Part II-ELASTIC AND THERMAL PROPERTIES OF TIMBER-
I Chapier-Introductory-
1 Eaty History of the Study on Timber
A On Mechanical and Structual Properttes . 222
B On Thermal Properties . $\quad . \quad 226$
2 Scope and Materials of Present Study 230
II Chapte1-Experimental Methods and Resulis-

1 Elastic Ptoperties of Timber	23.3
2 Thermal Conductivity of Timber	$24{ }^{\prime \prime}$
3 Thermal Expansion of Wood ...	- 25°

III Chaptel-The Constinuidon of Timber-Pirysical and Chemical-
1 Macto-Structure of Wood
A. Technique of Wood Sectioning . 257

B Results and Conclusions 261
2 X-ray Stuches of Timber . . 265
3 The Chemical Constitution of Tmber .. 268
Concluston . .. 272
IV Chapter-Propertifs of Cfllulose and Lignin-

1 Cellulose-I	..	274
2 Lignin and it		281
Conclusion		284

V Chapter-Interpretation of Rfsults-

References ... 312

Part II

ELASTIC AND THERMAL PROPERTIES OF TIMBER

I ChAPTER-INTRODUCTORY

1 Early History of the Study on Timber

A On Mechanical and Structural Properties
Among naturally occurring substances which can almost fiom the native state, be applied for practical constructional purposes, wood takes a prominent place It is, therefore, not suprising that fiom very early times, tumber has been employed for bulding houses and boats and for making weapons of offence and defence With the advent of civilization new and wider fields of application have been opened up for this commodity It 1s, however, stiange that untll quite recently, all the techmical and pactical knowledge on this material has been the monopoly of cappenters and antisans and, as such, has remaned quite empucal The increased application of wood for stiuctural purposes especially of budges, fast moving railway carriages and æoplane fusclage has resulled in the accumulation of a large amount of useful but uncooidinated information on the bulk properties of wood whole the applicition to musical instulments and objects of artistic carving has extended our knowledge of its properties m small preces A systematic scientific study of wood is of farly recent ougin and even after such a study had been started, the practical builder, with perhaps a ceitan amount of justification, looked askance at the scientific conclusions The real dufficulty in the scientific investigation of wood lies in the fact that there are innumerable varieties of tumber and the variations withn the same species aie agan momerable Further, being a biological product, subject to gieat vaiations in structure and characteristics due to variations in conditions of giowth, it is diffcult to expect any unformity of values even in specimens of the same species It is, therefore, not surpising to find that the values obtaned by laborious meestigatoons, howevel good they might have been with respect to the specimens studied, could not he relied upon
to apply to other cases Appaently difficultes and probably drappontments encountered by pratical bulders on acount ot these caucs have been debited to the suentitio achevement and led to the disciediting of scientific intormation on the subject ${ }^{1}$

The proper approach to a solution of this diticulty would appear to he in studying the physical propestien of wood in rehatum to some easily determmable basic charactei of the materal, lake, for instance its moro-structure, so that when any partualu puece of timber is to be applied for a specific pupose, it will be only necessary to determme thas latter bask chardeter ad to deduce therefiom other physical properties The mucromatomual charater of wood will be the best basic factor to take, whe it is known that even small variations in conditions of growth register themselves permanently by changes m the micio-stracture Bendes the piatical utility such a systematic study would have a hatse tundamental interest in that it will help to elucidate the propeities of a hushly complex brological product like wood on the basis of smple tundamental physical and chemical laws

Almost all the mestigations on timber carred out in the last century and the first two decades of the centuy have buan the work of centan timber testing laboratories and torest dupatments, in which the ultmate strength at breaking load has been studed The results of such mestigations had to be used by the patual bulder with aldrge and quite varable factor of baftety dependms upon the nature of the work In most of the eally work no attempt has been made to find out the modulus of elastunty of the material and in later work where the modulus is given it is mone in the nature of a casual intormation mendentally obtamed in the course of the investigation 1 ather than the result of a caretul and sytumatio study of that property ${ }^{2}$ It was only after the chemual nitute of the wood substance and the physical structure of timber had been studied that a fundamental interest in the elastic properties of the matulud was aroused The importance of clatic moduli, particularly of Young's modulus, in the mestigation of the fundamental structure and con-
stitution of complex substances was gradually being recognised and stressed ${ }^{4}$ Staudingei's investigations on the constitution of polymers of high molecular weight paved the way for an explanation of mechanıcal properties of natuial and synthetic substances in relation to constitution The simullaneous X-1dy mestigations of complex organic substances supplied the necessary additional mformation for the calculation of mechanical properties from the stiuctural standpoint

The first attempt to conelate the physical properies of wood to its micro-constitution was made by Nageli ${ }^{4}$ who studied the optical double refiaction and swelling of wood in relation to its structure as revealed under the micioscope On the basis of his studies, he proposed the micellar theory of wood structue, acconding to which, the cellwall of wood fibres is built of micelles oi gioups of crystallites aranged in spiral form He also arrived at certan specific conclusions regarding the relation between the directions of maximum and minimum optical anisotiopy and swelling on the one hand and micellar ormentation on the other Several workets have followed up Nageln's lead but most of what has been subsequently done has been physiological on morphological and not physical Though some of Nageli's conclusions have been subsequently shown to be erroneous, the micellar conception of ultumate stucture has been accepted in geneial Pfefter ${ }^{5}$ in his 'Pfanzen-physiologie' accepts the micellar structure as the ullmate units of which orgamsed bodies are formed just as molecules and atoms ae the ultimate units of chemical structure He, however, thonks that not all physical properties ate traceable to micellar structure Thus, for example, he says that properties hike anisotropic swelling and double 1 efraction mught be due to the axes of the micelles being of different lengths in difterent directions of of micelles being bound to one anothei with different forces in different duections while he maintains that the great differences in ingidity and elashicity of clffeient cell-walls are manly the result of thon specific molecula stiucture Robinson ${ }^{0}$ studying the permanent deformation of tumber after fallure under mechanical strains, thinks that the mechanical pioperties of timber depend more upon the nature of the cell-wall substance than upon
the arrangements of its paits He consider the cell-wall to be cssenttally a collod and thmes that the mechamual propities of wind can be deduced by treating wood as a colloidd igel He consuders wood to be a superviscous flud whose viscosity in the comse of growth has attumed a value comesponding to that of angid gel The formation and growth of suuh a gel are, decording to Robinson, in conformity with the pronciples of surface adsorption and suffac energy at the surface of the proto-plasm wheit fust pectic substances and then cellulose go on accumulating and mereabing the viscocity of the proto-plasm till the whole substance settle down into a rigid gel He consuders growth to take plate not only by the addition of fiesh cells but also by the stictching of exustins cells, the amstropy of the cell-wall being due to the peamancut defonmatom caused by the stretchine duing giowth The striations in cell-walls first obseived by Mohi ${ }^{7}$ and wrelated by Nugel with axc of micellar onentation are considered by Robmon to be the planes of slipping in the cell-wall substance produced by the mechameal tension during growth

Thus for the fust time since Nagel proposed his crystallite micellat theory of cell-wall structute in 1860, was a view put forward in 1920 which suggested the micellar conception to be unnecessaly and inconsistent with the accepted views on the stiucture and properties of collordal gels Robinson's opponition was however short lived, for within the next few ycars Nagelis ideas were verffied on almost what one might consider direct visual cudence Almost smultaneously with Robmson's work was started a vigurous unvestigation of wood structure by X-Idy methodn Shortly after Debye and Shearei developed their technque of X-ray stady of pulverised material, Ambronn ${ }^{8}$ suggested a search for the crvstallites in wood by the X-ray method and has suggestion has been follonal up by a large number of workers in the field Among the mote mportant investigations on wood should be mentioned those of Herzog ${ }^{3}$, Jancke ${ }^{10}$, Polany 1^{11}, Ritter ${ }^{12}$, Muk ${ }^{13}$, Meyer ${ }^{11}$, Clakk ${ }^{11}$ and Astbury ${ }^{10}$ Thesc investigators have obtamed more on less consintunt results regarding the existence and she of crystallites, the mucelles
composed of these ciystallites and the manner of arrangement of these micelles ${ }^{17}$ The best and peihaps the most direct evidence of the micellei conception is that provided by the ultra-inicioscope with the Spierei lens Seifriz ${ }^{18}$ in collaboration with Spieter has exammed cellulose with this arrangement and Thessen ${ }^{19}$ has extended this investigation to wood both in the sound state and in vanous stages of decay down to the condition of coal By this method structural details of the cell-wall have been photogi aphed which are in conformity with the micellar theony of the stiucture of cellulose in wood More recently cellulose films have been examined by election diftraction methods by Netta and Baccaredda ${ }^{20}$ and the results confirm the previous X-ray investigations A study of the magnetic anisotropy of wood has enabled Nilakantan ${ }^{21}$ to eslablish the clystalline character of cellulose in wood Chattaway and others ${ }^{2 a}$ have studned the micro-anatomical characteristics of wood with a view to contelate them with the natural order and classification of different species

Car rington ${ }^{23}$ has made a detalled study of the elastic moduln of English and spruce has measued, in definitcly shaped specimens, the values of the Young's modulus, Poisson's raio and rigidity modulus Treating wood as an anisotiopic body with thee mutually perpendicular planes of symmetry 1 e , like a ciystal belonging to the 1 hombic vairety, he has evaluated from his experimental iesults the nume elastic constants characteristic of rhombic structure Horig ${ }^{24}$ has utihsed Cairnggton's results for a detailed investigation of the elasticity of wood from the view point of Vorgt's theory of elasticity of anisotiopic bodies and has also drawn the elastic suifaces both for extension and torsion Following up a suggestion of Hoing, Schluter ${ }^{26}$ lias measured the elastic constants of a few types of German tumbers conesponding to the Enghsh spiuce, such varieties being the ones most commonly used in the constiuction of the resonance chambers of musical instruments

B On Thermal Properties

The amount of study on the thermal propertues of wood has been much smaller than that on its mechamical piopeities. Further
there has been tacquent contadiction of the results of onc observer by the meentigations of another Thus one obseiver mantamed that woud possebsed a negative cucfficient of thermal expemsion whik another gave for wood quite a large positive cociticient In the early investigations on the thermal propertics of wood, the wok of monsture m wood has not been pioperly considered, with the result that varying conclusions were obtamed by ditterent obstive, since the specimens studied had evidently contaned varying quantrties of morsture

The fact that wood is a poor conductor of heat has been known from very early times and the piovision of wooden handles for spits and soldering nons is a very ancient untom The use of wooden planks under the cenling of particularly taled stractues to keep of the ngours of both sun and frost is well is the coverng of the floor and walls in cold countries with wood panels is an mportant application of this property of wood However, both on account of the cost of the material and the nisk of fire attending upon its use, the practice is limited in its scope An additional mpetus to the large-scale application of this property of wood statud wath the development of the cold storage molustry and retrigerator ships mintuded tor the transport of cold-stored food-stutt had to be provided with some good non-conductins maternuls Indued as much is fitteen to twenty per cent of the total tonnage of a retrigerator shap ${ }^{26}$ consist of thermal insulating material and this works out at the 1 ate of about 30 lbs of msulating materal for every cubic toot of avalable cold storage space A systematic study of the theimal properties of wood and relatud ansulating materads with a vew to dimmsh the quantity of material per unit volume of storase space and also to employ it in the most efficient mames will theretore be of gitat practical mpostance

The earlest woik on the thermal conductivity of wood was that of Forbes ${ }^{-7}$ who studned this properts in the transverse and longitudual diections The low value of the conductivity made the expermental determmation a matter of difficulty thll the disc ariangement of Lees and Choulton ${ }^{2.3}$ and of Lees was introduced liy
employing his method Lees ${ }^{29}$ has measured the the mal conductivities of a large number of poor conductors moluding wood Eucken ${ }^{30}$, using an apparatus designed by himself made a wide study of different non-metallic substances, crystalline, amoiphous and mixed and came to the conclusion that ciystallune substances showed a dimuntion of conductivity with moreasing temperature while the reverse was the case with amor photrs substances Eucken was the first to attempt a corielation between conductivity and other physical chatacterstics hike molccular werght, number of atoms in the molecule, melting point etc Baratt ${ }^{31}$ employing an appaatus designed by himself determined the the mal conductivity of several non-metallic substances including wood and concluded that for nonmetals the general thermal conductivity moteased with temperature and that the conductivity of most woods increased 1 apidly with temperature Baratt and $W_{1 n t e}{ }^{32}$ determined the thermal conductivity of wood in very small pieces and have for mulated a theory of heat conduction for such cases Heiman ${ }^{33}$ working with a number of Amencan woods found that thermal conductivity dimmishes with density The Amencan Forest Department has measured the thermal conductivity of a number of American tumbers In all the avalable literature, however, theie is havdly any information regarding the variation of conductivity of wood with respect to direction and even where some information is avalable, as in the work of Foibes, theie is no indication as to whether the longitudind conduction refers to the radial or the tangential planc

Coming next to the theimal expansion of wood, one finds that perhaps this is the properly that has recenved the least altention at the hands of boith scientists and engmeers and yei wood possesses a thermal expansion along its fibse of mose than half the value of mild stecl and across th fibie a value nearly ten times that of steel The practical builder and the stuctural engineer have got to make detanled calculations of the effects of theimal expansion of ron in all piactical structuies and machines and provide proper allowances or aurangcments aganst trouble on account of expansion with heat Still there is next to no allowance made
for such eftects in the case of worden stactues The chet teason fon this from the engmeer's point of $v a w$ is the fict that a lage value of thenmal exparan by itself is not of any semous consequence to a statucture unk is it assumated with a lage elasta modulus and a sood theimal condactivats Wood is tar enterion to non in these two properties, so that tren aftel hours of exposure la the hot sun in the course of a das, only the suffac layes of wond change temperature apprecably and on wcount of the low value of the Young's modulus of woorl, the mechancal stites called mon play by the sutace change of length is well covered by the usual tactor of satety in structures In a transvase duection the vav much gieate expansion maght matroduce an appractable stress but for the fact that in all woods, the 1 amsverse clanticity in tery much smalle than the longitudinal one so that the stress still wemans quite small

