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Abstract 

it 1s argued that crron in expcnments wholely attnbulable to meauiernents ale baaed largely on wews of 
classical phys~cs The statsncal mtcrpretat~on of systems requms a fsiizrahzatron o i  error concepts such as 
are proposed here tor Gnuss~an and other expenmental vanah!e distnbutians It a concluded that the accep- 
rahhty oi theone\ I\ cond~imncd hy uncertamtles ~n measurements, and consensus is required to set values 
Tot cmx lmita 
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Prior to the introduction and prevalence of statistical interpretation of systems, clas- 
sical phenomenological equations of physics could be written Q(P, d"P/dl", t )  = 0 
where the physical quantities represented by val-iables P (and their derivatives) for 
any observable Q could take only one value at a particular time t ,  and that any, 
fluctuation from thc 'actual' value was d ~ e  to random errors, which "cause succe~sive 
reddings to spread about the true value of the quantity'". However, if it caq he 
shown tkat the 'true value' of a system quantity is 'not always unique, then'it follow 
that the usnai interpretation of  error estimates' as provided in reports would rcquirc 
further qualification and elaboration. 

Section 2 addresses the non-uniqueness of the true value of the physical quantity 
according to recent theories which therefore necessitates further qualification in error 
estimates, and also argues that theory determines the nature of crror and the mcan- 
mg of the variable that is being measured. The extensions and generaiizations re- 
quired are presented in Section 4, which follows from the conventional represenration 
briefly reviewed in Section 3. Section 5 concludes with a suggestion for consensus 
in deciding on the limits for error estimates. 

2. Theoretical signjfkamce of mean values and dispessiolns 

The mean value of a quantity, even if it may be derived to any arbitrary degree of 
accuracy from experiment, may not theoretically represent the 'true value' for the 
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system necessarily. Statistically considered, a whole range of values, usually clustered 
about the mean are all equally legitimate, occurring with varying probability and 
may be predicted by theory. In quantum mechanics, this corresponds to the situation 
2 = ( Q,AW ), AA2 = ((A - ii)P, (a - Z)W) f 0 where A is the operator for a sys- 
tem in state Q, which is well defined, and Z the mean of observable A. If quantum 
mechanics is not deemed suitable, then even classical statistical mechanics also has 
constructed systems with a range of values. For instance, in the canonical ensemble, 
the probability P(E) of observing a particular system in energy state E is 
P(E) = p$)exp - (E - E)'/2kT2~,, (henceforth all barred quantities are averages) 
where C, is the heat capacity at constant volume, T the temperature and k 
Baltzmann's constant. Even the size or material constituent of a system need not 
remain invariant, as illustrated by the grand canonical ensemble, where the variance 
u,$ of the particle density is u,$= R2kTK/v, where K is the isothermal compressibility 
in volume v ,  and &i the mean particle number. In the above interpretations, nature 
has been extended from the Platonic description of invariant ideality to that of the 
fistotelian 'species', which is the Latinized ELFOS of Plato, where the range of mo- 
tion is contained within the species type2. Another well-known example of this view 
of nature is in Brownian motion theory. 

We denote a quantity A which may exist as a range of values as range positive 
and symbohcally enclose it in curly brackets, i.e., {A). However, there are instances 
where current theory predicts (and in fact demands) exact measurements, i e . ,  
AA2 = 0 in quantum mechanical language. Then, instead of an equally valid range 
{a}, we have a single value for the observable a, (which is termed a range-negative 
variable) and which may be experimentally presented as a = Z i 2 u,, where 
u,, + 0 in principle if 'systematic' errors are eliminated. It is thus clear that whether 
or not a variable is range positive is theory dependent Further, it is misleading to 
write the error as 2u,, for range-positive variables, which is only reserved for range- 
negative variables, since, in the absence of any external experimental error sources, 
there would still exist the dispersion which would be measured by the experimentaily 
derived 2ac factor, where 2uer now refers not to the experimental error estimates, 
bat to the intrinsic dispersal of the system. Hence, there must exist a convention 
that distinguishes the two cases, as is suggested in Section 4 for range-positive and 
range-negatwe variables. 

