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Abstract

ft 15 argued that cirors in cxperiments wholely attributable to measurements are based largely on views of
classical physics The statisucal interpretation of systems regures a generalizatton of error concepts such as
are proposed here for Gaussian and othker experimental varable distributions It 1s concluded that the accep-
tabibty of theones 1s condiboned by uncertanties 10 measurements, and consensus 15 required to set values
for error hmits
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1. Introduction

Prior to the introduction and prevalence of statistical interpretation of systems, clas-
sical phenomenological equations of physics could be written Q(P, d"®/df*, ) = O
where the physical quantities represented by variables P (and their derivatives) for
any observable Q could take only one value at a particular time ¢, and that any
fluctuation from the ‘actual’ value was due to random errors, which “cause successive
readings to spread about the true value of the quantity’™. However, if it can be
shown that the ‘true value’ of a system quantlty is not always unique, then'it follows
that the usual interpretation of error estimates' as provided in reports would require
further qualification and elaboration.

Section 2 addresses the non-uniqueness of the true value of the physical quantity
according to recent theories which therefore necessitates further qualification in error
estimates, and also argues that theory determines the nature of crror and the mean-
mg of the variable that is being measured. The extensions and generalizations re-
quired are presented in Section 4, which follows from the conventional representation
briefly reviewed in Section 3. Section 5 concludes with a suggestion for consensus
in deciding on the limits for error estimates.

2. Theoretical significance of mean values and dispersioms

The mean value of a quantity, even if it may be derived to any arbitrary degree of
accuracy from experiment, may not theoretically represent the ‘true value’ for the
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system necessarily. Statistically consideréd, a whole range of values, usually clustered
about the mean are all equally legitimate, occurring with varying probability and
may be predicted by theory. In quantum mechanics, this corresponds to the situation
= {TAV), A = ((A - D)V, (A — @)} + 0 where A is the operator for a sys-
tem in state ¥, which is well defined, and @ the mean of observable A. If quantum
mechanics is not deemed suitable, then even classical statistical mechanics also has
constructed systems with a range of values. For instance, in the canonical ensemble,
the probability P(E) of observing a particular system in energy state E is
KE) = P(E)exp — (E — E)2kT*C,, (henceforth all barred quantities are averages)
where C, is the heat capacity at constant volume, T the temperature and &
Boltzmann's constant. Even the size or material constituent of a system need not
remain invariant, as illustrated by the grand canonical ensemble, where the variance
o of the particle density is o= N?kTK/v, where K is the isothermal compressibility
in volume v, and N the mean particle number. In the above interpretations, nature
has been extended from the Platonic description of invariant ideality to that of the
Aristotelian ‘species’, which is the Latinized ewdos of Plato, where the range of mo-
tion is contained within the species type?. Another well-known example of this view
of nature is in Brownian motion theory.

We denote a quantity A which may exist as a range of values as range positive
and symbolically enclose it in curly brackets, re., {A}. However, there are instances
where current theory predicts (and in fact demands) exact measurements, i.e.,
AA® = 0 in quantum mechanical language. Then, instead of an equally valid range
{a}, we have a single value for the observable &, (which is termed a range-negative
variable) and which may be experimentally presented as a =a = 2 ., where
o, — 0 in principle if ‘systematic’ errors are eliminated. It is thus clear that whether
or not a variable is range positive is theory dependent Further, it is misleading to
write the error as 2o, for range-positive variables, which is only reserved for range-
negative variables, since, in the absence of any external experimental error sources,
there would still exist the dispersion which would be measured by the experimentally
derived 2¢,, factor, where 2a,, now refers not to the experimental error estimates,
but to the intrinsic dispersal of the system. Hence, there must exist a convention
that distinguishes the two cases, as is suggested in Section 4 for range-positive and
range-negative variables.

From the above, it is clear that whether a variable is range positive or negative
is theory dependent, and a clash of theory would ascribe contrary variable designa-
tions, depending on the theory choice. An example in classical theory is the temper-
ature parameter T, which essentially measures the energy exchange propensity in a
systern and is thus range negative. In such instances, there exists a theoretical possi-
bility of an absolute measurement for, as indicated, theory dictates the nature of
certainty. Recently, it has been claimed by workers like Lavenda® and Schlsgl* that
“if the energy is fixed, a definite temperature cannot be assigned to the
system. . . .and it must be supposed that the temperature of the system undergoes
fluctuations™. However, a micro-canonical ensemble is precisely of this form, where
the Lagrange multiplier B(=1/kT) in maximizing the entropy at equilibrum (the
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maximum entropy method (or MAX)?) is the fixed or wmvariant temperature parame-
ter. He adds “on account of the duality between measurements of the temperature
and energy of a system n contact with a heat bath, we may consider B itself as a
realized value of a random process equipped with an a prior density w(B). .. ..
However, B 1s determined as an invariant parameter relevant for all systems through
the Maxwellian Zeroth Law through thermal contact; if there is no net energy
exchange between systems 4 and B as time ¢ 2, then T, = Tj by definition,
irrespective of the variance of the energies AEZ (or AEZ). For statistical systems,
one can always develop an energy exchange metric | M || such that the condition
| M]|— 0 as 1 — = correspondimng to an invariant, unique temperature, as has been
constructed®. The physical measurement of temperature is highly correlated to the
Zeroth law, and any other theory not i consonance with it is not describing the
same phenomenon; indeed, Lavenda states that the maximum entropy formalism
is “incompatible with the statistical inference approach™. Zeroth law considera-
tions alone are sufficient to cast severe doubts over other temperature concepts.
‘We now illustrate contrary variable designations due to different theory choices
and the impact of this on error estimates by examining the temperature
variable.