The first attempt to meabue the theimal expansion of nood was made by Stave't who studicd the capansion of wak along the longitudinal diuction Villarisu next studed the the mall expmsion of a lage number of European timbers both that; and ators the fibres He was the fust to call attention to the we late mbotupy of expansion, a value as high as $25 \quad 1 \mathrm{~m}$ some of hit specimens Glatzel ${ }^{\text {so }}$ unme an appatuat designed by hamself measmed the thermal expansion of several noods dones the fibie dinction and mentions that the values obtamed by ham for the capansion actoss the fibre duection tor only two specimens came out to be very much larger than the longitudinal values He , houcver, thought that it might have been caused by the unceit un amount of monsture in has specmens and was theretore inclined to leave it as an open questron Indeed he has not even given these cross-expanson values in his paper The most recent work on this subjuct would appeda to be that done in the Forest Products Lahoratory of Amerina and yuoted in text-books ${ }^{17}$ on wood

The authon is not aware so tar of any wonk conclating structure with the elastic or thermal proputies of wood It was, theictore,
considered worth while to uncleitake a systematic study of these propertes, following up the line of work pieviously done by the author ${ }^{\text {s8 }}$ on the elastic properties of another naturally occuring substance viz, mother-of-peal

2 Scope and Materials of Present Study

In the present mestigation an attempt has been made to study the elastic properties, thermal expansion and theimal conductivity of wood in relation to its structure Induan tumbers were chosen for the study not only on account of their easy availability but also because they have not been studied so fai in mestigations of this kind Three vaneties of tumber of high density, two of medum density and one of low density were chosen from among the most commonly employed Indian timbers The materials were supplied to the duthor specially for this work by the countesy of the Forest Department of the Government of Tavancone The specimens were not subjected to any special seasoning process The trees after being cut were allowed to lie in the torests for about ten months From near the top ends of these tiees but not close to the bianching positions, tiansverse, radal and tangential sections were cut out and these sections, each about two mehes in thickness, were left exposed to bright sunshunc duning the whole of March in Madras. The sections examined were all mature specimens of then kind having developed a laige pioportion of heditwood except in the case of the lightest specimen which by nature forms no heartwood at all The transverse sections were taken oul of full discs cut out of the tiee normal to the length of the trunk while for radial and tangental sections, planks sawed in the appropinte duections of the same trunk were used The lines of growth $1 e$, the fibre durections and the annual rings were all veiy clearly visible specially after just smoothing up the surface by a few 1 apid strokes of the plane The test-pieces were all marked out on the various sections in definite duections with respect to the fibue duections, then cut off with a thin saw and finclly polished and finished to exacl dimensions by being rubbed on increasingly fine grades of sand-pape1

In the case of the transucres section the followans pascedure was adopted Although thusetually a tict is ansumed to giow by untormly bulding aound the pith or the asts in succosite growing seasons in regula amual ings it is in pratice found that the growth round the axis is not bymmetical all round This was the case not only in the specmens studied but sums to be the general case with the symmetical srowth as an oucuitenct of gitat ranty Out of more than a hundied tiunks of difterent hinds of timber found in a depot only one mstance of an approximately symmetrical growth round the axis was found In generd, the tiunks die more or less cylmalical but the pith does not comorle with the aws of the cylmoler A dameter of the section pasing through the pith is divided moto two uncqual segments by the position of the pith It has been found that this dimmeter will suric as an ame of elastic symmetry for the section Thus, P, in hes $11, \mathrm{p} 25!$ is the position of the pith and the chameter AJ'B of the section in an wis of symmetry The shorter segment I'A of the axas of bymmetry is chosen as the reference direction and test-pieces are ont out al definite inclinations to PA The test-puces thus cut out were employed for the measurement of elastanty and theimal tyamsion For measuing the theimal condactivity, discs of about 10 cm dhametcr and thee to four mon thakness were propated sepadtely from the ditterent sections

A buef desciption of the differitht hinds of timber studued is given below The suientific name is given finst folluned by the natural order in backets The local Induan names we giten m square brackets and the Enghsh name where known is given mmenhately afterwads

I-_'Termmahic Tomentosa' (Cumbretaces)
[Thembava-Malayalam, Kanumaruitu-Tamul] Indan Laum
This tree grows thioughout Indid in deciduous foncsts fiom the sea-level up to about 2000 ft upwards The timber is usted extensively for making country carts, tumitue and house-bulding The bak is used in dyeing and tanning

II-'Terminalia Panculata' (Combietaceæ)
[Maruthy-Malayalam, Von Maruthy-Tamıl]
This tree also grows in deciduous forests from 0 to 2000 feet above sea-level and is used extensuvely is a substitute for the more costly teak The timber yields good planks for building purposes

III-'Aıtocarpus Hırsula' (U1tucacæ)
[Anglı-Malayalam, Anylı or Ayanı-Tamil] Jungle Jack
This is a lage tree giowing wild morcsts and also giown extensively in private compounds The wood is easy to worh, fanly light and has got a beautiful golden colour which, unlike teak, does not become dark with age Besides extensive application for building puposes and furniture, the wood is employed for making match boxes and splunts

IV-'Dalbergra Latifolia' (Leguminosæ)
[Ettı-Malayalam, Thothagatlı-Tamil] Bombay Rosewood
This is a large tree growing on plams and hills up to an altitude of 4000 feet above sea-level The lumber is hatd and heavy, darkbrown or black in colour and takes a high degree of polish , It is valued very much for all kunds of ornamental cauving, furniture, guncarrages, tool-hcmalles etc

V-' Tectona Grandis ' (Verbenacæ)
[Thekku-Malayalam, Tamı1] Teak
This is a tree well-known even outside India for its great usefulness and natural mmmonity agaust attack by termites It giows to very large sizes in deciduous forests up to an altitude of 3500 feet and the timber is used for almost all puiposes for which wood can be employed

VI-' Bombax Malabaıcum '-(Malvæcæ)
[Elavu-Malayalam, Ilavu-Tamıl] Cotton tree
This tree grows both in deciduous and evergreen forests and yields a timber which is very soft and light and casily altacked by termules and boring beetles On account of 1ts extreme lightness
ftness, the wood is good for making matches and toys and trunks tied torether serve as good fishing boats The tiee , its English name trom the tact that it bears a tiunt whum on yolds cotton This cotton though unfit tor spmone or weaving asively used for quilts, pillows and honpital dressing

HIPTER-EXPERIMENTAL METHODS AND RESCITS

1 Elasif Proferifs of Trigerk

The present investigation has been confmed to the measutf the Young's modulus of wood of difterent varreties in ditluections with iespect to the lints of gowth in timber The of obtanng the test-precus has already been aleseribed in 2 of Chapter I
A Prelumenary Experametht-It is a common engmecting ion that the values of mechanual stiength deducud from exnts on small specimens atc no proper gude for lage sale g purposes and that tests, in order to be ieally usctul, should lucted upon spacimens of actaal sizes employed in the conin Each annual addition of wood to a tice is in the nature of w cylindical tube of wood-substance, shrunk on to the preexistang tree, move after the design of havy camon This yer of tresh material in the course of growth, hardens and he inner portion firmly Such a structure hups to pinduce e unform stress-distribution hroughout the materall and γ improve the mechanical uffuency of the structure ${ }^{39}$ It etore, reasonable that cutting through such a structure to - a small test-piece in hable to metertere with mechameal in considerably But Young's modulus is on quite a different , in that it is a property ielated mote to molculan structure arcroscopic or macro-molecular stiucture Hence it is quite y that Young's modulus will dcpend upon the swe of the spucisosen, so long as the sice is lage compared to micellai dimen-

To clarnfy this point and obtan expermental justufication, if e, for this contcntion, a teak-woud joist ($8 \mathrm{ft} \times 6 \mathrm{~m} \times 9 \mathrm{ml}$)
was chosen and its Young's modulus was determmed by a di bending test Afterwards out of this jost, fow smalle pieces (e $100 \times 2 \times 2 \mathrm{~cm}$) were cat out from different portions and the ela modulus of these four test-preces was found out again by a bend test Fiom each one of these four pieces, agan, two smalle pie ($20 \times 1 \times 1 \mathrm{~cm}$) were prepared and the Young's modulus of each these erght preces was agan measured by a smmula method I results are given in the following Table I It will be noticed $t]$ the values of the Young's modulus do not show any systematic var tion with size and that the variations are within the hmits of expe mental errors

Table I
Young's Modulus and Size

	Large Size $250 \times 15 \times 7 \mathrm{~cm}$	$\begin{aligned} & \text { Medurm Size } \\ & 100 \times 2 \times 2 \mathrm{~cm} \end{aligned}$	Small Size $20 \times 1 \times 1 \mathrm{~cm}$
	162×10^{11}		164×10^{11}
			160×10^{11}
		158×10^{11}	
			160×10^{11}
		161×10^{12}	
			159×10^{11}
		161×10^{11}	
			162×10^{11}
		163×10^{11}	
			167×10^{11}
			157×10^{11}
			166×10^{11}
Mean	162×10^{11}	161×10^{11}	162×10^{11}

Hating settled the prelimmay pomt, the man experment was warned out on the us ditterent lands of timber alieads chusen To beesin with, out of eath vancty of timber, pace wetc cut out of the man block in the proper dutetions with dmensions narly twac those icquincel for the fimbhed tent-puece and these pucte ware kft made an an-oven electrually mantanced at $10 \mathrm{~L}^{\prime} \mathrm{C}$ tom a perand al not less than 48 houns A shallon basin of concontrated sulphum wal Was also hept made the oven The specment thus dried werl kft in the open cupboard in the laboratory tos a wech so that they reached what is called an an- diy conchtion by absorbing a ceitam mount of mosture from the atmonpher The ar-dry condition gives a mote stable mechancal state than the oucn-dry conditom and in futher neate to the conditions ohtaming in the atual applation of wood Fuither, expermments, conducted on such an diy specmmen, gave consistent results even when measurements wac made with intervals of two or thee wechs in between, whale the ralucs obtamed with fresh oven-dry spamens wer tluctuating with time $1 n$ the zourse of the day The an-diy speamens thus prepared weae afterwands worked to exact dimensions requared for the test by planngs and sand-paper polishing and the value of Young's modulus was determined by Koeng's method of double upical lever with load at the centre The average size of test-pieces was about $20 \times 1 \times 1$ sm

After measuring the elastic modulus, the ovet-all dimensions of the pieces were measured and ther masses also were determmed Thereby the density of the various test-pieces was detcimmed

The tables 2 to 13 give the values of the Young's modulus and density for the varions specimens studied

The figues I to VI represent the cunves showing the varation of Young's modulus with direction in the three principal sections of the different timbers Polai co-ordnates have been chosen for the representation with the X-aws as the referuce axs The length of the radius vector in any dinection gires the value ot the modulus in that direction

Young's Modulus of 'Tlerminalia Tomentosa'
Table II
Value on the transvense durection

Drection	Densty gms $/ \mathrm{cm}^{8}$	Young's Modulu m dynes/cm
0	099	0215×10^{11}
30°	098	0197×10^{11}
60	097	0196×10^{11}
90°	095	0195×10^{11}
120°	0.99	0148×10^{11}
150°	097	0256×10^{11}
180°	0095×10^{11}	

Table III
Value in the longrtudinal darection

Direction	I-Radıal		II-Tangential	
	Density	Modulus	Density	Modulus
0	103	0917×10^{11}	109	1214×10^{11}
30°	098	0323×10^{11}	093	0333×10^{11}
60°	0996	036×10^{11}	097	0186×10^{11}
90°	0.99	0.135×10^{11}	100	0123×10^{11}

Younc's Modulus of 'Trevivalia Pa\klif 11^{\prime}
Table IV
Talue in the transperse duection

Drection	Density gms / m ${ }^{3}$	Young' $厶$ Modulus ill dencs/am
0	099	0289×10^{11}
30	099	0281×10^{11}
60	098	0.277×10^{12}
90	098	1) $27 \pm \times 10^{11}$
120	097	0246×10^{11}
150	098	0253×10^{11}
180	099	0230×10^{11}

Table V
Walue in the longitudinal durection

Direction	I-Radal		II-Tangental	
	Density	Modulus	Density	Modulus
0	109	139×10^{11}	108	117×10^{11}
30	.	0327×10^{11}	\ldots	0365×10^{11}
60	\ldots	0245×10^{11}	\ldots	0316×10^{11}
90	0908	0191×10^{11}	099	0255×10^{11}

Young's Modulus of 'Artocarpus Hirsuta'
Table VI
Value on the transverse direction

Drection	Densty in gms $/ \mathrm{cm}^{9}$	Young's Modulv in dynes $/ \mathrm{cm}^{2}$
0°	066	0183×10^{11}
30°	062	0172×10^{11}
60°	061	0174×10^{11}
90°	067	0158×10^{11}
120°	069	0172×10^{11}
150°	\ldots	0177×10^{11}
180°	061	0135×10^{11}

Table VII
Value in the longotudinal direction

Direction	I-Radial		II-Tangental	
	Densty	Modulus	Density	Modulus
0°	061	0967×10^{12}	0651	1098×10^{11}
30°	.	0290×10^{11}	\ldots	0346×10^{11}
60°	\ldots	0123×10^{11}	062	0165×10^{11}
90°	057	0093×10^{11}	057	0113×10^{11}

Young's Modulus of 'Dalbertora Lahifuli
Table Yilli
Falue on the transerasp durectun

Direction	Density $\mathrm{gms} / \mathrm{cm}^{3}$	Young' Modulus m drues cm^{-}
0°	094	02.51×11^{11}
30°	\ldots	0227×10^{11}
60°	\cdots	0222×10^{11}
90°	092	0221×11^{11}
120°	088	0132×10^{11}
150°	090	0166×10^{11}
180°		0206×10^{12}

Table IX
Value on the longitudinal directuon

Direction	I-Radial		II-Tangental	
	Density	Modulus	Density	Modulut
0°	090	1483×10^{11}	092	1733×10^{11}
30°	\ldots	0670×10^{11}	\ldots	0558×10^{11}
60°	\ldots	0387×10^{11}	\ldots	0398×10^{11}
90°	088	$0.19 \pm \times 10^{11}$	089	0281×10^{11}

Young's Modulus of 'Tectona Grandis'
Table X
Value in the transverse durectron

Direction	Density gms/cm	Young's Mo dynes/cn
0	084	0204×11
30°	\ldots	0181×11
60°	\ldots	0184×11
90°	081	0186×11
120°	\ldots	$0189 \times 1 \mathrm{C}$
150°	078	$0176 \times 1 \mathrm{C}$
180°	077	0121×10