From the above, it is clear that whether a variable is range positive or negative 
is theory dependent. and a clash of theory would ascribe contrary variable designa- 
tions. depending on the theory choice. An example in classical theory is the temper- 
ature parameter T ,  which essentially measures the energy exchange propensity in a 
system and is thus range negative. In such instances, there exists a theoretical possi- 
bility of an absolute measurement for, as indicated, theory dictates the nature of 
certainty. Recently, it has been claimed by workers like Lavenda3 and Schlbg14 that 
"if the energy is fiwed, a definite temperature cannot be assigned to the 
system. . . .and it must be supposed that the temperature of the system undergoes 
 fluctuation^"^. However, a micro-canonical ensemble is precisely of this form, where 
the Lagrange multiplier P(=lIkT) in maximizing the entropy at equilibrium (the 
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maximum entropy method (or MAX)') is the fixed or Invanant temperature parame- 
ter. He adds "on account of the duality between measurements of the tenperatme 
and energy of a system in contact with a heat bath, we may csnslder (3 itself as a 
realized value of a random process equipped with an u p i o n  density o(j3). . . ."3. 

However, p IS determined as an invariant parameter relevant for all systems through 
the Maxwellian Zeroth Law through thermal contact; if there is no net energy 
exchange between systems A and B as time t *  x, then TA = TB by definition, 
irrespective of the variance of the energies hE.; (or 4 E 3 .  For statistical systems, 
one can always develop an energy exchange metric 1 1  M 11 such that the condition 
/ M I /  + 0 as t + correspondmg to an invariant, unique temperature, as has been 
constructed6. The physical measurement 01 temperature is highly correlated to the 
Zeroth law, and any other theory not In consonance with ~t is not describing the 
same phenomenon; indeed, Lavenda states that the rnaxlmum entropy formalism 
is "incompatible with the statistical inference app~oach"~.  Zeroth law considera- 
tions alone are suffic~ent to cast severe doubts over other temperature concepts. 
We now illustrate contrary variable designations due to different theory choices 
and the impact of this on error estimates by examining the temperature 
variable. 

Let the temperature T be measurable from some observable in the system where 
T is a linear function of the energy absorbed E by the (canonical ensemble) system 
to first order. The Eavenda theory (LT) suggests that each of these T values 

m 

represents a temperature whose average T = j T(E)P(E)dE where P(E) is the 
probability function whereas MAX d e ~ a n d s  that T = T ( E ~ )  = To = T(E) is the 
only temperature. Expanding T = To + zla, ( E  - Eo)', where a, = lli! J'T/BExJE,, 

settmg T = To demands zla, crt. = 0 where uh = (E  - Eo)'P(E)dE, the ith mo- 
ment. According to MAX, rn; = kT2C, for canonical ensemble, so that 
( / T  - To)2) = u: = kT2Cvd  where a= dT/dEIEo. Hence, the Lavenda-type theories 
would predict variance u$ for_the observation of temperatures with mean value T, 
whilst MAX would consider T only to represent the temperature of a system in 
contact with a heat bath. Hence, measurement which yields a spread of values would 
be interpreted as error or noise contributions according to MAX, whereas LT would 
consider the spread to be a verification of the theory. Further, for MAX, the experi- 
mental report would present the spread contribution as error ( 2  2 rnE for Gaussian 
processes usually), and for Gaussian processes, the 'mean of means' estimate 
(M.M.E.), as elaborated and recommended in most texts1 (and discussed below) 
would be used for all range-negative variables, whereas there does not exist any 
convention at present to present data for range-positive variables which clearly disrin- 
guishes error from the intrinsic spread of true values. 

