantifier's scope is left operand of conjunction or disjunction)

then extend scope of quantifier to both the operands of the operator

else

if (quantifier's scope is left operand of implication)

then change the quantifier to its counterpart and extend its scope
to include both the operands of implication.

end

end

6.2. Print out the pnf version.

end.

Having identified the details of computation needed for the conversion, we can decide
upon our internal representation for the formula. As the computations require scanning
of the formula in units of terms, the postfix notation has been identified as the most
suitable representation. The preprocessing action therefore corresponds to rewriting
the formula into postfix notation before main computation starts. This leads to the
refinement of action 2.1 in level 2 as follows:

Level 7 {Preprocessing}

7.1. Read in the formula and check for possible input errors.

7-2. Convert the formula into postfix notation.

:;.!•;!

i.lli

; ;"'i!
! I.,'1'

132 N. CHAK.RAPANI <?/' al

As the computations arc now performed on the postfix form of the given formula, the
final result will also be available in postfix notation. Hence we have to rewrite this into
conventional infix notation. This results in the next level of refinement of action 6.2.

Level 8 {Postprocessing}

8.1. Convert the pnf in postfix notation into infix notation.

8.2. Print out the infix notation of the pnf version.

It is to be noted.that any of the actions in the last four levels can be detailed further
if one so desires. As the subsequent levels of refinement are easy to realize, we leave
the stepwise refinement of program development at this stage.

7. Program implementation

The program implementing the above-mentioned algorithm, using this stepwise refine
ment approach, has been coded in Pascal9. Input and Output are coded as three pro
cedures. Each one of the steps in tbe levels 4 through 8 have been coded as one or more
procedures. Levels 4and 5have been coded as one procedure each; level 6 has resulted
in three procedures. Levels 7and 8 have been together coded as three procedures. The
formula and its postfix iorm have been represented as sequences and the one-way linked
list structure has been utilized to hold the pnf version. The complete program contains
about 500 Pascal statements.

8. Remarks and conclusions

The stepwise refinement technique has been elucidated with the help of a non-numeric
example, instead of the common presentations of numerical examples. But for the
adoption of the philosophy of structured programming and the technique of top-down
program design, the final program would have been quite large and messy, making it
difficult to comprehend or modify the program.

9. Acknowledgements

The authors are grateful to Prof. R. Narasimhan, Director, NCSDCT, Tata Institute of
Fundamental Research, Bombay, for providing the necessary computational facMitie-\

References

1. 'PUKSTRA, E, W, A Short Introduction to, the Art of Programming, TR EWD 316,
The Netherlands (Indian reprint published by the Computer
Society of India, 1977);

•ST-'

B.

h

y Si

(.. K

7. to

k. IV.

'>. Jf

formula, the
vrite this into

pf action 6.2.

:ai!ed further

ize, we leave

;pwise refine-
as three pro-
one or more

i has resulted

edurcs. The

le-way linked
:am contains

non-numeric

But for the

of top-down
y, making it

i Institute of

hal facMitie .

R EWD 316,
the Computer

I'.ll": ••
: STRUCTURED PROGRAM FOR CONVERSION TO PRENEX NORMAL FORM 133

2. K.IEBURTZ, R. B.

• 3.- BOEHM, C. AND
Jacopini, G.

j^Vf 4. Wirth, N.

5. Smullyan, R. M.

6. Kleene, S. C.

7. Mendelson, E.

8. Manna, Z.

9. Jensen, K. and Wirth, N.

Structured Programming and Problem Solving with ALGOL-W,
Prentice-Hall, 1975.

Flow-diagrams, Turiiig Machines and Languages with only Two
Formation Rules, CACM, 1968, 9(5).

Program Development by Stepwise Refinement, CACM, 1971
14, 221-227.

First-Order Logic, Springer-Verlag, 1968.

Mathematical Logic, John Wiley, 1968.

Introduction to Mathematical Logic, Van-Nostrand, 1964.

Mathematical Theory of Computation, McGraw-Hill, 1974.

PASCAL — User Manual and Report, Lecture Notes in Computer
Science 18, Springer-Verlag, 1974.