Table XI
Value in the longitudinal dusection

Direction	I-Radıal		II-Tangentia	
	Density	Modulus	Density	Modu
0	085	1.98×10^{11}	080	$1550 \times$
30°	\ldots	0331×10^{11}	\ldots	$0497 \times$
60°	\ldots	0193×10^{11}	\ldots	$0266 \times$
90°	079	0095×10^{11}	073	$0144 \times$

241
Yolng's Molulus of 'Bombax Malabriricly'
Table XII
Value in the transuense durection

Drection	Density gms $/ \mathrm{cm}^{\mathrm{s}}$	Young's Modulus m dynes $/ \mathrm{cm}^{2}$
0°	041	00800×10^{11}
30°	039	0.077×10^{11}
60°	037	0068×10^{11}
90°	038	00699×10^{11}
120°	039	00722×10^{11}
150°	032	$0068 \pm \times 10^{11}$
180°	$00592 \times 10^{\mathbf{1 1}}$	

Table XIII
Value in the longitudinal direction

Drection	I-Radal		II-Tangental	
	Density	Modulus	Density	Modulus
0^{0}	065	1138×10^{11}	056	104.5×10^{11}
30°	054	0227×10^{11}	052	0942×10^{11}
60°	049	0104×10^{11}	050	00637×10^{11}
90°	048	00594×10^{11}	018	00569×10^{11}

ELASTIC PROPERTIES OF WOOD

Fig No I
Young's Modulus of Teimmila romentosa ELASTIC PROPERTIES OF WOOD

Fig No 3
Young's Modulus of Attocax pus Hin cuta

ELASTIC PROPERTIES OF WOOD

Fig No 2
Young's Modulus of Termmalia Paniculata ELASTIC PROPERTIES OF WOOD

Fig No 4

LTASLIC HROHRHI! (OH WOM)

Fig No 5
Youms s Nodulus of lutonz Gratide

2 Thervil Conductiviay ol Tivber

In the present mestigition the themal conductivity of whod has leeen measured in the thansverse, adhal longitudinal and tamgential longitudual duections for all the timbers studied in the preceding investrgation Also the varation of theimal conductindty with temperature has been measured both for tiansterse and longitudinal sections

The experimental ariangement is that of Lees using a dise ot the materal about 10 cm m dhametu and 1 mm on theckness cut out in the appropate diredion thom the wood The flat sutace was tuined on a lathe and and-paper polshed to ensure good the mad contact The presence of mosture in the specmens was found to be a source of unceitanty and trouble in the capcriment and an the following method was employed The specmens to be studed on a particular day were left otcinght in an ar-oucn eluchically mantaned
at $102^{\circ} \mathrm{C}$ and the apparatus for measuing the conductivity covered by a large botlomless wooden box from the top insic which were suspended two shallow beakers contaning fused cak chloricle The box was made of ply-boaids for the sides with ε front and back The top also was a boand of plywood, with a 1 . number, more than one hundied, of small holes each about 1 cm diameter The box was about 3 ft long, 2 ft wide and 3 ft high already mentioned it had no bottom and it was resting upon a sl of thick cloth spread on the table and neat the bottom of each of two plywood sides was a hole about 1 inch in clameter Each of two holes was fitted with a tight-fitting thin walled glass tube, opei both ends and about 1 ft in length suppoited hoizontally The g. tubes were filled with a close packing of lumps of fused calcium cl ride This arrangement ensuied that the air mside the box was over-heated during an experment extending over eight or ten hoi on account of the large number of ventilating holes at the top the same time the insuction through the two glass tubes at the bott was secured dry on account of the anr being drawn through calcium chloride in the tubes The effect of this enclosed space not cause a rise of mote than three on four degrees in the tempe ture of the air within with respect to the labonatony temperati outside

After the specmen had been left for nearly fifteen hours insi the ail oven at $102^{\circ} \mathrm{C}$, the curnent to the oven was cut off and t oven was allowed to cool There was, as usual, a good supply fused calcium chloide inside the oven Six hours after the switchi off of the current, the specimen was taken out and quackly transferr to the apparatus inside the box The experment was then proceed, with The cooling part of the experment was also conducted insu the box which helped to ensure the constancy of suriounding conc tions and to eliminate the effect of wind and the disturbance caust by the experimenter

For measuring the temperature variation of theimal condu tivity in wood, the same ariangement and method were employe
aept tor the tact that the steam chamber in the Lee's apparatus as replaced with an clectic heater with a flat, smonth, polished per sumfue of bass, the dameter of whath was the same w that of e steam heater The cur rent suppled to the heatus wat iesulatul means of a suitable theostat and induated by a sensituve ammetci rmanently ancluded in the crocuit By heepme the curicnt at a sady value for a mattel of four hours, the heater icached a steady nperature which was secorded by means of a thermometer, introced into it gust below the biass top A copper constantan theimuuple in conjunction with a sensitive micro-galvanometer capable of tecting a temperature ditterence of less than half a degree utigrade between the two junctions was used with one junction on , top suiface of the heater and the othei introduced moto the hole supied by the thermometer when the stearly state had been reached e galvanometer did not mdicate any noticeable deflection thereby swing that the radins of the themometer can be taken as equal the temperature of the top surtace of the heater

The following table Nos 14 to 19 give the valucs of the rmal conductivities of the vanous noods an the three prinudirections as obtamed in the first experment with the steam iter The values T_{1} and T_{2} iepresent the temperatues of the , faces of the specmen while T represents the mean tempadture respondins to which the value of the condurtisty is given a conductivity given m columu 7 repiesents the valut duoss section given in column 1 Thus the value in the first row azontal line) iepresents the conductivity across the transse section, $1 \in$, parallel to the fibres The value in the and ron represents that an a duection normal to both the a a and trbie while the value in the third 10 w represents the conducturty direction normal to the frbre but parallel to the rays

The table Nos. 20 to 25 give the results of the tomperature ation of conductivity and the curves in hequres VII to IX 1 epresent results graphucally

Tablf XIV
Thermal Conductuvly of 'Terminalza Tomentosa'

Direction actoss	Diameter in cm	Thickness	T_{1}	T2	T	Conducti cal cm
Ttansverse	1075	037 cm	$98^{\circ} 0 \mathrm{c}$	$78^{\circ} 0 \mathrm{c}$	$88^{\circ} 0 \mathrm{c}$	626×1
Radial	"	033	"	845 c	913 c	323
Tangentral	"	023	"	810 c	896 c	$4 \cdot 14$

Table XV
Thermal Conductivity of 'Terminalua Panuculata'

Direction across	Diameter m cm	Thyckness	T_{1}	T_{2}	T	Conduct in cal cm
Transverse	1075	0.39 cm	$98^{\circ} 0 \mathrm{c}$	$84^{\circ} 8 \mathrm{c}$	$91^{\circ} 4 \mathrm{c}$	717×1
Radıal	"	043 ,	"	77 5c	878 c	437
Tangential	"	041 ,	"	79 3c	887 c	475

Table XVI

Thermal Conductivnty of 'Artocarpus Hursuta'

Direction across	Diameter in cm	Thack- ness	$\mathrm{T}_{\mathbf{1}}$	T_{2}	T	Condluctu in cal cm
Transverse	1076	041 cm	$98^{\circ} 0 \mathrm{c}$	$79^{\circ} 5 \mathrm{c}$	$88^{\circ} 8 \mathrm{c}$	538×1
Radral	$"$	021	$\prime \prime$	$"$	$77^{\circ} 0 \mathrm{c}$	$87^{\circ} 5 \mathrm{c}$
Tangentual	230	$\prime \prime$				

Table XVII
Thermal Conductioty of 'Dalbergia Latifolua'

$\begin{aligned} & \text { tion } \\ & \text { ss } \end{aligned}$	Diameter 1 mcm	Thuckness	T_{1}	T S_{2}	T	Conductivity in cal cm sei
erse	1075	0.38 cm	$98^{\circ} 2 \mathrm{c}$	$83^{\circ} 2 \mathrm{c}$	$90^{\circ} \mathrm{Tc}$	692×10^{-1}
	"	029 "	"	$80^{\circ} 0 \mathrm{c}$	$89^{\circ} 3 \mathrm{c}$	502
atial	"	033 n	"	7900	88 c	422

Table XVIII
Thermal Conductivity of 'Iectona Grandes'

$\begin{aligned} & \text { tion } \\ & \text { ss } \end{aligned}$	Diameter m cm	Thichness	T_{1}	T.	T	Conductivity 1 mcal cm sel
erse	1075	041 cm	$98^{\circ} \mathrm{c} \mathrm{c}$	$84^{\circ} \mathrm{J}$	$91^{\circ} \mathrm{c}$	510×10^{-4}
	"	"	"	$78^{\circ} \mathrm{CL}$	$88^{\circ} 6 \mathrm{c}$	469
1tıal	"	"	"	79 lc	88 Sc	187

Table XIX
Thermal Conductrvity of 'Bombar Malabancum'

$\begin{aligned} & \text { tion } \\ & \text { ss } \end{aligned}$	$\begin{aligned} & \text { Diameter } \\ & \text { in } \mathrm{cm} \end{aligned}$	Thickness	T	T:	T	Conductivity incal (m sec
'erse	1075	038 cm	$99^{\circ} \mathrm{c}$	$75^{\circ} 8$	$87^{\circ} 4 \mathrm{c}$	37.3×10^{-4}
	"	"	"	75 zc	873 c	367
2tial	"	037 cm	"	757 c	8740	371

Table XX
Ther mal Conductivity-Varation with Temp-Terminalua Tomen

Duection	Limits of Temp	Mean Temp	Conductivity cm cal se
Along Fibre	$46^{\circ} 7-68^{\circ} 3$	$57^{\circ} 5 \mathrm{c}$	000586
$"$	$676-1038$	857	.000615
$"$	$964-1621$	1293	.000631
Across Fibue	$1197-2097$	1642	000648
$"$	$492-706$	599	000296
$"$	$681-1080$	88.1	000315
$"$	$902-1540$	1271	000317
$"$	$119.7-2110$	1654	000337

Table XXI
Thermal Conductrvity-Varzation with Temp-Ter minalıa
Panvculata

Disection	Limits of Temp	Mean Temp	Conductivity cm cal se
Along Fibıe	$505-695$	600	000687
$"$	$708-1060$	884	000705
$"$	$1012-161.8$	1315	000726
Across Fibıe	$453-670$	1744	000787
$"$	$616-1050$	812	000514
$"$	$890-1625$	1258	000448
$"$	$1158-2185$	1672	000488

Tabie XXII
Thermal Conducturzty-Variation with Temp-Artocarpus Ifinuta

Ditection	Limits of Temp	Mean Temp	Conductivity m cm cal sec
Along Fibre	498-685	791	vovisi
"	696-105 8	877	000531
"	985-160 0	1293	000547
"	1290-2180	1735	000563
Across Fibie	$495-705$	600	00028 E
"	678 -1100	889	000299
"	928-164 0	1281	0002:31
"	1210-2194	1702	000247

Table XXIII
Thermal Conductivity-Van atron with Temp-Dalbergia Latifulia

Direction	Limits of Temp	Mean Temp	Conductivity in cm cal sec
Along Fıbre	$460-670$	565	000628
$"$	$662-1075$	869	000681
$"$	$932-1580$	1256	000759
Across Fibic	$525-705$	1646	001805
$"$	$750-1102$	926	000496
$"$	$1041-1670$	1357	$00041 \pm$
$"$	$1440-2310$	1875	000875

Table XXIV
Ther mal Conductworty-Varnation with Temp-Tectona Grana

Direction	Limits of Temp	Mean Temp	Conductivit cm cal s.
Along Fıbıe	$468-640$	554	000674
$"$	$684-1020$	852	000731
$"$	$976-1570$	1273	000741
$"$	$1210-2015$	1613	00075ε
Across Fibre	$458-665$	61.2	00050
$"$	$662-1090$	876	$00048!$
$"$	$901-1610$	1256	00051%
$"$	$110-222.0$	1700	000524

Table XXV
Thermal Conductrvity-Van ation with Temp-Bombax Malabar

Direction	Limuts of Temp	Mean Temp	Conductivi cm cal
Along Fibre	45-69.8	575	000328
"	62 2-111 6	869	$00037 ¢$
"	$841-1675$	1258	00040 (
"	1120-2220	1670	00046 E
Across Fibie	470-730	600	00038
"	640-1135	888	00037:
"	85-170 0	127.9	.00036:
"	1118 -224 0	1679	00040:

251

VAKIAIONS OI HAR RMM, COND (HIMY
IV WOOD WHH H MHLK11 ML

 IN woon Whe rI MPRRAMRL

VARIAFIONS OF THLRMAL CONDT CIIVITY
IN WOOU WIIH IEMPLRATURL

3 Thermal Expansion of Wood

For measuring the thermal expansion of wood, an of lever was employed to magnify the expansion The muroi stag fig 10 was supported with its fiont leg resting on the top of specimen and its rear legs resting on a horizontal metallic plat clamped on to a tubular retort stand P The specimen, in the of a rectangular rod, about $20 \times 1 \times 1 \mathrm{~cm}$, was placed insu specially constructed heater The heater consisted of a rectany copper tube C open at both ends on which was wound a unn layer of 'monel' zesistance wire with a thin leaf of mica insulating bare wire from the copper tube The heating element was wra

Fig 10 up in a thick padding of asbestos paste the whole anlangement was she, round with a wooden tube T, which ved to hold the heater clamped veiti The bottom end of the specimen v was just projecting out of the heater resting upon the hollow base B of retort stand A cunient of cold water led into B from where it flowed intc vertical pillaı P and was led oft f_{1} or top to the sink This curient of water helped to keep the rest of apparalus at constant temperature r the heater was rased to different temperatures, so that the ch of 1 eading obtaned with the optical lever was due to the expansi the specimen only A prece of asbestos board with a square ho the centre for the specimen to pass through was placed on the ba below the heater and served to pievent the cooling effect of current of water from reaching the heate1

