CONTENTS

Preface		Page
		1-Vil
Part I-THE ELASTIC PROPERTIES OF MOLLUSCAN SHELLS-		
1	Introduction	189
2	Structure of Mother-of-Pearl	191
	B Structure of Non-mridescent Shells	198
	C The Chemical Composition of the Shells	19.4
3	Preparation of Specimens.	196
4	Experimental Arrangement	198
	Results ..	201
5	Relation between Structure and Elasti-CITY-	
	A Mother-of-Pearl ..	207
	B Calcilic Shells	209
6	'M Margaratifera'	210
7	'Nautilus Pompilius'	214
8	Placuna Placenta	217
9	Summary and Conclusion	219
10.	BIBLIOGRAPHY ..	221

Part I

THE ELASTIC PROPERTIES OF MOLLUSCAN SHELLS

1 INTRODUCTION

From the theoretical standpoint, measurements of the clastic properties of solids possess the greatest signiticance when they relate to the material in the form of single crystals, the uniformity of spacing and orientation of the units composing the crystal lattice opens up the possibility of theoretical computations of the elastic properties tor comparison with the experimental results The great majority of the solids used in the atts and industies are, however, not single cryatals but aggregates having more or less a complex stiucture The relation between the elastic properties of these aggregates and those of the crystalline units of which they are made up is obviously a subped of considerable mportance It may natually be assumed that the propeities of polycrystalline aggregates will depend to a considerable extent on those of the single crystals which form them The order and dirangement of the ciystalhtes are obviously of importance in this connection Thus a random onentation of intrinsically anisotropic crystals may be expected to result in an elastically sotropic body while an orientation about a linear axis will result in a fibre structure and consequent elastic ansotropy In many substances, these consideiations are further complicated by the presence of a substance usually of the nature of a cementing material wheh helps to bind the varous crystallites together The nature, quantaty and distribution of this cementing material will mfluence in a marked manner, the elastic properties of the man substance This cementing materal may, in some cascs, be an amorphous phasc of the same chemical nature as the crystallites on it may be an entirtly forengn substance

The latter type of cementing material occus in the molluscim shells which form the subject of the present investigation Thute are some varieties of molluscan shells in which the former kind of cementing material occurs In choosing the materals for this investigation, two considerations have been mamly tahen into account First only such shells have been chosen wheh are avalable in luge
well-formed shapes so that elastic measurements can be made with accuracy and which form representative types of the dafferent families of molluscan shells Secondly, the choice has been with a view to melude only such shells as ate commonly employed for decorative and artistic workmanship From the point of view of the external appearance, the shells that have been chosen for study can be classified into two kinds, the ridescent and the non-rirdescent shells As as evident from the description, the aridescent shells, on being polished, present a very beautiful array of surface colours which change with changing angles of observation while the noniridescent shells, on polishing, present only a bright white surface, more or less of the nature of porcelain The ciystalline part of these shells consists of crystals of calcium carbonate and amounts to as much as 85 to 95% (per cent) of the weight of the shells These ciystals of calcium carbonate are held together in the frame-work of the shells by an organic protein matter called conchyolin Chall, as is well-known, occuis in nature in two distinctly crystalline varieties known as aragonite and calcite It is the former variety of $1 t$ which occurs in the radescent shells commonly called mother-of-pearl whule the latter variety occuis in the non-iridescent shells

A detarled experimental study of the elastic properties of calcite and aragonite has been made by Voigt (1890\&1907) Fig I(A)

ELASTIC PROPERTIES

Fig I(A)
gives the principal sections, accoiding to Vorgt, of the elastic sur faces of atagonite and $\mathrm{F}_{1 g} \mathrm{I}(\mathrm{B})$ those of calcite The striking

Desillungsmoduln of Calcita (Vorgs)
Fig I(B)
difference in elastic pioperties between the two forms is obvious from the figues Oke (1936) has made a theoretical computation of the elastic constants of atagonite and calcite based on Born's Lattice Theory of Crystal structure and finds a satisfactory agreement between his calculations and the experimental values of Vorgt According to Oke, the cause of the ditterence in the elastic properties between calcite and aragonte is to be traced to the difference in the relative positions of the Ca and CO . ons in the two crytals The elastic anisotiopy is more marked in the case of aragonte than in calcite Indeed, in the X -Y-plane while calcite is isotropic, the Young's modulus of aragonite along the X-axis is quite double that along the Y-axis As we shall see later, this featuc makes itsclf felt in the clastic propertics of mother-ot-pearl

STRUCTURE AND CONSTITUTION OF THE SHELLS

2 STRUCTURE OF MOTHER-OF-PEARL

Dating from the tume of Biewster (1853), the struture of mother-of-pearl has formed the subject of numerous investigations, amongst which those of Schmudl (1.921) should be specadly mentioned Boggild (1930) has made a detaled study of the architecture of
molluscan shells by means of the politising miciosco succeeded in classifying them into definite gioups like geneous structure, the laminated or the nacieous st folnated structure, the twinned lammated stiucture, t structure and so on As a result of these studies, it is that mother-of-pearl has got a laminated structure, alten nate layers of atagonite and conchyolin Each aıago in tuin made up of a number of platelets of anagonite platelets beang bound to one another by minervening Accoiding to Schmidt and as confirmed by Boggild, i crystallites forming the platelets in all the ridescent shellthen C-axes normal to the plane of the platelets, why parallel to the surface of the shells Schmidt had also the thickness of the protem layers intervening the aras was small in comparson with the thickness of the latter, also artived al by Raman (1935) by a study of laminar light by the surface of these shells By a study of the 1 and diftusion halos exhibited by these shells, Raman establushed that the platelets of alagonite forming the shell are sensibly of unform dimensions and spaced regular manner The three Great groups of mollus Bivalves, the Gastropods and the Cephalopods are shar tated by striking differences in their dittusion halos \downarrow indicate that the aliangements of the crystalline paritic are very dufferent in the groups He thus finds that in t there is a more or less regulan onentation of the anagonte respect to the lines of giowth m the plane of the shell, a 1 tation in the Gastropods and an intermediate orrentation in pods From the angular size and geneial character of halœes Raman has been able to estimate the size and dispr crystalline particles An X-ray mestrgation of the nacı shells has enabled Ramaswamı (1935) to confinm th drawn from these optical observations and to establish (orentation of the crystals in the different shells He fin the shells exammed the c-axis is normal to the shell-s
the a and b-axes lymg in the plane of the shell have got a regula orientation (with only an error of 5°) with respect to the lines, growth in the Lamellibianchs and a quite random onentation in th Gastropods In 'Nautilus Pompilus' belonging to the Cephalopo group, a preteried orientation is complicated with twimnng and lage error of ortentation of about 15° Rumasuamis absersution on Nautilus are of special interest from the viewpont of the presch mestigation and are referied to m detal later on Difterinu between the diffusion halos of shells within the same group observe by Raman are correlated with variations in the size of the platelets, alagonitc and a varying amount of erron in their orientation I observations with parallel and convergent polarised light under tl petiographic micioscope, Rajagopalan (1936) has made measuremen of the size and ariangement of the crystal partacles in the variot shells and finds confirmation of the pievious observations In tl present investigation, the elastic properties of nacre of difterint shol have been studied and it is shown that the relation betwecn tl elastic properties of aragonite and the shells is intelligible in thew the stiuctural details established by previous mestigators A, shown late1, it has also been possible to obtain a quantitative cstuma of the protem distribution mn nacie