Let the temperature 7 be measurable from some observable in the system where
T is a linear function of the energy absorbed E by the (canonical ensemble) system
to first order. The Lavenda theory (LT) suggests that cach of these T values

represents a temperature whose average 7 = J T(F)P(EYAE where P(E) is the
probability function whereas MAX demands that T = T(Ey) = Ty = T(E) is the
only temperature. Expandmg T="T,+ Eal (E — EU) where o, = 1/#! 8'T/3E g,

setting T = T, demands E & of = 0 where of = f (E — EgyP(E)dE, the ith mo-
ment. Accordlng to MAX o} = kT*C, for a canonical ensemble, so that
(T — T? = of? = kT? Cvoc where a= dT/dEl|g,. Hence, the Lavenda-type theories
would predict variance 6% for the observation of temperatures with mean value T,
whilst MAX would consider 7 only to represent the temperature of a system in
contact with a heat bath. Hence, measurement which yields a spread of values would
be interpreted as error or noise contributions according to MAX, whereas LT would
consider the spread to be a verification of the theory. Further, for MAX, the experi-
mental report would present the spread contribution as error (+ 2 oz for Gaussian
processes usually), and for Gaussian processes, the ‘mean of means’ estimate
(M.M.E.), as claborated and recommended in most texts! (and discussed below)
would be used for all range-negative variables, whereas there does not exist any
convention at present to present data for range-positive variables which clearly distin-
guishes error from the intrinsic spread of true values.

3. Discussion of wormal presentation (M.M.E.)

In range-negative variable measurements, it is assumed that each successive measure-
ment A, of variable A constitutes an independent random stochastic process such
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that if variance V and mean E of each random variable A, in a sequence is given
by V(A) = ¢® and E(A,) = p, then the expectation E of A = gl Afn s E(A) = u
and V(A) =c¥n. In this form of interpretation V(A)—>0 as n —> o, so that a
mean value, which is also the ‘true value’ is attained to any desired accuracy within
the limitations of the probabilistic model. Thus, if we assume that the mean distribu-
tion is Gaussian, the ‘95% confidence’ convention (corresponding to 1-96 or approx-
imately two standard derivations) allows us to write

A=A=A, =20,/ V0 1)

where Bessel’s formula’, for instance, gives the estimate oy Iorn o as ol = ns2/(n—1),
where the computed standard deviation (s.d.) s is s = [I/n 2 (X, —HA_’)Z]”Z for a
series of n successive measurements. A, may be computed as A, = EIX,/n. Equ-
ation (1) is the M.M.E. where the uncertainty or error for the mean is 20,/ Vn,

and may be termed the standard model. The Xs are the data points deemed indepen-
dent random variables representing quantity A.

4. Extension {o range-positive variable measurements

In the case of a specirum {Y} of range-positive measurements, the error in mea-
surement is usually the random scatter of points due to the environment for each
system value Y. In quantum mechanical language, what is actually being measured
M’ is the sum of the environmental and probe contributions 84/ and the pure system
value Mg, ie., M ={ W, (My+ 8M)¥,) from which M, = (¥, MP,) is to be
inferred Hence, suitable perturbation models must exist to_eliminate the dM en-
vironmental contributions and to map the total wavefunction ¥, to the state function
Wy ¥, — ¥, as in perturbation theory. We may generalize on the standard
(M.M.E.} model as follows. for the simplest case.

4.1. With Gaussian assumption

If the Y system value pure random variable giving risc to the range {¥} is interfered
with an environmental random variable X which leads to only one observable cutcome
U=Y+ X, then if Y and X arc Gaussian variables with vanances o} and of and
means g, and (L, respectively, then it 18 welt known that the variable’ U {corresponding
to the observable) is also Gaussian with mean w, = u, + w, and variance ol = cr% + o2
In this case, the true value of Y is a range Y = 26y, with error factor £2 o, if p, = 0
and if rri << o7. The 95% confidence convention is retained for the range {Y}. Since
the U observable is Gaussian, then we may determine U = Y to any degree of
accuracy following the method of M.M.E., if p, = 0. The value of o2 may be esti-
mﬁared experimentally and is the variance of the noise contribution A’ Exp (i.e.,
o; = A Exp) when the system is not probed. Thus, the Gaussian probability dis-
tribution function for ¥ may be determined by subtraction from the experimental
variance 6% to determine o3 for linear systems. We shall call this procedure the
statistical variable estimate (S.V.E.) for range-positive variables.