A prelimmary experiment was conducted to sec how it would be necessary to heat the specimen before it would ase a uniform temperature throughout its bulk. For this purpose a s men of 'Bombax Malabaricum' which is known to have the por conductivity was piepared out of a transverse section of the v
narrow hole of about 15 mm dameter was bured along the axis of c specimen down to the middle of its lensth and a tiny drop of ercury was put at the bottom of the hole The specmen wats then aced monde the heater and one junctom of a thermo-couple, made of two wires of S W G 40, of copper and constintan was introducd to the hole so as to keep the junction dippung in the drop ot mekury the bottom The thermo-couple whe carried at the end of a long in rod of 'Bombax Malabaricum' with the whe's tunning stratht swn through grooves on the side of the rod The dameter uf the d was very nearly equal to the diameter of the hole in the specmen , that the rod pushed down nearly to the bottom of the hole served restore conditions approximating to those of a solid rod The her junction of the thermo-couple was in contact with the copper be of the heater and the thermo-curient was itad of on a sensitive arror galvanometer which was sutably shunted in the early stages the heating and which was sensitive enough to indicate a difterence less than $1^{\circ} \mathrm{C}$ between the two runctions when the shunt was moved It was found that, after the lapse of tour hours of continuis heating, the theimo-couple indicated an equalisation of temperare to within about half a degree centigiade between the core and e surface of the specimen In all subsequent experments, the radings of the optical lever were taken twice after the lapse of four surs, with an interval of hall an hour between the two readings he fact that the two readings were the same served further to show tat the expansion had reached a steady value

Since it was intended to study the varation of thermal pansion with temperature, the heater was previously calibrated by assing various known values of the heating current and noting the nal steady temperatures attamed within the enclosure The temarature inside the enclosure was read oft by means of a mercury iermometer suspended inside with a plug of cotton-wool stulfed mito ie mouth of the enclosure to prevent convection errors The eating current was registered by means of amillammeter wath maximum range of 500 mA kept permanently conntcted in the reuit Since the current it was that was aljusted to secure
different temperatures and values of the current had to agree the divisions of the milliammeter scale, it was not possible to si any previously specified temperature nor strictly uniform interva temperature The tempenatures resulting fiom sulable adjustn of the current had to be employed

In the course of the expermment, as each specimen introduced into the heater and the experiment started, almost 11 ably there was contractoon with rise of temperature which we uncreasung till about $100^{\circ} \mathrm{C}$ It was suspected that this contia was a spurrous phonomenon apparently due to the shrinkage Cd by the loss of moisture on heating To test out this pomt spocimen was left anside an arr-oven previously for about six hour $102^{\circ} \mathrm{C}$ and then quickly tiansferred while hot into the cold appa and then allowed to cool inside the apparatus overnight, with mouth of the apparatus tied down with a prece of filter-paper next day the experiment was started after removing the filter-p and putting the optical lever in position A ing of cotton wrapped round the top end of the specimen which was just projer out of the heater cut off convection effects It was then noticed the specimen showed an expansion with heating fiom the start. process was therefore adopted in all measurements and so the va given conespond to the perfectly dry condition

The maximum temperature up to which the measurement carred out was about $200^{\circ} \mathrm{C}$. smce it was feared that prolor heating above this temperature mgght affect the nature of w Three specimens of each tumber were employed for the meas ment The first belonged to the longitudinal duection, the sec to a transverse direction in a tangential plane (e , from a flat s board) and the thud to a transverse direction in a rachal plane (from a quarter sawn board)

The following tables Nos 26 to 31 give the values of thermal expansion of the different woods as measuied by the $a b$ method,

Table XXVI
Then mal ET pansion of 'Termonalia Tomentosa'

	$320^{\circ}-90^{\circ} \mathrm{C}$	$90^{\circ}-138^{\circ} \mathrm{C}$	$135^{\circ}-201^{\circ} \mathrm{C}$
ngential Longitudinal. Section			
allel to Fibre	180×10^{-6}	204×10^{-6}	3.59×10^{-6}
loss Fibre	1660×10^{-6}	88.8×10^{-6}	3.56×10^{-6}
deal Longetudenal sectuon			
tcross Fibre	1580×10^{-8}		

Table XXVII
The mal Expansion of 'Termenalea Panealata'

	$310^{\circ}-90^{\circ} \mathrm{C}$	$90^{\circ}-138^{\circ} \mathrm{C}$	$138^{\circ}-201^{\circ} \mathrm{C}$
ngential Longitudinal Jectuon			
allel to Fibre	201×10^{-6}	338×10^{-6}	499×10^{-8}
coss Fibie	1830×10^{-6}	731×10^{-6}	177×10^{-8}
dral Longitudrnal Jection			
ross Fibre	1720×10^{-6}		

Table XXVIII

Then mal Expansion of 'Avtocarpus Hursuta'

	$330^{\circ}-90^{\circ} \mathrm{C}$	$90^{\circ}-1: 88^{\circ} \mathrm{C}$	$138^{\circ}-201^{\circ} \mathrm{C}$
ngontral Longitudinal Section rallel to Fibre			
ross Fibre dual Longitudinal Section	.	215×10^{-6}	
ross Fibre			552×10^{-6}

200
Table XXIX
Thermal Expansıon of 'Dalber gua Latıfolua'

	$320^{\circ}-90^{\circ} \mathrm{C}$	$90^{\circ}-138^{\circ} \mathrm{C}$	$138^{\circ}-20$
Tangential Longıtudunal Sectuon			
Parallel to Fibre	167×10^{-6}	297×10^{-6}	$379 \times$
Across Fibre ...	1337×10^{-6}	701×10^{-6}	$365 \times$
Radral Longıtudinal Section			
Across Fibre ..	1310×10^{-6}		

Table XXX Thermal Expansion of 'Tectona Grandıs'

	$33.0{ }^{\circ}-90^{\circ} \mathrm{C}$	$90^{\circ}-138^{\circ} \mathrm{C}$	$138^{\circ}-20$
Tangentzal Longitudinal Sectron			
Parallel to Fibre	1891×10^{-6}	312×10^{-5}	461×1
Across Fibre ..	20660×10^{-8}	702×10^{-6}	348×1
Radral Longitudinal Sectron			
Across Fibre	19320×10^{-6}		

Table XXXI
Thermal Expansuon of 'Bombax Malabanıoum'

	$280^{\circ}-90^{\circ} \mathrm{C}$	$90^{\circ}-138^{\circ} \mathrm{C}$	$138^{\circ}-20$
Tangentral Longutudunal Sectron			
Parallel to Fibre	240×10^{-6}		258×1
Across Fible	2710×10^{-6}	933×10^{-8}	388×1
Radual Longutudinal Sectron			
Acioss Fibie	2530×10^{-6}		

Chapler III-THE CONSTITUTION OF TIMBER PHYSICAL AND CHEMICAL

The results of the investigations moto the elastic and thermal operties of wood which have been recorded in the previuts chapter ive revealed the anisotropic character of wood in such a clear and mprehensive manner that it is no longer possible to consider the iectional variation of any property as a matter of fortuitous circumances Indeed the large and well-coordinated variation of property ith direction in all the cases studied suggests a decp seated unfying use as controlling and determining the degree and nature of the isotropy of wood It is evident that a cause which can thus uformly influence such fundamental properties like elastiuts; ermal expansion etc, should be mamately assocated with the ture and constitution of wood and so, in order to be able to interpret e experimental tesults obtaned, it would be necessary to draw on both the physical and chemual constitution of wood An attempt s been made to ehcidate the constutution of timber and the results such an investigations form the subject matter of the present apter

The physical constitution of timber has been studied both om the microscopic point of view and the X-ray point ut view while e chemical constitution has been studied with a well to determme a percentage composition of the major components of wood

1 Micro-Structure of Wood
 A TechniquF of Wood Sechioning

The subject of plant anatomy dealing with the nature and rangement of the ultimate constituents of wood had a lons and ntroversial development durmes the 1 sth and 19th cunturics and is only since the begmong of this century that the subject mas sad to have settled down to some defmite form reughmed as bstantally correct by various schools of botamets Acurding tu * commonly accepted conceptions, the archatectane of all tmone lows a common plan wherem elongated tissues of arwas binds at
bound together in almost parallel bundles by forces partly me and parlly physico-chemical The most important among thes are the taacherds, fibres, vessels and bast Of these the tr are important from the point of the growth of the tree w fibre is unpoitant fiom the point of view of mechanical e The fibies are sumply the post-mortem state of the trachen the latter, due to lignification and thickening of the walls, had their utility as transporters of food matcials of the plant T differs from the wood fibres only morphologically in that the found outside the cambrum or the active growing part of while the fibies anc within the cambium in what might st called the stem or trunk of the tice, so that from the point of the practical utility of tumber as a building material, bast is little signficance The vessels, also called pores, are long tu quite thin walls, which are found throughout the stem, whic to transport water and other fludds duning the life of the I which become places of mechanical weakness in the dead Obviously the gieater the size and number of these vessels th. will be the mechaucal stiength of the tumber

Thus from the point of view of the present mestiga fibre is the most amportant factor while the study of the distribution of the vessels will mdicate then general eflec conclusions dudw from the study of fibres Evidently then is a matter of great importance to have a coriect knowledstructure of the wood for an interpretation of its physical pr The methods of sectioning tumber in orden to study its constitution have been developed by valous worke1s but in methods, laborious and protiacted pelmmany tieatment of t in varrous hquads like nitric aud, hydio-fluonic aud, alcohol, canadabalsam or collodion ts necessany followed by various of staming Whatever might be the chances of chemical n c being altered by these processes of pre-treatment, it is evi in the case of wood, a material chatactensed by stiong powers and gieat mosture absoiption with consequent large in physical properties, it would be preterable to avoid such
naty tieatments Kisser ${ }^{40}$ in Germans and Crowell ${ }^{\text {ti }}$ in America almost smultaneously developed a method of suctoming without pretreatment, whuch consists in allowing hot water on wet sttam to play upon the specimen while it is being mucrotomed This muthod though quacker and less likely to cause large changes in the structure, is not quite suited to the present investagation on account of the tact that the specimen duing cutting is kept hot and wet, two conditions which contribute to large plastic deformation in wood So after various attempts, the following direct method of sectooning was employed and gave thoroughly satisfactory sections of all the woods studied

Fig 11

Fig 13

Fig 1」

Hik 14

The most mportant factor for successful sectionng of timber, even of the hardest kind, without previous physical or chenucal tieatment is in getting specimens cut out in the proper manner for mounting on the miciotome The illustration, fig 11_{1} shows a tiansverse section of tumber and out of this transverse section, a prece like $A B C D$ is cut of In fact one of the test-preces cmployed in the measurement of Young's modulus in the transverse section served very well for the purpose $A B$ was about 3 cm long while BC was about 15 cm long The thakness BF , fig 13 , at rught angles to $A B$ and $B C$ was about one cm The position of ABCD was so chosen that BC formed part of one of the annual rings of
growth, so that a section patallel to BC and perpendicular to AB would be tuuly a tangentral longitudinal section A line $B E$ inchned at an angle of from 30° to 60° with AB was marked on ABCD and the right angled prism BCE was cut off with a fret-saw The harder the wood, the smaller was the angle ABE This wedgeended specimen $A B E D$ was clamped in the specimen holder of a microtome with the edge BF projecting about half a cm from the holder The specımen holder was so adjusted that the edge BF was vertical while the edge AD was horizontal and in the plane of movement of the microtome Thus the knife whose edge was set parallel to the plane of motion of the instrument, took off truly tangential longitudinal sections out of the specimen

Foi radial longitudinal sections, the prism BCE was mounted in the holder with the edge BF vertical and the edge CE horizontal and parallel to the edge of the cuttung knufe

For getting liansverse sections, a rectangular parallelopiped ABCDLGFM (fig 14) was chosen from a longitudinal section with AB parallel to the fibre AB was about 3 cm in length whle BC and BF were each about 1 cm A line BE at at inclination of 30° or less with $A B$ was marked and the pusm BCE was cut off The wedge-ended prece ABED was mounted on the microtome with BF vertical and $A D$ horizontal and padallel to the knule-edge so that truly transverse sections were cut oft by the iazor

The miciotome employed was a lange one of the Leit-Wetzlar pattern with a very hefty razol and the aulomatic cross-feed was adjustable for various thicknesses from 1 to 25μ Most of the sections prepared for the present mestigation were about 5 to 6μ in thickness The first few sections bemg too narrow were discarded and the best out of the subsequent fifty on sxxty sections were chosen No kind of lubucant or wetting was employed The sections, as they fell from the 1 azor, were collected in a small watch glass and by examining with a low powei pocket lens, a clean unbroken section was transfer red stratght on to a slide and covered with two drops of a thin 2% solution of Canada balsam m xylol. The section, which
tames curled up dung the cutting, stranghtened nut nature applation of the balsam solution and mmeduately aftercover slip was placed on the flat-specmen and firmly iganst it so as to squeeze out the balsam solution to the minmum mase The slide was then lett on the outsich of a a temperature of about $40^{\circ} \mathrm{C}$ for about thee or tour days, time it dried up quite well In the cast of 'Dalbeigia and 'Termmalia Tomentosd' afew drops of absolute alwhal o the section before the addation of the balsam solutum , dissolve away much of the colouning matter leaving the lear and transparent

B Results and Cunclusiovs

noto-micrographs, Plates I to VI, of these sections wer th a Winkel-Zeiss Petrological nucioscope Class VI M ctures were taken with unpolarised light while tor some larised light with Nicols set at vanous angles of crossing was ito secure the largest amount of detals in the photographs ce of illummation was a glass-mercury lamp whose light was hrough a green filter The photographs wert all taken on ipid panchromatic plates at two magmincation ratios, the first and the second about 120 The atual magmikation was t by photographing on the same scale a standad Call-Za ins

From the negatives thus obtanced, the fibre clmonsions sured and the reduced values $1 e$, the actual dimensions of are given on the following table It is, ofcourse, mposshble any uniformity of siee among the fibres so that the higucs the mean of at least thinty mearurements for each The mensions of mdixadual members might vary withom dout ie mean value on eather ande Plates ac photographs of the Jbtamed
n exammation of the Photo-miogogaphs ievealn viry strikng ustacs of the structure of the vamous tmmons Whate the 'Termmada Tomentusa', 'Teımmaha I'amculata', 'Aitofirsuta' and 'Tectona Grands's are of the same order of