B Structure of Non-iridescent Shells

Of the two calcitic shells stuched in this investigation, t 'chank' belongs to the Gastropod gioup while the 'Placuna Placen commonly known as the wwdow-pane oyster belong to the Bitalw The shell of the chank possesses what Boggild calls the homogeneo structure, appearing hke a prece of porcelan without any detals structure when exammed under ordunary light When examm between ciossed nicols, however, definite cxtmction is observed specfic directions, which in this shell, exhibits a certun amount earor of orientation The stiucture of the window-pane oyster th is what is called the foliated structue, the shell beng made up of bundle of almost parallel leaves The bhell architecture is distome non-homogeneous easaly flaking oft in one diectoon and termm
preces in another Under the polarising micioscope, the optic axis defintely shows an inclination to the shell-surface deviating apprecrably from 90° but possessing less erior of onentation than the chank This kind of foliated structure is the calcitic analogue of the nacreous stiucture of aragonte as it occurs in mother-of-pean By studying the magnetic anisotropy of these shells, Nulakantan (1937), has established the angle of orientation of the optic axis to the shellsurface The crystallites of calcite form a bick-woik like stiucture, the bucks being rather dispiopoitionately elongated and cemented together by a layer of conchyolin all 1 ound There is a lathei liberal use of this cementing material in this shell and as in the case of 'M Margaiatifera,' it has been possible to obtan a quantitative estimate of the distribution of the cementing material from considerations of the observed elastic modulus of the shell

C. The Cifemical Composition of the Shells

The relative abundance of crystalline and cementing matlei m the architecture of the shell will exercise a laige contiol on the ultimate stiength of the shell and its elastic behaviour and so it was considered necessary to make a chemical analysis of the shells in order to determine the percentage of the constituents The method of analysis is paiticularly simple since 1 it is known that only two substances viz, calcıum carbonate and conchyolm make up the shell The analysis was done by two independent methods, in one of whin the calcum was estimated as oxide and in the other as carbonate Having determined the amount of calcium carbonate, the remander was taken as conchyolin. The specimens that had been employed in the determination of the elastic moduli were finst dried for about an hour in an an oven mantamed at 102° and then reduced to a fine powder in an agate mortai This powder, which was kept inside a desiccator till actually 1 equired for the analysis, served as the starting material for the methods of analysis In the finst method a knowr amount of the powder was calcmed to constant werght at bught red heat in a crucible and the mass of the oxide thus obtaned war determined The equivalent amount of carbonate was calculatec
and the balance was taken as conchyolm In the second method, a known amount of shell powder was dissolved in excess of dilute hydrochloric acid and the calcium was precipitated as oxalate in an ammoniacal medium The piecipitate, carefully washod and collected in a crucible was converted into the carbonate by heating to a dullred heat wath the usual precautions and the carbonate obtaned from the known amount of shell was determned, the balance bengs takcn as conchyoln

The results of the chemical analysis are given in the following table

Table I
Chemucal Composition of the Shells,

Name of Shell		Percentage of calcuam cabonate		Percontage of conchyolm	
		I method	II method	I method	II method
1	M Margaratifera	958	950	42	50
2	M Vulgat is	900	890	100	110
3	Trochus	975	970	25	80
4	Turbo	935	925	65	75
5	Heliotis	920	910	80	90
6	Nautilus Pompilius	860	850	1 ± 0	150
7	Window-panc oyster	902	897	98	10.3
8	Chank	928	924	72	71

3 PREPARATION OF THE SPECIMENS

In Sul C V Raman's puvate collection of shells, large and well-formed shells wetc available belonging to the vanous familes and the following table gives detals of the shells that were employed in the present mestigation

Table II
Descurptron of the Shells studred

No	Family	Name of Shell	Ciystalline Component	Source	Appioximate Dimensions
1	Lamellibanchs	M Margaralıfera	Aragonite	Bombay market	$8^{\prime \prime} \times 6^{\prime \prime}$
2	"	M Vulgats	"	Rameswaram (Madıas)	$25^{\prime \prime} \times 18^{\prime \prime}$
3	"	Placuna Placenta	Calcule	Bombay manket	$6^{\prime \prime} \times 5^{\prime \prime}$
1	Gastıopods	Tuibo	Alagonte	"	$6^{\prime \prime}$ diameter $5^{\prime \prime}$ Herght
5	"	Tiochus	"	Andamans	$5^{\prime \prime}$ diameter $4^{\prime \prime}$ Herght
6	"	Heloth (Abalone C)	"	Cahforma	$8^{\prime \prime} \times 5^{\prime \prime}$
7	"	Tubbnella Pium (Indian chank)	Calcite	Rameswaram (Madıas)	$4^{\prime \prime}$ clameter $6^{\prime \prime}$ Height
8	Cephalopods	Nauilus Pompilus	Atagonite	Ennur (Madaas)	$0^{\prime \prime}$ diameter $3^{\prime \prime}$ Herght

As will be seen fiom the above table except 'M Vulgaris' of which a specimen large1 than about $2^{\prime \prime}$ was not available, all the other shells were quite large spccimens and it was not a difficult matter to prcpare a few good test preces for measuring the elastic constants Fig I represents the general appearance of a specimen of 'M. Mangaratifera' after the outer pismatic layer has becn cleaned up by a 1 apid application of dilute hydrochlonic acid The limes of growth are clearly discernible as large curved lines iumung nearly paiallel to
one another and it is easy to choose a place whene the lmes ae sensibly straight over distances of 3 or 4 cm and m such places d

strip of about 5 mm width and as great a length as possible is marked out with its length inclined at a known clefinte angle to the lines of growth The stipp is afterwards catefully cut out with a jeweller's saw and ground on a thek glass sheet with emery powder of increasing fineness so as to remove the outer prismatic layer completely and polsh the nacreous layer sufficiently mooth The characteristic iridescent ieflection helps to ensure duing the grinding that the surface of the specimen is parallel to the lammation planes Thus out of the strip cut out, a specmen of about $\$ \mathrm{~cm}$ length, .5 mm width and 1 mm thackness is carefully prepaicd The final gronding is done with the finest grade emery powder and the clmensions ate checked at different places with a sciew gauge or vemen calhpers to within half a per cent deviation trom the mean