3. IDieussion of n o m l  presentation ((M.M.E.) 

In range-negative variable measurements, it is assumed that each successive measure- 
ment A, of variable A constitutes an independent random stochastic process such 



that if vanance V and mean E of each random variable A, i: a sequence is given 

by V(AJ = G' and E(A,) = p, thcn the expectation E of A = z, A,ln 1s E@) = p 

and V(A) =c2/n .  In this form of interpretation ~(2) -+ 0 as n --, . so that a 
mean value, which is also the 'true value' is attained to any desired accuracy within 
the limitations of thc probabilistic model. Thus, if we assume that the mean dlstribu- 
tion is Gaussian, the '95% conhdence' convention (corresponding to 1.96 or approx- 
imately two standard derivations) allows us to write 

where Bessel's formula7, for instance. gives the estimate lo; u as ~ j , ~ ,  = m21(n-l), 

where the computed standard deviation (s.d.) s is s = [lln 5, (X ,  - na2]'" tor a 

series of n succcssivc measurements. A,, may be computed as A,, = ;,X,/n. Equ- 

ation ( 1 )  is the M.M.E. where the uncertainty or error for the mean is 2u,J fi, 
and may be termed the standard model. The Xs are the data points deemed indepen- 
dent random variables representing quantity A. 

4. Exlmsion to range-positive variable measurements 

In the case of a spectrum {Y) of range-posltive meaaurenients, the error in mea- 
surement is usually the random scatter of points due to the environment for each 
system valuc Y. In quantum mechanical language, what is actually being meastircd 
M' is the sum of the environmental and probe contributions 6M and the pure system 
value Mo, i .e..  M' = ( IF!!, (fin + 61\i)V,) from which Mn = ( 'Po, h?o$O) is to be 
inferred Hencc, suitable perturbation models must exist toelminate  the aM en- 
vironmental cortributions and to n a p  the total wavefunction T, to the state fiuiction 
'X1:'o. V -  TO. as in perturbation theory. We may generalize on the standard 
(M.M.E.) model as follows. for the simplest case. 

4. I. Witit Gaussian ussumption 

If the 1' system value pure random variable givmg risc to the rangc {J3 is interfered 
with an environmental random variable X which leads lo only onr observable outcome 
L; = Y + X. then if Y and X arc Gaussian variables with vananccs u-f and of and 
nleans p, and px, respectively, then it 1s well known that the variable7 U (corresponding 
to the observable) is also Gaussian with mea? ini*, = I*, + p,y and variance ut = 4 + u$ 
In this case, the true value of Y 1s a range Y f 2us with crror factor 22 u, ~t pi = 0 
and if n;' << &. The 95% confidence convention is retairiedfor $e range {Y).  S~nce 
the L' observable is Gaussian, then we may determine U = Y to any degree of 
accuracy foilowing the method of M.M.E., d pr = O. The value of uz may be esti- 
mated experimentally and is the variance of the noise contribution A' Exp (i .e. ,  
0; = A2 EX?) when the system is not probed. Thus, the Gaussian probability dis- 
tribution function for Y may be determined by subtraction from thc experimental 
variance & to determine U; for linear systems. We shall call this procedure the 
slatistical variable estimate (S.V.E.) for range-positive variables. 



1JNCkRTMNTY AND LRROM 3 1 

If theory demand? a spectrum of velurs for variable A,  then we write the S V.E. 
result (for stationary, symmetrical Gaussian distributions) following the convention 
below 

where we have retained the 95% conlidence criteria for range {A),  A Exp is the - 
estimated error due not to the 'pure' spectrum of range A + 2nA but to the assumed 
exper~mental errors, and 2mA is dcrivcd from subtracting the experimentally dcrivcd 
spectrum for U from A Exp attributable to ':nterferencc' during measurement of the 
'pure system', i.e., u? - A2Exp = mj. The convention, is particularly sultable if 
I u,, >> A Exp. The mean value for variable A (=G) may be computed to any dcgrce 
of eccuracy even if A exsts theoretically as range {A). For large number of 

trials n, we may write n? = u,,. and since for M M.E n, = &/<, A may be 

determined to any degree of accuracy in principle. Sincc n,,,/V~<< o,, the ci,,,/ 

6 term may be absorbed by the 4 Exp term, where the 2 of (M.M.C.) is the 
same as for (S.V.E.) as written in cqn (2). Conventions relating to the relatwe magnitu- 
des of these quantities before error terms may be neglected must be stated prior to the 
usage of expressions such as (1) and (2) The assumption made here is that the mean 
of the noisc contribution py = 0, and may he adjusted accordingly if it i s  not the case. 