Table XXXII

	Name of Specimen	Length of Fibre mm	Shape and size of Fibie mm .	Thickness of Fibre Wall mm
I	Termmalia Tomentosa	065	$\bigcirc 015$	0003
II	Terminaha Paniculata	055	$\bigcirc 025 \times 015$	0.005
III	Artocarpus Hirsuta	080	$\square 040 \times 030$	0007
IV	Dalbeıgıa Latıfolıa.	Twisted 0.20	Irregulat 020	005-0008
V	Tectona Grandis ...	048	$\bigcirc 018 \times 010$	0025
VI	Bombax Malabarıcum	050	$\bigcirc 055$	008

magnitude $1 n$ length and cioss-section and all of them lie with their entire length in the same plane, then distiobution and anangement ate different in the different timbers In 'Termmalia Tomentosa,' the fibies 1 un contmually changing from side to side of the numetous medullaty rays that occur in gieat profusion in the timber with the result that any one fibie is distinctly of a wavy form and associated with at least half a dozen gioups of medullary 1 ays Consequently planks of this tumber taken out of a tangental longituchinal section will be well adapted to resist splitting or cracking This advantage is however off-set to some extent by the fact that the vessels are large and diffuscly distubuted liberdlly throughout the section and each vessel is suriounded by a layer of soft tissue Futher the transverse dameter of the pores is quite often more than twice the clistance between adjacent medullary ray-bundles so that thin planks in the tangential plane are hable to crack duc to fanlure at the vessels It as, therefore, necessary to use fauly thick planks where duiability is a pirmary consideration This explams the unsuitability ${ }^{41}$ of this tumber for 10 and veneer cutting, though, on account of its dark colour and close gran with corresponding capacity tor taking a high degiee of polish, it can be uthlised in veneer work if sawed or sliced.
 distinctly clliptic in section The medullaty 1 di we of atiequla shapes and syes and also megulaly dintrobuted The vench, are lage, numerous and diftuse and surounded by sott tirste on account of the number, shape and distribution of the medullat idys quarter sawn planks are likely to present a better appeadace than flat sawn ones and are also likely to polish better
'Aıtocarpus Hirsuta' has the lonsest fibres ot all the timber studied in the present investigation and the fibres ac wav in hape and more or less rectangular in section The thbres bend wound the medullay ays which are not quate so numerons as in the prevous, vaneties The vessels are of mudium sice, niegulaty shaped and arranged in rings characteristic of ring-porotis wood The long fibres, the wavy medullary rays and the compadively small pores facilitate easy working of the tumber and also enable it to take in high degree of polish The comparatively scanty amount ot mulullary rays enables the wood to spht easily in tangental platuc and w thenefore widely applied in the manufacture of splints and match-boxes It is also likely that the trunk will be suitable for whtay vencer cutting
'Tectona Grandis' is also of the ring-porous type with ather small vessels whose drametus are often less than halt the chatance between the Iays The fibres are long and otraght and it ellipth section of fanly untorm size The medullay 1 dy die stataght, umform and in large layers in a dirtction parallel to the stem so that quarter sawn planks present a very beautitul solver gran The wood is quitc close-graned and so tathes a high polish Structurally it is admarably suted for wata veneer cutting for plywnod making Since both the fibres and the rays die running almont dead shaght, the tamber is lable to split aunder canly under mechamal shook, a defect which should be guarded agunst espechally in the design of ralway carnages tor which the tmber is greatly employed

In 'Dalberga Latitoha' the structue is distmetly difterent from all the prevous ones The hbres though long at spral shaped and stiongly interlocked The medulldry i, iys ate in
small lens shaped clusters extremely numerous and ex naily uniformly distubuted The vessels ane thin and scar occasionally contain some resmous or cystalline material On. of the spual shape and stiong interlocking of the fibres, the makes excellent turning material and is used for all kinds o mental carving It is next to mpossible to employ it for 10 taly cutting but the sawed veneer is very often employed on accour beautiful colour of the polished wood It will make excelle handles espectally for the catpenters' chisel since its stuc specially suted for shock-1esisting
'Bombax Malabaricum' stands 'm a class distinct fu, est It has piactically no fibres, strictly so called The mec strength is supplied by the wood parenchyma tissues, whic developed a septate siructure for increased stiffness Eacl has four compartments and is fusiform in shape A tangentia tudinal section presents an extraordmaily beautiful app, consisting of very regulaly arianged spundle shaped parei lissues, each quadiu-septate and of an almost unvaryings shape The ratio of length to cross-section of the tissues much smallei in this wood than in any other while the c thickness is almost of the same orcler of magnutucle as 1 timbers The medullary rays ane stidight and regula an unformly distributed The vessels are scanty and of medin where they occur On account of ats non-fibious nature the r very easy to work, especially, on the lathe and is employed making Its lightness and easy workability make it part suitable for making matches and the companative scarcity pores 1 ender the matches free from the defect of back-firing ever on account of the very weak cell-walls and the large cell-cavities the wood is specially inviting to boung insecte large open stiucture of the timber offering as it does plents space inside rendens the wood a good heat msulator and if a preservative can be employed to keep oft boters, the wood wi excellently for thermal insulation

2. X-ray Siudies of Timber

The mvestigation of the ultimate uchtecture of matter is capable of yielding very valuable intormation on such stitutural properties as elasticity, tensile strength ch, which depend upon the number, order and linking of the varous atoms and molecule that make up the material Such an mvestugation to be of maxmum utility is best undertaken in the case of smple substances where the order and disposition of the atoms can be calculated from the wherivations comparatively easily Wood on the wther hand is such a complicatc mixture of intrinsically complex substances that it in a matter of very great difficulty to mespret the result of such din investigation It is why an X-ray mvestigation of wool did not acheve much piogiess till after the techned interpretation of X-1ay pictures had been elucidated by a large amount of work on sample norganic crystals

Ambronn ${ }^{8}$ m 1917 first suggested the examination of wund by means of X-rays for its crystalline constituents and his suggestion has been followed up by a number of workers As aheady mentoned, the most important work in this connection is that of Meyei and Mak who not only established the crystalline character of cellulose in wood but made quantitative measurements of the unt call and its ontentation For obvious reasons, however, their work was confmed to European timbers only A similar piece of farly comprehensive structural analysis of wood for Japanese timbers has been done hoth by the X-ray and optical birefringence methods by Nagasawa 4^{19} The author is not aware of any X-ray studies of Indian timbers till Niluhantan ${ }^{21}$ investigated teak wood di Bangalore in 1987 By a serten of pretreatments and successive climmations of difterent constituents of wood Nalakantan has made a valuable contabutan to oun knowladse of the structue of teak-wood He has also been able to establish the amorphous natue of Ritter's lignm constituting the muddle lamulla in wood Fani has made a study of the stimeture and constatution of phat cell membranes moluding witton and wowd fibien both be the X-s, ey and optical methods attet varous degrees of suclling and a brief
report of his conclusions can be found in 'Nature' 42 Re the state of knowledge on cell-wall structune in plants, Frey ing ${ }^{43}$ has critically examined the conclusions drawn by X-ray and swelling methods He has pointed out the great possib X-ray investigations of timber both on the quantitative and th tative sides Even when quantutatuve measurements are not is an X-iay investigation is capable of giving so much information staucture of matlei necessaty for the elucidation of its physical ties that in the present investigation an X-ray study has been m all the Indian tumbers whose elastic and thermal propertic already been stuched

The timbers weie not given any pre-treatments exc extiaction with an alcohol-benzene mixture The specimen all taken from the Summet-wood portions of the tangental sec the various timbers, in the form of small preces about a cm in and a mm or so in cross-section These pleces were extuac six to twelve hours with a mixture of alcohol and benzene The then dried and exposed with their tangential sections placed to the meident X-rays Molybdenum K-iadiation was employs tube beng iun at 12 mA and 45 kv The period of exposur one hour and was found to be the most satisfactory one for k down to a minimum extont background scattering while, ho bringing out the crystal scatteing in sufficient intensity In th of 'Tectona Grandis', in addition to the alcohol-benzene ex specimen, a picture was also taken with a specimen taken or prece which had been used in the thermal experiment and whic remaned at about $200^{\circ} \mathrm{C}$ for about ten hours, so that any chan to the prolonged high temperature can be detected The diagiams of the vailous woods are given in Plates VII \& VIII

An X-ray diagiam of wood is capable of giving us valuable information regarding the orrentation of the ce molecules in the fibies even though no measurements are m, deduce the atomic spacing in the crysial latice If the ce molecules are all arranged patallel to the chan-axis a fibre p
with definite spots is obtaned A regular arangement in a spurd form round the fibre-axis produces a lengthenmg of the spote in the fibre pattern resulting in crescent shaped spots A 1 andom orient ation of the crystallites gives ise to halos or rings in the patten Besides, the presence and quantity of amorphons material in woor are revealed by the appeanance and intensity of general bahgrome illummation in the picture

In the light of the above considerations it is now pussible to gathes some information on the sttucture of the watu tumber studied All the tumbers have given diagrams with ummstahathi, spots and rings, thus revealing that the cellulose crystallites whil following up a iegular arangement to a great extent are ne penfectly well-orientated The relative brightness of the spots am rings is a farr index of the proportion of well-orientated turandoml distributed cellulose crystallites From this point of view, 'Dallhergs ' Latıfolia' and 'Tactona Grandis' show very bight spots and ver faint rungs showing that a very large bulk of the cellulose is pitsel in a well-orientated state The spots in 'Dalbergia Latifohia' hav got an angular width greater than those in any other tumber thu indicating a spiral aridngement of cellulose in this wood This spiral arrangement on a grosser scale is also ievealed by a phote micrographic study of this wood In 'Artocarpus Hirsutd' ther is apparently a laige amount of disorientation of the crystallites, a evidenced by a large relative intensity of the rings The angula width of the spots given by 'Terminalia Tomentosa' is very smal showing that when the cellulose is arranged at all, it is arrange perfectly parallel to the fibre-axis, while the piesence of the ring indicates the existence of a certan amount of randomly distribute cellulose 'Bombax Malabaricum' has given weak spots and a lang number of unform rings on a diftuse backgiound This show that a lage proportion of the cellulose in this wood is rutudeml distributed The dittuse scattermg given by the wood is interestm in that usallly dittuse scattering is due to amorphous materal Fion chemical andysis this wood is known to contan only a very small per centage of lignm, it is reiy likely that the dittuse sattering
due to the large hemp-cellulose content of this wooc thus appeat to be defmite evidence of the usindly ace natue of hemi-cellulose In conclusion, a compar Plate VII and fig 9 in Plate VIII indicates no gieat patterns It would thus seem to confum the conclu cally established, that prolonged heating at $200^{\circ} \mathrm{C}$ any marked changes in the wood.

3 The Chemical Constitution of T
Wood is an mumate aggiegate of a lage nt materials of widcly different composition and p common feature of almost all the constituents of w resistance offered to the action of common chemic the consequent difficulty of arriving at any def regarding their nature and pioportion Also it ve that several of the constituents have closely allied re particular reagent so that it is very difficult to s constituents On account of these difficulties much on the chemical constitution of wood was conc percentage composition of hydiogen, oxygen, car in wood rather than with the nature and proportion constituents of wood

Most of the pioneering work on the chemical is due to the French school headed by Payen ${ }^{44}$, F duing the maddle of the last century By the end other schools of chemists in England, Geimany and t ed similar work Cross and Bevan ${ }^{16}$, Willstater Klason ${ }^{48}$, Schulze ${ }^{49}$, Dragendof $f^{60} \&$ Dore 51 are al more important workers connected with the Chemr these, Cross and Bevan and Willstater and Zech in studying in great detarl, methods of rolation stiuctuse of some of the major constituents of making a complete analysis of all the constituents other hand, Ritter and Fleck ${ }^{62}$ of the Forest P_{1} made an extensive study of the total malysis of

PHOTOMICROGRALIIS OF WOOD SECIIONS

PHOTOMICROGRAPHS OF WOOD SECTIONS

a Fransvcrse Section

b Radtal-Longtudual

S-RAY PHOTOGRAMHS GE WHAH

1 Trrminalza Tomentosa

6 Bombax , Maluban acum

7 Xr ay dagy am of 'Tectona Gyandhs' after heatning
timbers according to a scheme of work slarted by Schorger whie a similai kind of complete analytical work has been done for European timbers by Konig and Becker ${ }^{53}$

As a result of such extensive work on the methods of chemul analysis a certain amount of well-established systematic hnowledge on the constitution of timber has been obtamed There is still a large amount of uncertanty, however, as to how the constituents ate actually assembled in the gross timber, whethee they are chemually combined with one another or whether they ane held up as adsorption or mechamically assembled layers of one upon another The man constituents of wood in order of abundance can be broadly dirided into three groups (1) the polysaccharide carbohydrates, (2) lignm and (3) a group of miscellaneous substances like onls, fats, resms, essentral ouls, pigments, tannm, certan alkaloids and morgduc salts

The polysacchande carbodhydrates whech form nearly 65 to 70% of the bulk of timber are the condensation products of two or more molecules of hexose or pentose sugars with elimmation of water and naturally yield the corresponding monosachaides on hydrolysis hy suitable methods The most mportant of these polyactharide carbohydrates in timber is cellulose which is the disach haride of glucose, accounting for as much as 50% by weight of timber The next in order of abundince is an ill-defined group of substanuss classitued generally as 'hemicelluloses' These are the condensation products of hexose other than glucose with a pentose These subbtances contain in addition to the sugar groups an audic part usually of the glucurome and galdeturonic auds and ae thetctore sometimes also called poly-uronides l'ectic substances (manly pectoxe), gums and mucilages also come under this uategory though thur ocurrence is not geneial and even when pesent, their proporion is very mall

Lignm which forms 25 to 30 , of the weught of most timbers is chefly the mocrusting substance on the cell-wall of woody fibres It is a rery complex compound, highy polymerised, whose formula has been given ditterently by diftercht wothers wiotimg to the methods employed for its solation and andysis Gencrally it in agreced that
lignin is a compound contanning unsaturated linkages capable of combining wath halogens and sulphun dioxide to form additive compounds The lignin which is present in all timbest to a gieater of a smaller amount, is believed to be an adsorption product on the cell-wall to some extent and a stiuctual member to some extent, mantanning a honey-comb lake structure thoughout the wood