For getting tiansverse sections a specially thick luge shell of 'M Margatatifera' whose mean thekness was about 5 mm was chosen and at its thickest poition, a stip nomal to the shell surface was cut oft in a direction pardlel to the lines of growth The laminations ate clearly discurnible as lmes rummes padile to the sufface of the shell Thas stup is hrst ground so as to have a thek-
ness of about 2 mm re , in the duection perpendicular to growth in the plane of the sholl In favourable positions tl of the shell was as much as 7 or 8 mm A specimen witl along on at a definte known mucluation to the C-axis is c carefully polished. The width of the specimen was duection of the lines of growth and had a magnutude of 4 mm The thackness in the plane of the shell at right an lines of growth was of the order of a mm or less in 1 specimen

In the case of 'Nautulus', though lange shells were the experiment, on account of the very large curvalue anc thuckness of the shell, specumens of only about 15-20 could be prepared Furthe1, sunce it was found that $t 1$ modulus showed sudden changes from direction to duect considered wor thwhinle checkng up the values obtaned wit by experiments conducted with specimens obtaned fron pendent shell and it will be seen from tables where the both the shells are given that within the limits of experıme the results are comparable In 'Trochus' a difficulty was ced in getting the final surface of the test-piece paia lamination planes This shell has got a steep spinal str there is a lange skew angle between the suface of the she lamnations Fuither, the nidescence of this shell is not qu which adds to the difficulty of getting a properly giound Though great care was of couse taken in the prepara specimens, it is doubiful in the case of 'Tiochus' whether success was achreved in making the surface parallel to the 1 a

4 EXPERIMENTAL ARRANGEMENT

(1) Young's Modulus - (a) For determinng thr modulus of specimens of at least 2 cm length, Koemg's bending was adopted Two adjustable robust knufeeec bolted on to a heavy lathe-bed and the specimen was sur the two knife-edges Two small plane mirrors were fixec upper suface of the specimen with then planes as nearl
dicula to the specimen suiface as possible and thear reflecting surfaces facing each other At a distance of about a metre from one of the mirrois was supported a vertical mm scale which was strongly illummated with an electric lamp close at hand On the side of the apparatus remote from the scale was mounted a telescope for viewing the image of the scale as reflected by the two mirrors A sturup carised on a third light and small knife-edge, resting across the specimen exactly midway between the two supporting kmfe-edges canned a light scalepan Care was taken to see that two mutors were arranged symmetrically with respect to the two knifeedges and the distance apart between them was equal to or slightly gieater than that between the two knfe-edges For the same shell the experiment was repeated with difterent distances between the knife-edges and with samples of different thicknesses The results justified the anticipation that within limits, the elastic modulus would be independent of the dimensions of the specimen In calculating the value of the modulus from the observed displacement in the reading of the telescope, the following formula was employed

$$
q=\frac{3 w l^{2}(2 D+r)}{2 b d^{3} x}
$$

where q is the Young's modulus of the material, w is the weight applied at the madpoint, D is the distance between the scale and the muror facing it, q is the distance between the two marrous, l is the distance between the two kmife-edges, b is the w dith of the specimen, d is the thickness of the specimen, and \imath is the observed drıplacument of the scale reading
(b) For determming the Young's modulus of specmens of 1 cm length or thereabouts, a single cantileves method of bending was employed The specimen was firmly clumped hoizontally at one end to a staft short veitical pillar boltcd on to the lathe-bed and was loaded by means of a scalepan suspended from a sturup resting on the specmen near its free end A thin strip of plane murror attached vertically to the free end of the specimen and a telescope and scale mounted at about a metre in front were employed to observe the
deflection of the specimen The modulus was calculated by the formula,

$$
g=\frac{12 w b^{2} D}{b d^{3} x}
$$

where l represents the distance on the specimen between the clamped end and the sturup cariying the scale-pan and the other symbols signify as in the previous formula

A test experiment conducted on the same specimen by methods (a) and (b) showed that the results obtaned were comparable
(2) Rugudity Modulus-For determınıng the 1 Igidity modulus the following aliangement was found convenient A stout vertical metallic pillaı about $20 \times 2 \times 2 \mathrm{~cm}$ was bolted rigidly to the lathe-bed and carried two cross-arms The lower cioss-am was a fixed one whule the upper one was capable of being clamped anywhere along the pillar The specimen was, at its upper extiemity, fumly clamped to the upper aim and at its lower extiemity was clamped axially to a disc A stout, shoit, smooth pin attached axially to the lower face of the disc was passed just freely through a hole in the lower arm vertically below the upper champ and seived to prevent lateral oscillations of the speumen while, howevet, allowing free iotation A prece of fine silk thread was doubled 10 und a pin fixed on the 1 mm of the disc and its two extremities left the disc tangentally at opposite ends of a diameter and passing over two smooth ball-hearing pulleys, canied light scalepans at the ends Two small plane marrors carred on very narrow metallic stıps were fixed at a sutable distance apart on the specimen and a telescope and a scale were arranged at a distance of about a metre in fiont of the murrors Since the vertical dislance between the two miriors was of the order of 2 cm or less, it was possible to get the mages of the scale as ieflected by the two murrors simultaneously in focus in the field of view of the telescope When equal weights were added to the two scalepans, the lower end of the specimen was rotated ielative to the upper end and the twist valying as the distance from the clamped end produced different angles of rotation of the two mirrors and
corresponding diflcrent changes in the telusope itading The readings of the telescope thus hupud to get the rulative angle of tuist betwecn the two sections and the ngility modulus, n, was calculated by means of the formula,

$$
n=\frac{39 M g d l_{2}}{a b^{3}\left[\frac{16}{3}-3361 \frac{b}{a}\right]\left(r_{1}-\iota_{2}\right)},
$$

where M repuesents the mass at each end of the sting, g is the duceleration due to giavity, d is the dametcr of the disc, l is the distance between the two minors, 2 is the distance butween the scale and the miniors, a is the wadth of the spummen, b is the thatness of the spocmen, and x_{1} and x_{2} ac the obsured displacements of the readings from the iwo minors

This formula is applicable only to specimens whose width is at least six times als thickness and cate was taken to sec that all the specimens employed satisfied thas condition Futher since spucimens less than 2 cm in length could not be satisfactornly used in the apparatus, the rigidity modulus in such cases has not been determined