UNCERTAINTY AND ERROR 31

if theory demands a spectrum of values for variable 4, then we write the S V.E.
result (for stationary, symmetrical Gaussian distributions) following the convention
below

{A}=A * 20y £ 2AExp 2

where we have retained the 95% confidence criteria for range {4}. A Exp is the
estimated error due not to the ‘pure’ spectrum of range A = 20, but 1o the assumed
experimental errors, and 2o, is derived from subtracting the experimentally derived
spectrum for U from A Exp attributable to ‘mterference’ during measurement of the
‘pure system’, i.e., os — A’Exp = of. The convention is particularly suitable if
| 54| >> A Exp. The mean value for variable A (=U) may be computed to any degree
of accuracy even if A exists theoretically as range {A}. For large number of

trials #, we may write o2 = o, and since for MM.E o, = ¢¥Vn, A may be

determined to any degree of accuracy in principle. Since Oud V11 << 04, the oyl
Vn term may be absorbed by the A Exp term, where the A4 of (M.M.E.) is the
same as for (§.V.E.) as written in eqn (2). Conventions relating to the relative magnitu-
des of these quantities before error terms may be neglected must be stated prior to the
usage of expressions such as (1) and (2) The assumption made here is that the mean
of the noise contribution p, = 0, and may be adjusted accordingly if it is not the case.

4.2. Wrthout Gaussian assumption

The spectra for (stationary) systems without symmetrical Gaussian distributions must
be presented as variable quantities (preferably graphically with the estimated errors
indicated). What 1s required is the use of conditional probabilities to estimate the
error components. Mathematically, the actual probability distribution for the observ-
able variable X, f(X) is

A= [ rx v g ) ay (32)

where f(X | Y) is the conditional probability density of experimentally determined
variable X given the pure system value ¥ and g the probability density for distribu-
tion Y. The determination of the probability distribution for the pure system is via
the posterior determination, fe.,

gV = [ AY|Df(X)dX. (35

The ‘pure spectrum’ may then be superimposed on the experimental spectrum to
determine the extent of errors in the ideal case or both the probability distribution
functions may be written down (pure and experimental) with their means and stan-
dard deviations quoted. The method of conditioning is used to determine the above

functions g(¥) and £,(X)°.

4.3. Errors and theory
Lastly, write the predicted spectra as f, the observed as f; and the experimental
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error contributions deemed separate from the pure systems as Xf,. Then, we define
a discrepancy factor as A where

FXEADIAIENA @

and where © means subtracting the theoretical error estimates in f; (e.g., as in (1)
above) and 2 f, where each £, is a randomness factor due to the emvironment (or
measuring process). If f,=AxF f=C=xD, Ellf, = =+ E, then (4)
means| A — C|+ | F— D| + 2E. The = F term is the experimentaily determined
fluctuational spread derived by subtraction from the estimated Ef due to the
environment. If A is small, then we have a reasonable theory if the derived spectrum
fo is similar to the theoretical spectrum f; in appearance; the factor that causes a
theory to be acceptable or not is actually 2 f, the estimated error of measurement
due to the environment or interference; if 2 f, is very large, f, may be accepted since
[£.© Zf| i large, and may accommodate f, ie., LOZAI>>1f It

{2 f1—0and|f, | |f, © X £, then the theory of the pure system is modified
until a matching occurs, which generaﬂy increases the credibility of a theory. Often,
especially in the undergraduate laboratories, the meaning of error is misconstrued as
meaning merely the difference between the theoretical spectrum and the experimen-

tal one; however, the factor due to the environment EI f, must be incorporated or

else there might arise the situation of optimistic report of small errors which sub-
sequently proved to be large’.

Let the random variable belonging to the pure system be & and an environmental
interfering variable be §. Then one must always stipulate that the covariance of &
and &, Cov (&, &) = 0 or is small as an ideal, so that these systematic errors are
eliminated. An ‘improvement’ of a measuring technique, guided by a current theory,
is largely concerned with ensuring a small covariance so that A Exp — 0; the search
for such conditions would also cause further theories to be developed since observa-
tions on cause and effect would increase the propensity towards newer formulations.
At this juncture, human factors normally excluded from scientific discourse must be
admitted to describe the nature of interpretation.

5. Conclusion

From the above, it is clear that for range-positive variables, the current conventions
using the M.MLE. are not adequate in providing a format of representation which
distinguishes fluctuations from ‘erroneous’ environmental effects. Even so, Section 4
argues that the limits for what is considered to be a significant value for an experi-
mental variable is still subjected to a community consensus, or, failing that, to error
margins defined and stated when presenting data.
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