The thud class of substances present in wood usually do not amount to more than about 5 to 10% of the total werght and are manly iesponsible for the charicteristic smell, taste, and colour of timber

A detarled chemical analysis of timber is of very little interest for puiposes of this piesent investigation which is concerned chiefly with the elucidation of the mechanical and thermal properties of timber and for which a proximate knowledge of the proportion of the major constituents of wood would be quite sulficient An estimate, however, of the major constituents of wood involves duectly or incluectly iemoval of the mmor constituents and in the counse of the analysis it has been possible to obtan a rough estimate of their amounts also The actual methods employed in the present investigation for the estimation of cellulose and lignin in woocl have been ansued at as the most satislactory compiomise between the advantages and disadvantages of the several methods usually avarable for the purpose The methods fall into distinct stages of opetation and are designated by a, b, c, d and e in the following
(a) The wood was first of all reduced to powder by sawing it with a circular bench saw of about 8 inches diameter and iunning at about 200 R P M and all the sow clust moluding the fine dust was collected and sieved through i 60 mesh sueve All that passed through the seve, 1 e , the fraction designated as 60 -sample by Cohen and Mackney ${ }^{64}$ was taken up for the analysis This powder was kept in an aur oven mantaned at 102° for a period of 18 hours and while still in the oven, about 20 gms of $1 t$ were transfenied into a previously weighed stoppered weighing botth whach was then placed open mside a desiccator to cool When quite cool, the bottle was well-stoppered, taken out of the desicuator and whighed. Thus a known quantity of
a perfectly oven-dry sample was taken Th, wis nest extated with a misture of alcohol and benzene in a Soblatt apparatub fur whe to twelve hours and in the case of rosewool, the pabil it catacutwn was extended to twenty-four hours The extractel terduc was a me fully washed wath alcohol into a Buchnes tumal itted with a thick, close-gianed filter-paper, washed with fwo in three chancra if alcohol and fonally dried in the ar oven tor , brout an hom
(b) The diy specmen was noxt comphtels thandental into a 500 cc conical flask and covered up with dhout 300 , of distilled water The flask was fitted with a rellus condenner and the water was kept steadly boing for about two hour Ifterwaids the substance was filtered out in alarge tumel with a tatad fluted filter paper under suction while the water widh thll hot The residue in the tunnel was repeatedly washed with hot dutulled water thll the filtate 1 unnmg out of the fumel duch not show ant turbidity The filter-paper with the substance x as next allowed to dry in the oven for about six hours and then weighed The loss of weight of the substance on its original oven-diy weight represented the amount of resin, fat, onl, essential onl, pugments, tamm, gums and any hot-water soluble norganic salts present in the nood.
(c) At this stage it was considered adisable to remove the heme-celluloses also, since, according to Notman and Juknins ${ }^{55}$ the presence of hemicellulose gives a spurious over-cstimate of the lignm content durmg the subsequent hydiolysis of cellulose for the estimation of higun Foi this purpose the oven-dry sample ohtamed at the end of operation 'b' was extracted for two hours with 2.50 (of 1% caustic potash solution with reflux condenser The iesuduc, as before, was filtered under suction though a fluted tared filterpaper and washed with hot water twice on thice and then with a very weak solution of acetic acid and agan with hot water tall the filtrate was not giving any evidence of acidity The filter-papea with the residue was left to dry in the an own tos sh hours and then weighed The loss of weight calculated on the onmmal ovent-diy sample gave the hemacellalore content at an und
(d) The sample as obtained at the end of operation ' c ' was the staring matelad for the estumation of cellulose and lignun Cellulose was estumated by the acid hypochlonte and sulphite method of Norman and Jenkuns ${ }^{60}$ by startung witl two lots of about 2 and 3 gms respectively in separate apparatuses so that one experiment acted as a check upon the other In the case of 'Bombax Malabaricum' two chlormations were found enough while for the other woods four to five chlonndions were necessay The cellulose obtained in all the cases was quite white in colout and after thorough washing with hot water was died in the oven for six hours and then weighed The percentage was calculated on the original oven-dry sample
(e) For the estimation of lignin also two simultaneous lots of about 2 and 3 gms of the sample obtaned in ' c ' were taken and the lignun was estumated by the method of Ritter, Soborg and Mitchell ${ }^{57}$ with 72% sulphuric acid for two hours at $20^{\circ} \mathrm{C}$ followed by dilution to 3% and hydrolysis with a reflux condenser for about four to five hours The lignin left behind was washed fiee of acid for a long time under suction m a Buchner funnel with a taied filter paper, finally dried and weighed and the peicentage was calculated on the origınal oven-dry sample

In the case of the last three timbers viz, 'Dalbergia Latifolia,' 'Tectona Grandis' and 'Bombax Malabaricum', the analysis by the above methods was also conducted with specimens that had been used in the thermal experiments and which had been mantaned for prolonged periods at about $200^{\circ} \mathrm{C}$ to see if any change in composition had been effected by the prolonged exposure to the high temperature The results are given in the following table.

Conclusion

Remembering that the puipose of the analysis was only to determine the proximate percentage of the major conslituents of wood and also the fact that all these methods of wood dmalysis do not clam to give a better accuracy than withn about 2%, no great stress can be laid upon the sum of the components not beng cqual to 100%

Table XXXIII
Chomical Composition of Wornd

No	Name of Timber	Alcoho Benzen Hot-wat Extractı	$1 \% \mathrm{KC}$ Extract	Cellulose Lagnu	
		\%	\%	$\%$	$\%$
1	Terminalia Tomentosa	52	103	. 31.8	320
2	Termınalia Panıculata	61	117	511	270
3	Artocar pus Hirsuta	50	98	52.8	290
4	Dalbergia Latifoha	87	81	$19 \pm$	36.0
	" after heating	46	70	500	36.0
5	Tectona Grandıs	44	112	522	320
	" after heating	34	96	534	340
6	Bombax Malabarıcum.	15	14.2	738	70
	" after heating	14	101	720	60

The ligmin content of 'Bombax Malabaricum' is extriordmarily small, as low as 7% while its cellulose content is correspondingly extraondinarily large making up nearly three-fourths of the wood Also its hem-cellulose content is greater than that of any other wood In fact, the poly-saccharide carbohydrate part of this timber amounts to 90% of its werght Biochemsts have observed that decay in wood is started by a degradation of the hemi-cellulose by a fungus attack which rapidly spreads on to the cellulose part and eventually to the lignin part also The large hemb-ctlulose and cellulose content of this wood is quite obviously the cause of its rapid attack by various borers and its quick decay when exposed to specially morst dir The trouble is aggravated by the additional circumstances that lignm, whuch is considered to conter hardness and protection agamst decay in wood, is present in this timber to a very small percentage onl it would
appeat that a proftable method of preserving thrs wood, w quite valuable for its thermal insulation piopeities, will be to * removing away the hemi-celluloses by an extiaction with alkalıs

The effect of prolonged heating on the chemical na wood has affected the amount of alcohol-benzene hot water ext due evidently to the loss of essential ouls and some of th volatile oils and easily fusible resins while the cellulose anc content is farly unaffected The observations in the case of " Giandis' ate interesting Among the haid-woods, this wood (the least amount of alcohol-benzenc extiactives but while ' D. Latifolia' has lost neanly half of these extiactives 'Tectona Gian lost less a fouth of it, due to heating for a prolonged period a This would indicate that the volatile essential orl content of th is failly small while the orls, which this wood is known to cont pieservative aganst teimite attack, are tanly non-volatile

In the case of 'Bombax Malabaicum', the effect of hea atfected the hemi-cellulose content to some extent while the ot stituents are fanly unaffected It should however be ponted total after heating is considetably short of 100% and it should troned that in the counse of the andlysis of this wood after heat in the hydiolysis of cellulose and the chloination of hignon, the contaned small particles of a gritty black substance, which v probably carbon produced by a partal catamelisation of this in to heating There is reason, therefore, to believe that this u sutlered somewhat by the prolonged heating at $200^{\prime \prime}$ while th woods had not suttered to any appieciable extent

IV Chapier-PROPERTIES OF CELLULOSE AND L
 1 Cellulose-Its Structure ani Prophrties

Cellulose constitutes quite half and sometimes even m half the bulk of almost all tumbers and is the chef fiame-wotk in all of them, giving them a form and mechanical stiength in more or less a pure state 111 the seed-hars of the cotton 1
the fibies m the stem of the Ha and hemp phats Lbent 90 .. bs weight of the cotion seed-har is pune cellulose whik the hemp thete consists about 70% of its werght of pure cellulose The linen prepard from the flax stem is almost pute celluluse In the pue state it is a bught white substance with a lage avidity tor wate Whule ibarbing morsture it swells up to some extent but is quite imolubh in wate It is chemically very mert and ressts odmaty ongmu solvents Dilute alkali even when hot has no action upon it but hot concentratud solutions cause the fibtes to sivall and if kept stretched durme the swelling, the fibres acquire a glossmess which is 1 etaned even atter the removal of the alkali Such treatment of cotton, disoovered by Merce, is technically very much employed in manutacturmes what is known as mercerisad cotton which has a sulky appearance Stions minetal acids dissolve cellulose with patail or complete hydrolysis producing simplei substances down to glucose

The structure of cellulose has formed the subject of an extensive series of nestigations by chemual and X-ray methods. Among the more amportant investagators on the chemical sule should be mentioned Staudinge1 ${ }^{68}$, Hatworth ${ }^{69}$, Freudtnbeig and Fitedrich ${ }^{63}$, Willstater and Zechmenster ${ }^{61}$, Hess ${ }^{62}$ and others and on the X-ray side should be mentioned the names of Mark, Meya, Ritter, Astbury, Clark, Sponsle1 ${ }^{63}$, Sauter ${ }^{64}$ and others Except tor satet all the other investigators are agreed upon a common structure of celluluse acording to which the unit of structure is the cellobose unit $\left(\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{8}\right)$ tormed of two glucose residue joined up by oxygen atoms and the cellulose molecule is considered to be a long chan of the ce cellobiose umts joined up agan by oxygen atoms to tach other The dillerence between this view and that expressed by Sponslei and Sauter concerns only the saze and shape of the unat cell in cellulose Accurding to these two investigatoss, the unt well in cellulose is orthorhombic contaming fou molecules (it, cellobore unts) per well while the other opmon tavous a mono-chme structur with two molecules per cell In a note added to Sponvors Pubhatum in 'Nature', Braggos shows how Sponsler's ideas are not far dittercat from the commonly acepted ones except in the numbin at molecules
per cell Regarding Sautet's results, Meyer ${ }^{\text {bu }}$ considers that Sater's interpretation of his experments is not justifiable

Taking therefore the more commonly accepled structure of cellulose, the following for mula repi esents a molecule of cellulose

$$
\leftarrow \quad 103 \AA
$$

\rightarrow
The calculation of the Young's Modulus of this stiucture parallel to the cham-axis has been carried out by Meyer and Lotman ${ }^{67}$ on the basis of bond stiength denved from Raman Spectra and shows very good agreement with experimental values

The author is not aware of any determmation of the Young's Modulus of cellulose in a direction normal to the chan-axis The expermental determmation of this quantity will be ather difficult and involve large uncentanties, sunce the best vanety of the pure cellulose available $v i z$, that from cotton or flax consists of fibies of external diameters seldom exceeding 002 of a mm and even at that the fibres are hollow, thereby making the estimation of the stiess a matter of great uncertanty Any tiansverse stiess on the frbie is likely to produce a deformation of the hollow space rather than the cellulose material unless the fibie can be split open and lard flat it 15 , however, nol a veiy difficult matter to make a computation of the liansverse modulus from structual consulerations followng the method adopted by Meyer and Lotman in their theoretical computatoon of the axial modulus

According to X -iay evidence, cellulose fibtes are built up of ctystalhtes of cellulose arranged patallel to each other, each
cuystallite of cellulose contaming a number of cellulose chan mok cules arranged parallel to each other as shown min the ditim, he 1.5 The ring in the glucose residuc is senobly plane cactpt ton the oxygen atom in the ring which is outside the plane The hydrogen atoms and the hy drovyl groups ate
 also stiching out at definte angles to the plane From X-ray cudence it is known that the distance between two such parallel chams in a direction perpendiculat to the pline of the ring is about $; 9$ i, so that the distance between the (OH)'s at 1 and 2 from those at l^{\prime} and 2^{\prime} will be of the ught order of magnitude for a hydıoxyl bond ${ }^{68}$, 1 e , about 27 to $\geq 9 \overline{\mathrm{~A}}$ betwcen the two centres Also the distance between the atoms and groups at 3 and 4 from those at a^{\prime} and t^{\prime} will be faxourable for a hydrogen bond between 3 and 3^{\prime} and another between 1 and 1^{\prime} There wall be smmar bonds in a directum parallel to the plane of the 1 une between neighbouring chams, but it is evident that considenms in general, a glacose residue will contribute two hydrogen bonds and two hydroxyl bonds between adjacent chams Since a hydroxyl bond strength is not very difterent from a hydrogen bond itiength ${ }^{\text {b9 }}$, ont might considet the transverse binding force between two adhuent cellulose chans per glucose residue as equaralent to that of four hydrogen bonds Besides this, there will, of course, be the Van der Waal forces between the atoms in the two chams, smee the dintance it $39 \AA$ between adjacent chams is smaller than the unally ducepted range of Van der Wad forces, wheh is of the order of ahout 4 to ti. It is evident therefore that the cellulose chams are tianser,ely linked
to one anothe by seconday bonds both of the dupole and the Va Waal types and in a computation of the thansverse modulus of city of cellulose, these secondany honds should be considened as \& use to the elastic modulus

In compuing the anal modulus of cellulose, Mcyer and L have assumed in their computations that, for cach glucose iest cellulose, theie anc eight lmear bonds and eight angular bonds they assume that an angulat deformation is 20% is strong as a deformation so that in terms of lineas bonds the total binding along the axial direction per glucose residue will conespo $\left(8+\frac{9}{5}\right)=96$ linear bonds in a sumla manner, in the tan dinection, assumng both linear and angular detormations of the gen and hydıoxyl bonds likely, the equivalent number of hyc bonds per glucose 1 esidue will be equal to $4+\frac{4}{8}=48$