Resules
The following tables give the esults of the experments on the various shells The iesults are also tepresented graphically on pola coordinates so that the addus vector in any dircction gives the modulus along that chection, the x-axis being chosen to represent the duection of the lines of srowth For puposes of comparison with Vorgt's curves, in the case of some spucmens, the value, of the extensibility and deformability ac plotted instudd of Young' modulu, and rigidity modulus The reciproul of the Young's modulus cxpressed in grams weight per squat millmeter is termed the extensibility and conesponds to what Voggt calls 'Dehnungs coelficient' and the 1eciprocal of the nestity modulus dho cxpicssed in grams weight per squar milhmutet is termed the deformability corresponding to what Vorgt calls 'Dillungs coefficient'

Table III
Young's Modulus of M Margaratrfera wn the plane of the shell

No	Inclunation to Ines of growth	Young's modulus in dynes/cm	Young's modulus n gm $/ \mathrm{mm}^{2}$	Extensubility
1	0°	925×10^{11}	946×10^{6}	106×10^{-7}
2	15°	782	800	125
3	30°	738	755	133
4	45°	806	824	121
5	60°	701	$7 \cdot 16$	140
6	75°	606	620	161
7	90°	574	587	170
8	105°	664	679	147
9	120°	723	739	135
10	135°	737	759	776
12	150°	165°	966	988

Table IV
Young's Modulus of M Margaratufena in the transvense section

No	Inclination to the c-axis	Young's modulus dyncs/cm	Young's modulus n gm $/ \mathrm{mm}^{2}$	Extensibility
1	0°	2.12×10^{11}	217×10^{8}	461×10^{-7}
2	30°	129	132	759
3	45°	125	128	780
4	60°	281	287	246
5	75°	323	330	303

Table V
Reguluty modulus of M Mangaratigera in the plane wh the whell

No	Inclination to lines of growth	Rigidity modulun m dynes $/ \mathrm{cm}^{2}$	Rigidity in $\mathrm{gm} / \mathrm{mm}$	Dt formahility
1	0°	266×10^{11}	272×10^{7}	368×10^{-7}
2	15°	262	268	373
3	30°	252	258	388
4	45°	225	230	435
5	60°	239	211	409
6	75°	210	215	466
7	90°	211	219	157
8	105°	216	221	133
9	120°	242	247	104
10	135°	236	211	415
11	150°	240	215	408
12	165°	273	281	358

Table VI
Blastac moduln of Turbo in the plane of the shell

No	Inclination to lines of growth	Young's modultus in dynes $/ \mathrm{cm}^{2}$	Exicnsibility	Rigichty modulus in dynes/cm ${ }^{2}$	Detormability
1	0°	684×10^{11}	$15: 3 \times 10^{-7}$	23.5×10^{11}	116×10^{-7}
2	30°	681	148	211	± 06
3	60°	689	142	236	115
4	90°	643	152	218	391
5	120°	668	116	210	108
6	150°	679	111	238	111

Table VII
Young's modulus of Nautrlus Pompoluts on the plane of the shell

No	Inclundtion to lines of growth	Young's modulas in dynes/cm ${ }^{2}$		
1	0°	432×10^{11}	444×10^{11}	438×10^{11}
2	75°	231	341	3.34
3	150°	278	290	2.84
4	225°	278	290	2.84
5	300°	381	386	384
6	375°	372	386	379
7	450°	298	309	304
8	525°	447	461	454
9	600°	286	277	282
10	675°	302	313	308
11	750°	310	300	305
12	825°	241		241
13	900°	188	198	193

Dehrowgsmoduh of M Margascabifores

Driflungamoduin of A Margorabifara

Fig III

YOUNGS MODULUS OF CALCIIC shells

Fig IV

Table VIII
Elastrc Modulus of chanh or 'Turbonella Puum' in the plane of the shell

Vo	Inclination to lines of growth	Young's Modulus in dynes/cm	
1	0°	$558 \times 10^{\text {11 }}$	Extensibility
2	15°	481	175×10^{-7}
3	30°	450	203
4	45°	374	217
5	60°	\ldots	262
6	75°	105	\cdots
7	90°	105	289
2		932	

Table IX
Elastrc Modulus of wondow-pane oyster on the plane of the

No	Inclination to lines of growth	Young's Modulus in dynes/cm	Extensibıl
1	0°	180×10^{11}	543×1
2	15°	1.84	532
3	30°	257	381
4	45°	313	313
5	60°	370	264
6	75°	565	173
7	90°	1.34	730

Table X
Young's modulus of other shells n the plane of the she

No	Shell	Young's modulus along lnes of growth	Young's mo across line growth
1	M Vulgarıs	426×10^{11} dynes/cm ${ }^{2}$.
2	Trochus	337×10^{11}	$\prime \prime$
3	Helıotis (Abalone)	436×10^{11}	$\prime \prime$

Note - The Young's modulus normal to the lines of growilh has not bet mined in the case of M Vulgans since the shell was a small thin a laige cuivature

5 RELATION BETWEEN STRUCTURE AND ELASTICITY

A Mother-of-Plearl

An analysis of the results given in the previous section bu ings out prominently some interesting facts and an attempt is made to correlate those facts with the known stiuctural detals, reserving a detailed consideration of individual shells to a later stage

It will be noticed that the elastic properties show a moie or less regular varation with drection in the case of shells of the Lamellibianchs wheiem we know from independent evidence there is a definte orientation of the crystals, while in the Gastiopods where there is random onentation in the plane of the shell, the drectional variation of elasticity is 111 egula and within the limits of experimental errors and structual faults (In HELIOTIS C, however, there is cvidence of a definte though small elastic anisotropy, a fact agreeng with Ramaswam's observation that in this shell there is an arrangement simila to that in M VULGARIS but with a lage error of orientation varying from 60 to 90°) In NAUTILUS where an intermediate behaviour will be expected, a totally pecular vatation is observed and it will be considered later on Again within the same zoological gioup it is observed that the elasticity varies considerably from shell to shell Thus the Young's modulus of M MARGARATIFERA along the lines of growth is 93 while the corresponding value for M VULGARIS is 43 Among the Gastropods, TURBO possesses a value of 65 for its Young's modulus which it is about 83 and 43 for TROCHUS and HELIOTIS C, 1 espectively The absolute magnitude of the clastic modulus of any shell is also of interest Thus in M MARGARATIFERA where the onentation is of a high onder of regularity, the Young's modulus in diny direction is considerably less than that of adgonte in a corresponding dnoction The average value of Young's modulus for a random distribution of anagonie will bc about 93 whic the actud value for TURBO in which a completely random orientation is known to exist is in the whereabouts of 65