1.2. Wlrhoui Gausstan ass~imption 

The spectra for (stationary) systems wlthout symmetrical Gaussian distributions must 
be prcsentcd as variable quantities (preferabiy graphically with the estimated errors 
indicated). What 1s required is the use of conditional probabilities to estimate the 
error components. Mathematically, the actual probability distribution for the obsenr- 
able variable X, f ,(X) is 

f u O = J  f @ I Y ) f i ( Y ) d Y  ( 3 4  
-= 

where f jX  / Y) is the conditional probability density of experimenlally determined 
variable X given the pure system value Y and the probability density for distribu- 
tion Y. The determination of the prohabihty distribution for the pure system is via 
the posterior determination, i.e., 

g ( n  = j AY I mf(mu. (3b) 
-s! 

The 'pure spectrum' may then be superimposed on the experimental spectrum to 
determine the cxtent of errors in thc ideal case or both the probability drstribution 
functions may he written down (pure and cxperimental) with their means and stan- 
dard deviations quoted. The method of conditioning is used to determine the above 
functions g(Y) and f.(a8. 

4.3. Errors and theory 
Lastly, writc the predicted spectra as f,, the observed as fo and the experimental 



32 C G .  JESUDASON 

error contributions deemed separate from the pure systems as Cf,. Then, we define 
a discrepancy factor as A where 

I f a O f t O ~ f , l  = A  (4) 

and where @ means subtracting the theoretical error estimates in f, (e.g., as in (1) 
above) and 7 f,, where each f, is a randomness factor due to the environment (or 
measuring process). If f, = A  * F, f, = C 2 D, 2 f, = 2 E ,  then (4) 

means / A - C / + 1 F - D 1 + 2E. The i. F term is the experimentally determined 
fluctuational spread derived by subtraction from the estimated xf, due to the 
environment. If A is small, then we have a reasonable theory if the dkrived spectrum 
f, is similar to the theoretical spectmm f, in appearance; the factor that causes a 
theory to be acceptable or not is actually Z f,, the estimated error of measurement 
due to the environment or interference; if C f, is very large, f ,  may be accepted since 

1 f, O f ,  1 is large, and may accommodate f, i e . ,  1 fo @ f, 1 >> 1 f, . If 

j f, / --z 0 and 1 f, 1 + 1 f, (3 2 f, 1, then the theory of the pure system is modified 
&ti1 a matching occurs, which ienerally increases the credibility of a theory. Often, 
especially in the undergraduate laboratories, the meaning of error is misconstrued as 
meaning merely the difference between the theoretical spectrum and the experimen- 
tal one; however, the factor due to the environment Ff, must be incorporated or 
else there might arise the situation of optimistic report of small errors which sub- 
sequently proved to be large9. 

Let the random variable belonging to the pure system be 5, and an environmental 
interfering variable be t,. Then one must always s t p l a t e  that the covariance of 5, 
and 5;. Cov (6,; 5,) = 0 or is small as an ideal, so that these systematic errors are 
eliminated. An 'improvement' of a measuring technique, guided by a current theory, 
is iargely concerned with ensuring a small covariance so that A Exp + 0; the search 
for such conditions would also cause further theories to be developed since ohserva- 
rions on cause and effect would increase the propensity towards newer formulations. 
At this juncture, human factors normally excluded from scientific discourse must be 
admitted to describe the nature of interpretation. 

5. Conclusioo 
From the above, it is clear that for range-positive variables, the current conventions 
using the M.M.E. are not adequate in providing a format of representation which 
distinguishes fluctuations from 'erroneous' environmental effects. Even so, Section 4 
argues that the limits for what is considered to be a significant value for an experi- 
mental variable is still subjected to a community consensus, or, failing that, to error 
margins defined and stated when presenting data. 
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