The binding forces of hydiogen and hydioxyl bonds are calculated most easily from observations on the Raman spec compounds of like structure with and without hydrogen bonds culations made by various obscivers, though not agreemg rigou all melicate that a hydrogen bond is very much weaker than a pr valence bond It will be a falt mean of all the hikely values fo the literatue on the subject to assume that a hydrogen bond 18 one tenth as strong as a pumary valence bond Therefore the verse binding force between two neighboung glucose residu. be of the order of $48 / 10$ or 48 of a primary valence bond

There is stull anothei factor which should be taken minto a in a considenation of the anisotiopy of cellulose The ing struc the cellulose molecule will contubute a certan lesistanc transverse stress and so its eftect should be considered with that due to the seconday bonds When a tiansverse is applied to a cellulose fibre, its eftect will be to pro large stran in the hydiogen bond length and a smaller stian ing structure, just is a force apphed along two spings cor up in serres will producc a longer extension in the weaker than in the stronger spring The actual extension in any
will of counse be equal to the produl of the shan what theme mto its length Consideing the hydrogen bends butucen nushbourng cellulose chans as a weak spimg connected in bertes to a stronger spring represented by the valence bond in the ming in cellulose, it is evident that, in order to obtam the ditul of a tiansverse stress on cellulose, it is nucbint tir ext in uded of the relative stiengths of the seconday binding butweon the chan and the primary valence binding motde the 1 ing, as well w the relative dimensions of the hydrogen bond length and the valke bond lengths in the rings

In order to obtain the latter cuantity vor, the ichatise dime itsions of the hydrogen bond length to the valence bond kngth, at will be necessary to find out the distance between the ade of adjacent cellulose chans in a cellulose structur The winal husth of a hydrogen bond is known to be about 2 nina ses that the ditt rence between the distance between the axes of duducut celluluse chans and $255 \AA$ will be the length coriespondmg to the valence bonds in the ring The utual spacal
 model of cellulose 15 s shown in the diagram, fig 16 , consinting of toul cellobrose unts per unt cell and it we madme such a unt cell to icpeat itselt modefmels in threc dmensions, we shall obtam the actual cellulose structure in whuh eah cellulose chan will be surrounded amtormly by four others, at the cumers of a square, itself being at the centre as shown in the higure

Taking one such square and remmbening that the wossectional dimensions of a unt cell, aconding to X -ray cvidence, at $835 \AA \times 79 \AA$, the distance between the axes of any two cellulose chans will come out as $58 \AA$

The relatave strengths of the hydrogen bondme between adjacent chans and the valence bonding in the 1 mgs, cin h obtane d in the tollowing manner It has already been shown that the tuln
hydıogen bonds between adjacent cellulose chains will be eqnivalent to 048 of a primary valence bond Constedering the binding forces in d ring, it is obvious that a tiansverse stress can produce no stram in the four valence bonds that are parallel to the cham-axis Hence the four other valence bonds which are inclined to the chan-axis will be the only eftective bonds in opposing the taansveise stross Also the the deformation of the eight valence angles will contribute to the lateral stian and hence should be considered as opposing a tiansverse stran Hence the total resistance to a transveise stiess m a ring will be equivalent to four primary bonds and eight angular bonds Assuming an angular bond to be 20% as strong as a prumary bond, the total lateral strength of a ring will be equivalent to $4+\frac{8}{5}=\frac{28}{6}$ primary bonds Hence the relative strengths of the ring and the hydrogen bonds will be in the ratio of $\frac{28}{5} 0.48$ or very nearly in the ratio of 121 The corresponding strains in the hydrogen bond lengths and the ing-structuie, will be in the ratio of 121 The relative dimensions of a hydrogen bond length and a ing-siucture being in the rato of $25 \AA^{\circ}$ to (58-25) or $33 \AA^{\circ}$, any strain e in the hydiogen bond length will produce a total transverse extension equal to $\left(25 e+\frac{9}{1} \frac{3}{2} e\right) 1 \mathrm{e}, 277 e$ The overall distance between adjacent chans in the transveise duection being $58 \AA$, the overall strain will be $\frac{2}{5} \frac{77}{8} e$ Thus the eftect of ring-structure on the hydrogen bonds is effectively to reduce the strain m the ratio of 121 This could be regarded as an appaient increase in the tiansverse bond strength of the hydrogen bonds in the ratio of 211 Hence taking into account the effect of the deformation of the ring also by a tiansverse stress, the thansverse strength of cellulose will be equivalent to $21 \times 048=101$. pumary valence bonds The stiength of the cellulose chan along the chain-axıs being equivalent to 96 primary bonds, the elastic anisotropy of the cellulose molecule will be as 96101 or very nearly as 9510

The Young's modulus of cellulose in any cellulose stiucture will depend upon the degree of orientation of the cellulose molecules Ramie cellulose possesses a high degiee of orentaion of molecules while the cellulose in wood as revealed by the X-rays is not quite so
well orientated The most probable value of the Young's Modulus of cellulose in wood along the axial direction nould appear to be about 80% of its value in ramie In the case of 'Bombax Malabaricum', the X-ray study reveals an orientation of cellulose which is at best only half as good as that in the other woods so that the axial Young's Modulus of cellulose in this wood should be taken to be only half that in the other woods Accordingly, taking the value of Young's Modulus of rame as $50 \times 10^{\prime \prime}$ dynes $/ \mathrm{cm}^{2}$ as measured expermentally by Meyer and Lotmar, the value of the longitudinal modulus of cellulose in the hard woods can be taken as 40×10^{11} dynes $/ \mathrm{cm}^{2}$ while that in 'Bombax Malabaricum' will be taken as 20×10^{11} dynes $/ \mathrm{cm}^{2}$ Applying the anisotropy ratio of $95 \quad 1$ as between the axial and transverse directions, the transverse Young's Modulus of hard woods will come out as 042×10^{11} dynes $/ \mathrm{cm}^{2}$ while in 'Bombax Malabaricum' its value will be 021×10^{11} dynes $/ \mathrm{cm}^{2}$

2 Lignin and its Properíles

The next important major constituent of wood aftei cellulose is the incrusting substance of the cell-wall viz, hignin Ustually it forms about 25 to 35% by weight of wood materin] [intortunately, however, the amount of exact knowledge on the chemical or phystall properties of lignin is very little though a large amount of andytical work has been done on lignin to elucidate its chemical constitution It is a compound of carbon, hydrogen and oxygen with more than 30 carbon atoms in the empirical molecule and the number of hydingen atoms in the molecule are too many disproportionately in excess of the oxygen atoms to entitle the substance to be classified as a carbohydrate The actual molecule is supposed to be a high molecular polymer with a molecular weight in the neighbourhood of 6000 So far as its chemical structure is concenned, there is uncertanty even about the nature of its nucle, whether they are anomatic or hydrodomatic or other complex type of ring-stiucture By seteral reactions with alkahes, concentrated auds and halogens the presenct of hydroxyl, methoxyl, methylene and aldehydic or ketonc grouph has been definitely established

Ritler has made a detated study of the lignin content of wood and has come to the general conclusion that Spring wood contains more lignin than Summer wood The more interesting contribution of Rittei to our knowledge of lignin in wood, specially tor purposes of the present study, is with regaid to its distribution in wood According to Ritter ${ }^{71}$ the lignin in wood is of two kinds one forming part of the cell-wall whose nature is amorphous and which falls to powder during the hydrolysts of the cell-wall by 72% sulphuric acid The other kind of lignin is structural and is almost cxclusively the man constituent of the maddle lamella in wood This middle lamella lignin possesses a honeycomb-lıke stiucture, constituting a sort of open fiame-work which is interpenetiated by the fibres He estimates that about 25% of the total lignin is in the cell-wall while the rest makes up the moddle lamella As a result of a large amount of work on cellulose and lignin Fieudenberg ${ }^{72}$ has elucidated the relation of cellulose to lignin in wood According to hum the lignin in nood, whether in the cell-wall or the middle lamella, is entarely amoiphous He considers the lignin in the middle lamella to be permeated with hemicellulose and to form with the hemicellulose a homogeneous structure which encloses the whole cellulose net-work Freudenbeig is definitely of opimon that the bulk of the cellulose in wood has no contact with hgnm though he admits that it is just possible that the lignin maght work its way into the outer layers of the fibres The lignin in wood is supposed to play the same part is what the concrete in reinforced concrete does

The amount of information avalable in the literature on the physical propeities of lignin 19 almost next to nothing Sunce, however, for a proper understanding of the ellect of lignin on cellulose in wood, it would be necessay to know something of the physical properties of lignin, it was decided to study those necessary properties of lignin For this pupose lignin was obtaned by precipitation from the lye solutions obtaned durng the pulping of wood in the paper industiy and another sample of very pure lignin was made avanlable to the duthon by the kndness of Mi Man of the General Chemistry Dept of the Indian Institute of Science,
lore This lignin had been prepared fiom wood by an clictru ad process developed by Mi Mani and it punty had been and established by various tests Buth varieties of hignm amployed in the study and gave comparable values The hann nxed up with a small quantity of water to form a thek platic and the paste was pressed into the form of a dise of thee diameter and about an eighth of an meh in thatiness in a hydiaulic paess under a pressure of nearly 500 lbs pet sa For puppose of elastic measutement and measurement of al expansion，the paste was pressed into the for mof a mod of about ches length and about a quarter of an moh m dameter undur a pressure in a special die Some diffulty was expericnced at ${ }^{2}$ cause，though good specimens were produced by the pressmg ulds，it was found that the specmens cracked and ummbled vder on diying This difficulty was got ove by kaving the iens inside the moulds with the pressure still on till they wete lry The shape was then retaned permanently
The density of lignin was measured with a putce of the ed rod as well as with the powder making use of a density and kerosene The close agreement between the densits of wder and of the moulded rod is evidence of a compact stiucture ，been produced in the moulding operation
The Young＇s modulus was measured by employmg the 10 d of in a single cantilever arrangement with an optical levet to re the deflection The thermal conductivity was measured at nt temperatures with a Lee＇s dise apparatus according to the I described in the section on the thermal conductivity of wood zermal expansion was measured by ariangmg the rod ot hignm an electric heatei specally made tor this purpore and apable ng mantaned at difterent temperatuics up to 200 C dind pansion was measued by an optad lever atangemut de－ t which are given in the section on the thermal expinsion ad The results of the various meaburements are given befor

y of powder	＝	$164.5 \mathrm{gmb,L}$
y of the pucce of iod．	－	1．6ごgmちル

Conclusion

The density of lignin is almost the same as the density of ccllulose which is given to be something between 158 and 1.63 The fact that, while both the major constituents of wood amounting to more than 80% of it possess a density as high as 15 , wood itself possesses a densuly which hardly approaches 10 whule it usually hes far below it, is ceitamly due to the hollow structure of the wood fibres The Young's Modulus of lignon is remarkably low compared to that of cellulose but is of the same order of magnitude as that of sımular cementing organic materials like protems, conchyolin etc The co-efficient of thermal expansion shows a slow increase with temperature in confor mity with the amorphous natue of the material Its absolute value at any temperature is quite small beng less than that of glass and similar amorphous substances Its theimal conduclivity is very poor as might have been expected from its being an important constituent of wood The variation of theimal conductivity is however iriegular and quite small It at first slightly incieases with lemperature as might be expectecl of an amoiphous substance but after about 120° it begins to deciease agan Neither the increase in the early stages no1 the subsequent decrease is of any gieat magnıtude

V Chapter-INTERPRETATION OF RESULTS

In the present chapter an attempt is made to understand the experimentally obtaned results recorded in the sccond chapter in the light of the structure and constitution of tumber and the pioperties of its major constituents recorcled in the two subsequent chapters A
ission based upon the combmed eftect of cellulose and lignm will zurly representative of the behaviour of wood since in most cases * two constituents make up nearly 90°, of wood maternal her it is only these two componunts that possess a detinte nuity of structure with specific well-defned properties All the
components in wood amounting to about 10°, of its bulk are phous materials of very ill-detined propertes and thear effect wall ute a negligible factor

1 The Elastic Properifes of Wood

A proper estmate of the elastic properties of wood should take zccount all the components of wood However, the three matyot ituents, viz, cellulose, lignin and hem-celluloses make ap nealy of wood and will therefore be the chret-futors deuding the ic nature of the bulk material Of these three, the rok of hembloses in mfluencing the elastic modultis of wood will be a very r one for various teasons The little intormation we possess t the hemi-celluloses is enough to pustity our ignoring it contrin to the elasticity of timber The hem-celluloses ate a heteroginmixture of a lage variety of poly-sacchande cabohydiates of in phous constitution They possess nether a continuty nor a ture in the framework of wood but 1 eman dispised in the body sod, manly in its hgneous portion Indecd, so muh of the total celluloses in wood is tound dispersed in hgnin that a chool of nsts have advanced the theory that hemuellumes ar the ursor of hgnin, which, they say, is formed by the condensation of -celluloses On top of these considerations is the tat that celluloses usually do not repiesent more than a tenth purt of I and being of an amorphous nature with neitnes form nor shape ood, then contathution to the elastic statength ot timber is not to be of any considerable magnitude Hence in the tollowing ission, the elastic modulus of wood is considered in term. ot the erties of cellulose and hgmm

Of the two important constituents, cellulose will contributc to the elastic hehavion of wood than lignin sume it constitutes
more than half the bullk of wood and in addition possesses a much larger elastic modulus than lignin with a pronounced anısotropy of elasticity The effect of lignin will be to modify the properties of cellulose since usually the amount of hgnon is half of more than half that of cellulose and besides, lignin in wood possesses a continuous structure closely adhering to the cellulose fiame work and completely sur rounding it It is in fact acting like the comenting material, conchyolin, in the case of molluscan shells studied ealier in this investrgation

The cellulose in wood occurs in the form of hollow fibres and hence the gross structure of cellulose will itself mintioduce an ansotropy of elasticity in wood quite apart from the inherent anisotiopy of celliulose Thus the total anısotiopy of wood will be made up of two parts, one, the structural anisotiopy due to the gioss stiucture of the cellulose fibres and two, the intrinsic anisotropy of the cellulose molecule atself. Hence a complete estimate of the elasticity of wood will have to be made in two stages (1) the stage in which the effect of the gross stiucture of the fibres on the inherent anisotropy of cellulose is considered and (2) the stage in which the effect of the enveloping lignon on the total anisotropy of wood is considered