That the elastic ansotropy of the shells depond upon the
degree of orrentation of the aragonte crystals in the plane of shell is a necessary consequence of the fact that the arag. crystal itself possesses manked elastic anisotropy Hence orderly disposition of the ciystals will more or less tend to pres the anisotropy, while a quite random orientation will average the differences to a mean value Comparmg Figs I \& III see that the elasuc curves of aragonite in the xy-plane and of shell ' M Margaratifeia' in the plane of the shell are quite si (except for the ratio of the axes) and that the maximum value o Young's modulus of aagonte occurs along its a-axis and of the neally along the lines of growth From this we infer tha 'M Margaratifera' the aragonte crystals are oriented in the pla the shell with their a-axis, more or less, along the hnes of giowth

Still the fact that the actual elasticity is considetably less tha probable value for the distribution conccrned calls for an explana We know that in all these shells, though the bulk of the matter sisis of aragonte crystals, the crystal particles themselves are b together in a framework of conchyolin It is also known that chyohn possesses a very low elasticity of the order of $03 \times 10^{11} \mathrm{~d}$ cm^{2} and that the resulting elastictity of a nuxture of two subst. wull have an intermediate value The drop in the elasticity of the s is thei efore to be attubuted to the effect of the binclung material assumption gets further support from the lact that withon the family, the drop in the elasticity increases with the conchyolin co of the shells, as is seen from the following table.

Table XI
Relation between Young's modulus and C'onchyolen content

No	Famuly	Shell	$\text { Percenlage by } \text { weight of } \begin{gathered} \text { conchj olin } \end{gathered}$	Young's modulus along lines of growth
1	Lamellibranches	M Margasatıfera	$42-50$	$\begin{aligned} & 93 \times 10^{11} \\ & \quad \text { dynes } / \mathrm{cm} \end{aligned}$
2	"	M Vulgaris	100-110	43
3	Gastropods	Trochas*	25-30	34
4	"	Turbo	$65-75$	65 "
5	"	Hehotis (Abalone C)	$80-90$	$43 \quad$ "
6	Cephalopods	Nautilus Pomplitus	140-150	$45 \quad$ "

* Tiochus appeats to be an exception but may not be ieally so The low value of the Young's modulus in spite of low conchyoln content might be due to want of parallelism between the sufface of the test-pece and the plane of lammations, a difficulty that has aheady been refened to An seen fiom table IV, cion at small inclination to the lammation plane bing, the Youns's modulus down fiom $:$ value 93 in the plane of the shell to 33 for an meluation of only 15° thuefrom

B Calcific Shells

The elastic modulus of the calcitic shells, chank and Placuna Placenta shows a marked anisotropy in the plane of the shell 1 tselt This is interesting from two points of view Oidinauly in adagonitic shells, the Gastiopod family shows a 1 andom distribution of the crystals in the plane of the shell iesulting in a uniform value of Young's modulu, in difterent directions The chank which belongs to the Gastropad family, however, shows a definte ansotropy in the plane of the shell which clearly rules out a random orientation The next interesting point in that, the elastic propenties of calcite in a plane perpendicular to the optic axis being isotropic, the large elastic amsotropy of the calutic
shells in the plane of the shell definitely indicates an inclination c c-axis to the plane of the shell, differing appreciably fiom 90° dependent evidence of this conclusion is available both from a stu the microscopic structure and magnetic anisotiopy of the shells

Also a comparison of the values of extensibility of the with the corresponding values of calcite given by Voigt shows the plane of the shell in the case of the chank comesponds t $x z$ plane of calcite with the x-axis parallel to the lmes of growth the z-axis in a plane perpendicular to them Further, the laige of the extensibility at right angles to the lines of growth 1 e, in t plane suggests that the inclimation of the z-axis to the plane c shell is not very large, piobably of the onder of about 30°

A similar comparison in the case of Placuna Placenta indi that the plane of the shell corresponds to the yz plane of calcite the lines of growth parallel to the z-axis The plane of the however cannot be the yz plane since the micioscopic as well c magnetic evidence defintely establishes that the z-axis is inc at an angle of 64° to the shell surface Fiom the close corne dence of the extensibility in the plane of the shell with that c yz plane of calcite, we infer that the y-axis is nomal to the of giowth Hence we infer the following facts about the dispo of the ciystals in the plane of the shell Y -axis perpendicular t lines of growth, x-axis parallel to the lines of growth and inclin an angle of 26° to the plane of the shell, z-axis parallel to the of growth and molined at 64° to the plane of the shell ${ }^{*}$

As in the case of the aragonitic shells, the effect of the chyolin is to dimminsh the actual value of the elasticity of the c structure in the vaitous directions and a detaled calculation 1 upon the observed elastic modulus in the respective duections en us to deduce the distirbution of conchyolin in the stiucture

6 'M MARGARATIFERA'

By making use of the observed values of the Young's mo along and acioss the lines of giowth in the plane of the shel

[^0]combination with the micioscopic data on the sue of the cry stallme units, it is possible to calculate the distibution of conchyolun in the structure Considering the nature of the quantities involved in the calculation and the unavordable approximations introduced therem, the results are at best only near the truth but their gieat clam to consideration hes an the fact that the value of the Young's modulus perpenducular to the plane of the shell deduced from the results of the calculation agues remarkably well with the experimental value Indecd, it was the startingly low value of the Young's modulus in this direction according to the calculations that was the incentive for the tather clifficult exptimental determination of this quantity and it is gratitying to note that the trouble proved to be worth taking

A detaled calculation is given for the shcll 'M Magaratifera' since only in this case all the necessary optical and other data wate avalable The architecture of this shell can be compared to a binkwork on a microscopic scale wheren the particles of aragonite torm the bricks and the conchyolin forms the mortar Assuming the platelets of aragonite to be approximately rectangulai, let its dimensions be a, β and γ along the ciystallographic axes a, b and c and let us choose the axes of co-ordinates, x, y and z respectively parallel to a, b and c If we assume that the conchyoln suntounding the platelet all round has got a thickness δa along $\mathrm{a}, \delta \beta$ along b and $i \gamma$ along c, the unit of structure can be taken as a platelet of aragonite with adjoining conchyolin layers on one set of three mutually perpenchcular faces In effect the stiuctural unt becomes a brick of dimensions $(u+\delta \alpha),(\beta+\delta \beta)$ and $(\gamma+\delta \gamma)$, the $a \beta \gamma$ portion of which consisis of aragonite and the $\delta \alpha-\delta \beta-\delta \gamma$ portion consists of conchyolm Since the entite shell consists of a packing of these structural units, the Young's modulus of the shell in any direction will be the same as that of the structural unit in that direction Hence we shall now proceed to deduce a general expression for the Young's Modulus of the structural unit in any diection

Let $q_{\mathrm{a}} q_{\mathrm{b}}$ and q_{o} be the Young's modulus of aragonite along the a, b and c axes respectively and let q be the Young's modulus of
conchyolin assumed isotropic and let $q_{\mathrm{v}}, q_{\mathrm{s}}$ and q_{A} be required val of the Young's modulus of the structural unit along the x, y and z respectively

In order to find the total effect in any direction of all the chyolin layers, we shall consider the eftect first of the layer norm: that direction and then of the layeis parallel to that direction 7 in order to find the Young's modulus q_{x} we shall first consider effect of the layer of thickness δu on the alagonite and then the e of the layers $\delta \beta$ and $\delta \gamma$ If a stress of magntude S acts or structural unit parallel to the x -axis,

Stram along the x -aus of the aragonte portion $=\frac{S}{q_{\mathrm{a}}}$ and s along the x -axis of conchyolin portion $=\frac{S}{q}$

The corresponding extensions are $\frac{S}{q_{a}}$ and $\frac{S}{q} \delta a$ respectiv
Total strain $\varepsilon=\frac{\frac{S}{q_{n}} a+\frac{S}{q} \delta a}{a+\delta \alpha}$
Modulus $q^{\prime}=\frac{S}{c}=\frac{a+\delta a}{\frac{a}{q_{\mathrm{a}}}+\frac{\delta a}{q}}=\frac{q_{\mathrm{n}} q(a+\delta a)}{q a+q_{\mathrm{n}} \delta \alpha}$
Next to find the eftect of $\delta \beta$ and $\delta \gamma$ on q^{\prime} consider a sects the structural unit normal to the x -axis The thickness of the chyolin layer in the ab-plane is $\delta \gamma$ and that in the ac-plane s Let us consider a unform linear stran, e along the x-axis

Force on the aragonile face along the $\mathrm{x}-\mathrm{ax} 1 \mathrm{~s}=e q^{\prime} \beta \gamma$
$\left.\begin{array}{l}\text { Force along the } x \text {-axis on the conchyolin } \\ \text { layes of thickness, } \delta \gamma\end{array}\right\}=e q(\beta+\delta \beta) \delta \gamma$
$\left.\begin{array}{l}\text { Force along the } \mathrm{x} \text {-axis on the conchyolin } \\ \text { layeı of thickness, } \delta \beta\end{array}\right\}=e q \gamma \delta \beta$
Total force along the x -axis $=\left(q^{\prime} \beta \gamma+q \beta \delta \gamma+q \gamma \delta\right) e$
(In this expression and in the sequel, products of $\delta a, \delta /$ $\delta \gamma$ among themselves are neglected as quantities of the secons thud order of magnitudes)

Final modulus along the x -axis $=q_{\mathrm{x}}$

$$
\begin{equation*}
=\frac{\left(q^{\prime} \beta \gamma+q \beta \delta \gamma+q \gamma \delta \beta\right) e}{(\beta \gamma+\beta \delta \gamma+\gamma \delta \beta) e} \tag{2}
\end{equation*}
$$

Substituting for q^{\prime} in 2 from equation 1 ,

$$
\begin{align*}
& q_{\mathrm{x}}=\frac{\frac{\beta \gamma q_{\mathrm{a}} q^{(a+\delta a)}}{q_{a}+q_{\mathrm{a}} \delta a}+q \beta \delta \gamma+q \gamma \delta \beta}{\beta \gamma+\beta \delta \gamma+\gamma \delta \beta} \\
& =\frac{q\left(\alpha \beta \gamma q_{\mathrm{a}}+\beta \gamma \delta a q_{\mathrm{a}}+a \beta \delta \gamma q+\gamma_{a} \delta \beta q\right)}{q\left(a \beta \gamma+a \beta \delta \gamma+\gamma_{a} \delta \beta\right)+\beta \gamma \delta a q_{\mathrm{a}}} \tag{3}
\end{align*}
$$

By a cyclic variation of a, β and γ, we obtain,

$$
\begin{align*}
& q_{\mathrm{y}}=\frac{q\left(a \beta \gamma q_{\mathrm{b}}+\gamma_{a \delta} \beta q_{\mathrm{b}}+\beta \gamma \delta a q+a \beta \delta \gamma_{q}\right)}{q(a \beta \gamma+\beta \gamma \delta a+\alpha \beta \delta \gamma)+\gamma \alpha \delta \beta q_{\mathrm{b}}} \tag{4}\\
& q_{\mathrm{z}}=\frac{q\left(a \beta \gamma q_{\mathrm{c}}+a \beta \delta \gamma_{\mathrm{o}}+\gamma_{a \delta} \beta q+\beta \gamma \delta a q\right)}{q(a \beta \gamma+\gamma \alpha \delta \beta+\beta \gamma \delta a)+a \beta \delta \gamma q_{\mathrm{o}}} \tag{5}
\end{align*}
$$

Now of the three quantities q_{x}, q_{y} and q_{2} given by equations 3,4 and $5, q_{\mathrm{x}}$ and q_{y} have been determined expermentally and hence to solve for $\delta a, \delta \beta$ and $\delta \gamma$ another equation connecting them with known quantities is necessary and this is obtaned from consideration of the peicentage composition of the shells Considering the structural unit of dimensions $(a+\delta a),(\beta+\delta \beta)$ and $(\gamma+\delta \gamma)$

$$
\begin{array}{ll}
\text { Volume of aragonte } & =a \beta \gamma \text { and } \\
\text { Volume of conchyolin } & =(\beta \gamma \delta a+\gamma a \delta \beta+a \beta \delta \gamma)
\end{array}
$$

We know from the chemical analysis of ' M Margaratifera' that it contans 95 per cent by weight of aragonite and 5 per cent by weight of conchyoln

Hence in 100 gm of the shell,
Weight of aragonte $=95 \mathrm{gm}$ and
Werght of conchyolin $=5 \mathrm{gm}$ Density of aragonite $=292 \mathrm{gm} / \mathrm{cc}$ and Density of conchyolin $=125 \mathrm{gm} / \mathrm{cc}$

Hence in 100 gm of the shell,
Volume of aragonte $=325 \mathrm{cc}$ and
Volume of conchyolin $=40 \mathrm{cc}$
Ratio by volume of aragonte to conchyolin $=\frac{325}{40} \quad$ But from the climensions of the structural unit, the ratio of the volumes

$$
\begin{equation*}
=\frac{\alpha \beta \gamma}{(\beta \gamma \delta a+\gamma \alpha \delta \beta+a \beta \delta \gamma)}=\frac{325}{40} \tag{6}
\end{equation*}
$$

From a careftul study of very thin sections of the shell, under the microscope, the platelets are found to have dimensions very nearly in the ratio of $3 \quad 10 \quad 1$ along the a, b and c-axes respectively Hence, in our equations we can substitute for u, β and γ the quantities 3, 10 and 1 iespectively on some arbitiary unit To get an idea of this arbitiary unit it might be remaiked that the largest dimension of these platelets varies between 3 and 4μ and hence 10 of these arbitrary units make up 3 or 4μ

Solving equations 3,4 and 6 for $\delta a, \delta \beta$ and $\delta \gamma$, we obtain

$$
\delta a=00267, \delta \beta=0095, \delta \gamma=01066
$$

We thus find that the thickness $\delta \gamma$ of the onganic material in between successive layeis of aragonite is only about one-tenth the thickness of the at agonite layer itself, a fact which confirms the views of Schmidt and Raman Further, compared to the thickness of aragonite in coriesponding duections, there is maximum piotein ratio in the z-axis direction.

By substituting for $\delta \alpha, \delta \beta$ and $\delta \gamma$ in equation 5 , the Young's modulus of the shell perpendicular to ts surface comes out to be 228×10^{11} dynes/cm ${ }^{2}$ The expermmental value (refer table IV) is 21×10^{11} dynes/cm ${ }^{2}$ and the agreement is seen to be quite good

7. 'NAUTILUS POMPILIUS'

As mentioned previously the elastic behaviour of this shell is pecularly interesting This shell belongs to the Cephalopod family where the crystals of alagonite are having an intermediate degree of orientation Hence one would have expected the elastac curve to have a shape nether so elliptic as 'M Matgaratifera' nor so carcular
as 'Turbo' The actual curve, however, has got a very inregular shape with sudden variations between maxima and minima If, in the calculation given in the pievious section for the Young's modulus of 'M Margaratifera', we substitute 14 per cent of conchyolnn as it exists in 'Nautilus' instead of the .5 per cent as in 'M Margaratifera', we obtan the value of Young's modulus somewhere about 48 and it is interesting to note that in the experiment on 'Nautilus', the value of the modulus in any direction does not exceed this limit

From X-ray studies, Ramaswamy has pointed out that in 'Nautilus' the crystals of aragonte are twinned acioss the plame 110 A gioup consisting of two pans of oppositely directed twins in necessary to explain the X-ray pattein Fiom the point of view of elasticity, however, the two pars are identical sunce the elastic curve of aragonite is symmetrical with respect to the axes Assumng tor a moment that a similai twinning were to take place in ' M Margaatifera' we can easily calculate the effect on the elastic curve of this twinning For finding the Young's modulus in any dnection of a twinned structure, we shall have to compound in that direction the effect of the two ciystals melined to each other at an angle of 120° If q_{1} and q_{2} represent the Young's modulus along any direction due to the two components of a twinned structure, the resultant value q in that duection will be

$$
\frac{2 q_{1} q_{2}}{q_{1}+q_{2}}
$$

The following table gives the calculated values of the Young's modulus for a twinned stiucture

Table XII
Young's modulus of a twinned structure

No	Inclination to lines of g1owth	q_{1}	q_{2}	q
1	0°	738	738	738
2	15°	806	782	794
3	30°	701	925	792
4	45°	606	782	683
5	60°	574	738	646
$\mathbf{6}$	75°	664	806	728
7	90°	7.23	701	$7 \cdot 12$

We see from the curve (Fig III) that the effect of twinning is to consideiably modify the elastic behaviour While the elastic curve of untwinned crystals in ' M Margaiatifera' is a mulform ellipse, that of a twinned structure shows maxima and minma withon the same quadrant It should, however, be admutted that the maxima and minima of the twinned structure are fewer and much less pronounced than those representing the actual behaviour of 'Nautilus' Twinning may be responsible to some extent for the pecular behaviour of 'Nautilus ' but it looks as though it is not the whole cause. The lange quantity of conchyolin present in this shell, introduces, peihaps, complications in the elastic properties One remarkable feature that was noticed in the present investigation was that, of all the shells examined, it was only 'Nautilus' that showed an elastic hysteresis to a welldefined and large extent Possibly the distribution of conchyolin in the plane of the shell is of such a chatacter as to give rise to the sudden variation in elastic properties from direction to direction When thin sections of this shell are examined between crossed nicols
under the polarising microscope, the conchyoln appears as dark patches and the size and distribution of these dark patches are found to be of a complex characte1, a fact which lends further support to this 1dea

8 PLACUNA PLACENTA

By the method employed in the case of M Margaratifera for elucidating the conchyolin distirbution in the shell it is possible to do the same for this shell The values of the extensibility of calcite in the plane of the shell parallel and perpendicular to the lines of growth and in a direction perpendicular to the planc of the shell have been obtained by substituting propet values of the duection cosmes l, m and n in the general expiession given by Voigt for the extensibility of calcite in any direction Remembeing that the extensibility is the eciprocal of the Young's modulus expressed in giams waght pur sq mm , the conesponding values of Young's modulus in dynes per sq cm have been calculated The general expression for the extensibility $\mathrm{E}(l, m, n)$ in a dinection whose clurection cosmes with x, y and z-axes are respectively l, m and n is $\mathrm{E}(1, \mathrm{~m}, \mathrm{n})=$

$$
1114\left(1-n^{2}\right)^{2}+1713 n^{4}+3105 m^{2} n^{2}+1797 m n\left(3 l^{2}-m^{2}\right)
$$

The direction of the lines of growth in the plane of the shell corresponds to a direction in the $X Z$ plane of calute inclined at an angle of 64° to the z-axis and 26° to the x -axis, while the cluection at right angles to the lines of growth conresponds to the y-axis of calcite The direction normal to the plane of the shell conesponds to a direction in the $x z$-plane of calcite inclined at an angle of 26° to the z-axis and 64° to the x-axis Hence the extensibility corresponding to the three directions will be obtained by substituting
$l=\cos 26, m=0$ and $n=\cos 64$, for the first dinection,

- $\quad l=n=0$ and $m=1$, for the second direction and
$l=\cos 64, m=0$ and $n=\cos 26$ tor the thud duection
Thus calling the three directions d, b and c , we obtain

$$
\begin{aligned}
& E_{\mathrm{a}}=7901 \times 10^{-8} \text { and } q_{\mathrm{a}}=1238 \times 10^{11} \text { dynes per } \mathrm{sq} \mathrm{~cm} \\
& E_{\mathrm{b}}=1114 \times 10^{-8} \text { and } q_{\mathrm{b}}=878 \times 10^{11} \quad " \quad / \quad " \\
& E_{\mathrm{o}}=1161 \times 10^{-8} \text { and } q_{0}=874 \times 10^{11} \quad " \quad "
\end{aligned}
$$

From the experiment, we know that $q_{\mathrm{x}}=18 \times 10^{11}$ dynes $/ \mathrm{cm}^{2}$ and $q_{y}=134 \times 10^{11}$ dynes $/ \mathrm{cm}^{2}$

The percentage of calcite in the shell $=897$ and of conchyolin is 103

$$
\begin{array}{ll}
\text { Density of calcite } & =272 \mathrm{gms} / \mathrm{cc} \text { and } \\
\text { Density of conchyolin } & =125 \mathrm{gms} / \mathrm{c} \mathrm{c}
\end{array}
$$

In 100 gms of shell,

$$
\text { volume of calcite }=\frac{897}{272}=3298 \mathrm{cc}
$$

and $" \quad$ "conchyolin $\quad=\frac{103}{125}=825 \mathrm{c} \mathrm{c}$.
$\left.\begin{array}{c}\text { Ratio of the volume of calcite } \\ \text { to conchyolin }\end{array}\right\} \quad=\frac{3298}{825}=40$
The values given by Schmidt for the platelets of calcite in Placuna Placenta are $100 \mu \times 5 \mu \times 1 \mu$

$$
a=100 \mu, \beta=5 \mu \text { and } \gamma=1 \mu
$$

Substituting these values in equations 3,4 and 6 and solving for $\delta a, \delta \beta$ and $\delta \gamma$ we obtain $\delta \alpha=169 \mu, \delta \beta=122 \mu$ and $\delta \gamma=0163 \mu$

The values of the conchyolm thackness surrounding the calcite crystallite obtaned above indicate a very liberal distıbution of the protein, particulaily the thickness of conchyolin along the lines of growth between neighbouring platelets of calcite comes out to be of the ouder of nearly 17μ about a sixth of the length in this direction of the calcite platelet. Without being actually piesent in such laige patches, an equivalent effect could be produced by even a small eiror of orientation of the crystallites Since the ciystallites are vety long compared to them cioss-dimensions, even an error of orientation of 5° will make the effective thickness of conchyolin along the lines of giowth very large Since it is known that there is a cerlain degree of error of orientation in this shell, the high value of δu is very likely the effect of this fact

A comparison of the relative thicknesses of crystal to piotein in 'M Margaratifeia' and Placuna Placenta is very significant

	$\partial \alpha \alpha$	$\delta \beta \beta$	$i \gamma \gamma$
M Margaratifera	00089	00095	0107
Placuna Placenta	016	024	016

It is seen at once that the conchyolin distribution is more or less uniform all round in Placuna Placenta while in M Margadatifura it occurs much more liberally normal to the plane of the shell than in the plane of the shell Also in conformity with the greater conchyoln content of this shell, Placuna Placenta has a very hberal distribution of conchyolin all round This explans both the easy Flaking of this shell and its easy tearing in the plane of the flakes Evidently also the low values of the elastic modulus are due to this large protem content

9 SUMMARY AND CONCLUSION

The elastic properties of mother-of pearl obtaned from a number of molluscan shells have been determined in difterent ditections with respect to the lines of growth In the case of 'M Margaratifera' the Young's modulus in the tiansverse section also has been determined As a general rule it is found that in all the shells examined, the Young's modulus in any given direction dimmishes with increasing protein content

In 'M Margaratifera' there is a large elastic anisotropy in the plane of the shell, the values of the Young's modulus parallel and normal to the lines of growth being 93×10^{11} dynes $/ \mathrm{cm}^{2}$ and 58×10^{11} dynes $/ \mathrm{cm}^{2}$, the shape of the elastic curve being sumular to that of aragonte in the XY-plane The torsional propetties in the plane of the shell show also an annsotropy smilar to aragonte in the XY plane These observations agree well with the known exstence of orientation in the plane of the shell of the crystal particles composang the shell The Young's modulus in the transverse section is found to have a remarkably low value

The elastic behaviour of 'Turbo' and 'Trochus' in the plane of the shells is, on the other hand, sotiopic agreeing well with the known randomness of crystal onentation piesent in these shells in
'Helotis (abalone) there is evidence of a definite though small elastic anisotiopy, as is to be anticipated from the X-ray observations on this shell

A general expression for calculating the elastic modulus of a compound structure in terms of the elastic moduli of component materials and therr distribution is derived and by the use of this expression in combination with the observations on the Young's modulus of 'M Margatatife a_{a} ', the distribution of conchyolin in this shell is deduced The formulac inclicate, in agreement with othen evidence that the conchyoln layers between the aragonite layers are very thin in companson with the latter The low value of the Young's modulus in the duection normal to the lammations as found by the experiment is also explaned by the theory

The elastic behaviour of 'Nautulus Pompiluss' is found to be very peculiar, showing apid variations in the value of the Young's modulus fiom dinection to direction in the plane of the shell Though twinning which is known to be present in this shell, might account for this to some extent, the real cause is probably to be traced to some pecularity in the clistribution of the laige amount of conchyolin present in this shell

The elastic behaviou of the calcitic shells is found to be in conformity with the known molination of the c-axis of calcite to the plane of the shells and an estimate of the protem distribution m Placuna Placenta has been deduced fiom considerations of ats elastic behaviour The protein thickness all round comes out to be quite large particularly in the direction of the lines of growth and a possible alternative view of this fact based upon the known eiror of onlentation of the crystallites is suggested.

In conclusion, the author wishes to thank his Professor, Sir C V Raman, Kt, FRS, N.L for helpful suggestions and kind interest in the work and for placing at the disposal of the author his valuable collection of beautiful shells The investigation was cairied out in the laboratory of the Department of Physics at the Indian Instutute of Science

10 BIBLIOGRAPHY

Brewster, For a summary see his 'Tieatise on Optics', 853, p 137

Oke, 'P1oc Ind Acad Sc1, 1936, 4A, 1, 514, 52.', and 667
Raman, Ibrd, 1935, 1A, 572, 865
Ramaswamı, Ibud, 1935, 1A, 871
Rajagopalan, Ibıd, 1936, 3A, 572
Schmidt, 'Die Baustein des Tieikorpeis am Polatistertem achte,' (Bonn), 1924

Vorgt, 'Ann d Physık', 1890, 39, 412 and 1907, 24, 290
Boggild, Mem Roy Acad, Denmak, 2, 245, 1930
Nildkantan, P1oc Ind Acad Scı, 4, 543, 1936

[^0]: * Numencal value tahen fiom Nilakantan's papeı