1 Gross str ucture

(a) Companzson of different varuetves of timber-Fiom the remarkable parallelism between the Young's Modulus and density in the various woods, one is almost tempted to conclude immeduately that the elasticity of wood is a direct function of its density Of couse, also, it stands to reason that for a given dimension, the greater the number of resisting unnts, the gieater will be the force and energy necessary to produce a given elastic deformation and consequently the greater will be the elastic modulus This conclusion holds farrly accurately for specimens taken from different directions of the same species of wood but directly a comparison between specimens of different kinds of wood is made, it is found that the relation breaks down Thus in the radial longitudinal section, the Young's Modulus of 'Teciona Giandis' is twice as large as that of 'Teiminaha Tomentosa' while jn the same durection in the same section,
the density of the former 15 only about $85^{\circ \prime}$, that of the latter In the tangental longitudinal section, 'Teimumha I'amculata' has got a density more than 30% greater than 'Teatond Granclis' but the Young's Modulus of the former is slaghtly less than that of the latter It 1 s , therefore, evident that apart trom the amount of wood substance present, the way in which the maternal is chstabuted in the timber is of great mportance in deciding the elastic propertics of woud With a density half that of 'Termmalia Tomentona', ' Bombax Malabarrcum' mantans an elastic modulus quite comp tadble lo and sometmes even greater than that of the former 'Bombix Mahbaricum' has evidently achieved this by making h hiberal use of the fact that for the same amount of material, a hollow stiuctue has a greater tlastic resistance than a solid structure The thucknes of hobe wall relative to fibre diameter is smallei in 'Bombax Malathaticum' than in 'Terminalia Tomentosa' Further remforcement has been secured by the development of cioss membranes in 'Bombax Malabaricum' within the fibre unit Clark 73 expermenting on the wood of the English ash, 'Fraximus Excelsor' finds that specimens of the same specific gravity and similar anatomual stiucture diftei bv ds much as 30% in strength and comes to the conclusuon therefrom that probably the chemical and physical properties of cellulose at atsponsible for this It is more hakely that an explanation of Clak's observations is to be sought for in the ditterence in onentation of the mucelles or crystallites of cellulose within the fibie of the difterent specinens This difference in ciystallite orientation witho the fobs will not make any difference in the anatomical structure is revealed by the muroscope nor even in the specific gravity It will be revealed only by an X-ray mvestigation Such differences in mucellar orientation of the same species can bo concentably brought about hy the difterent rates of growth A slow growth, induced by lack of seasonal rams on cutting away of the follage duing the growing season ot the fear, is favourable for better mucellat orientation unce the pioduction of new cells will be slower and the stietchmes of aluady caistmes cells will take place to ageater estent A bow grow th wall thas proluce is timber mechancally stionget thath a quich grow th
(b) Comparzon of dufferent sections of the same species The next important fact that comes of an exammation of the results is the variation of the relative elasticity between the tangental and radial sections as we pass from one species to another Thus in 'Tectona Grandis ' and 'Bombax Malabaricum', the 1 adial section is more elastic than the tangential section while in 'Teiminala Paniculata' and 'Artocarpus Hirsuta ', the two sections have almost the same elasticity In 'Termualia Tomentosa' and 'Dalbergia Latıfolia' the tangential section is more elastic than the tadial section A study of the longituctual section as shown by photo-micrographs suggests that the properties in a longitudinal duection are strongly influenced by the nature and distribution of the medullay rays It is well-known that rays are mechanically very much weaker than fibres and obviously an abundance of rays in large patches should detract considerably fiom the mechanical stiength The tangential longitudrnal sections of 'Tectona Grandıs' and 'Bombax Malabaricum' show that the thbres ate running almost starght and the ays are occuing in large patches and in gieat abundance Evidently, therefore, there is a comparative scancity of fibres in the tangental plane as aganst the radial plane with the corresponding lower value of the modulus in the tangential than in the radial plane In 'Teimmalia Paniculata' and 'Aitocarpus Hursuta' the fibies are long and stratght and the rays are small, irregular and scanty with the result that the radicl and tangential planes are about equally strong In 'Teımınalia Tomentosa ' and 'Dalbergia Latifolia', on the other hand, the rays are small, numerous and uniformly distributed The fibres are wavy and strongly interlocked in the latter case The wavy nature of the fibres in the tangentral plane prevenis, as it were, the ays from being subjected to duect stress while it is obvious that a radial section will cut through a number of fibres and expose the rays to direct stress Accordingly the tangentral sections are mechanically stoonger than the radial sections
(c) Comparison of dufferent durections of the same sectionComing to a still more detaled examination of the properties within the same section, we fund hete that we have the most umportant
characteristac of the mechancal propesties of wood Whether we considet the tangential or the radal section, the modulus dong the fibre axis is many times that across it This ratio varie for the same section from species to species and for the same spucles, it varles is between the tangental and radal sections Its value depend, upun the thackness of the fibre wall in relation to hbut dumeter, mereabing with dimmeshing thickness of wall and vice versa Thus in 'Dallbergha Latifolia' with very thick walls the atio is about 71 white in the thm walled 'Bombax Malabutum' the ratio is about 201
(d) Theoretioal computatum of the Young', motulus of a celluluse fibre - The ratio of the Young's Modulus of wood in the longitudinal diection to that in the transverse drection can be calcul ated theoretically trom the known clastic propertan of cellulose in the two directions logether with the known manoscope stauture of the cellulose tibres in woud The calculations, ofoouse, moolve ceitan approximations which ae mevitable in a problem of this hind The most amportant of these approximations is the consideation of the cellulose fibic as a cylmolucal tube of internal ralus 'a' and external radius ' b ' In the actual expermental dettimmation of the Young's Modulus no account is taken of thus hollow structus, with the usult that any applied toice being supposed to be untom mly distributed over the entire cross-section will give rise to a smaller value of the stressdistribution than what actually obtams me the speninen amd the modulus calculated on thas ignoring of the hollow staucture wall be less than the real value of the modulus The change of dimensions of hollow tubes will give aise to ditterent strams along the axad and adhal dircetions even though the stresses in the ditterent dirtctions have the same value and consequently the apparent elastic modulus of a hollow stiucture along and acioss the was of the tigute will hatic difterent values even though the materal in the solid state should be elastaully isotropic and in the case of an mtrinsically ansotropic substance like cellulose, the amsotiopy wall be enhanced by the hollow stuatur The lollowing method enables us to compute the Young's Modulus of a hollow structure dong the axial and radad dinctions m terins of the Young's Modulus of the materal in the correspondmes ditections
(1) Longitudinal-Let us considet a hollow tube of internal radus ' a ' and cxternal ladius ' b ' subjected to an axial stress F In the absence of the knowledge of the hollow stiucture, the apparent cross-section of the tube will be taken as $\pi b^{2} \quad$ The axial stiess F will be the effect of a force $\pi b^{2} F$ acting along the axis The real value of the cross-section being $\pi\left(b^{2}-a^{2}\right)$, the effective stress will be the ratio of the force to cross-section

The effective stress $=\frac{\pi F b^{2}}{\pi\left(b^{2}-a^{2}\right)}=\frac{F b^{2}}{b^{2}-a^{2}}$
If the axial Young's Modulus of cellulose is q,
stiann along the axis $=\frac{\text { stress }}{\text { modulus }}=\frac{F b^{2}}{q\left(b^{2}-a^{2}\right)}$
This will be the real stran observed in the experiment but the stress supposed to be producing this stiain will be F Therefore, the apparent value q_{1} of the modulus will be the ratio of the apparent stiess to the obseived stian

$$
q_{1}=\frac{F}{F b^{2} / q\left(b^{2}-a^{2}\right)}=\left[\frac{b^{2}-a^{2}}{b^{2}}\right] \times q
$$

(If the cross-section of the tube be square instead of circular, with inter nal and external sides of length ' a ' and ' b ' iespectively, the actual cross-section will be greater in the ratio of $1 \frac{\pi}{4}$ but then ratio will be unaffected so that still $q_{1}=\left[\frac{b^{2}-a^{8}}{b^{2}}\right] \times q$)
(11) Transverse modulus - The radial stiain of a hollow tube under radial stress gives rise to ceitam complex effects caused by lateral contractions in the 1 adial section at right angles to the stress and hence Poisson's ratio will be involved in the mechanics of the problem

The radid displacement ' u ' at a distance ' r ' from the axis of a hollow cylindrical tube of internal and external 1 adin ' a ' and ' b ' 1 espectively under steady uniform pressue P_{a} on the side of radius ' a ' is given $\mathrm{by}^{7 / 4}$

$$
u=\frac{a^{2} P_{\mathrm{n}}}{\left(b^{2}-a^{2}\right) q^{\prime}}\left[(1-\sigma) \gamma+(1+\sigma) \frac{b^{2}}{r}\right] \text { where } \sigma \text { is the Porsson's }
$$

latio of the material and y^{\prime} the tadisverse Young's Modulus of cellulose

In the case of a hollow fabse of celluluse din sticss appled 1adially on the outside will produce a radal muad dibphecment of any point in the cioss-section and it is very unlihely that theic wall be any stress on the mner surtace sunce the fibe 14 hollow comaming only an In such a casc, calling P_{b} the stiess on the sulace of adius ' b ' and consequently interchanging ' a ' and ' b ' in the cxptession tor ' u ' we obtain the displacement ' u ' d d distance ' r ' trom the axis a,

$$
u=\frac{b^{2} P_{\mathrm{b}}}{\left(a^{2}-b^{2}\right) q^{\prime}}\left[(1-\sigma)+(1+\sigma) \frac{a^{2}}{\imath}\right]
$$

When $r=b, 1 \mathrm{e}$, at the outer edge of the fibie,

$$
\begin{aligned}
u & =\frac{b^{2} P_{\mathrm{b}}}{\left(a^{2}-b^{2}\right) q^{\prime}}\left[(1-\sigma) b+(1+\sigma) \frac{a^{2}}{b}\right] \\
& =\frac{b P_{\mathrm{b}}}{\left(a^{2}-b^{2}\right) q^{\prime}}\left[(1-\sigma) b^{2}+(1+\sigma) a^{2}\right]
\end{aligned}
$$

The stran at the outer surtace along the tachus is equal to $\frac{u}{b}=\frac{P_{\mathrm{b}}}{\left(a^{2}-b^{2}\right) q^{2}}\left[(1-\sigma) b^{2}+(1+\sigma) a^{2}\right]$

The apparent modulus $q_{\text {. }}$ in the radial dinection will be equal to $\frac{\operatorname{stress}}{\operatorname{strain}}=\frac{P^{b}}{u / b}$

$$
\begin{aligned}
q_{2} & =\frac{\left(a^{2}-b^{2}\right) q^{\prime}}{(1-\sigma) b^{2}+(1+\sigma) a^{2}} \\
\text { or } \frac{q_{2}}{q^{\prime}} & =\frac{a^{2}-b^{2}}{(1-\sigma) b^{2}+(1+\sigma) a^{2}}
\end{aligned}
$$

In the above derivation we have assumed the cellulose fibic to be long and open at the ends It howestr, we tieat it as a tuhe closed at both ends, the result will be slightly ditterent B the application of the generalised Hooke's law to a small apposamately rectangula element of the wall with radal sades, in the wese of a
tube of radius ' γ ' closed by hemsphetical or semm-ellipsordal ends with a small thickness e of wall, e being small compared to ' γ ' and subjected to a stress P, the change, u, in radius is given by ${ }^{76}$

$$
\begin{gathered}
\qquad u=\frac{2-\sigma}{q^{\prime}} \frac{P r^{2}}{2 e} \\
\text { Radial strain }=\frac{u}{r}=\frac{2-\sigma}{q^{\prime}} \frac{P r}{2 e} \\
\text { Modulus } q_{2}=\frac{\text { stress }}{\text { strain }}=\frac{P}{u / r}=\frac{2 e q^{\prime}}{(2-\sigma) r} \\
\frac{q_{2}}{q^{\prime}}=\frac{2 e}{(2-\sigma) r}
\end{gathered}
$$

Thus the Young's modulus of a hollow cellulose fibte can be theoretically calculated and the following table sets forth the calculated values of the Young's modulus in teims of the Young's modulus of cellulose in the corresponding directions for different ratios of wall throkness to fibre chametor In the case of the transverse modulus, the values have been obtaned by using both the equations I and II and are entered in columns 4 and 5 of the table

Table XXXIV

NoWall-thickness to Fibre diameter	Young's Modulus along Fibre	Young's Modulus across Fibse			
	1	4	$0.75 q$	$0.51 q^{\prime}$	$059 q^{\prime}$
2	1	5	$0.64 q$	$041 q^{\prime}$	$0.47 q^{\prime}$
3	1	6	$055 q$	$0.32 q^{\prime}$	$0.40 q^{\prime}$
4	1	7	$0.50 q$	$030 q^{\prime}$	$0.34 q^{\prime}$

2 The Effecr of Lignin un lhi Grobs-Shruelerl. of Cellulose Fibers

For a proper estimate of the eftect of lignm on the chaticity of ulose fibres, it would be necessary to have an adea of the mode of ribution of lignin in wood In this connection the work of Ritter Freudenberg is of gieat importance According to Rittci, the in in wood is present in two forms, one form existmis as a disperse se distributed in the cell wall in a putcotly structurtess amot us state while the other parl forms a conturuous structure constrng the middle lamella in wood Ritter however does not sat thing as to whether the latter lignin is also amos phous intrmsically 'udenberg while giving conclusions gentrally aereeme with Rittot, motely finds the maddle limella hime to be cntnely amorphour and t the lignm dispersed in the cell wall is conlmed to the primar, ondary and perhaps also to the tertaty layers of th. well wall but t most of the cellulose crystallite, in the cell wall have no contat h lignin Remembeing that the lignm content in most wonds is in whereabouts of 30%, it will be a tan citimate to 1 ssume that 25^{3} the total weight of wood is present as lignm in the middle lamella would thus come out that in most woods, the amount of hgnm, slosing the cellulose is very nearly halt the weight of the enclosed lulose ($25 \% 50 \%$) Since the densit of cellulone is nuarly the ne as that of lignon the proportion by volume of lignm to cellulone most woods will be as 12 (In the case of Bombax Malabaricum s ratio will be as 1 10)

Longrtudunal Elasticety -The longitudinal elasticity of a lulose fibre sheathed in lignm (hgmaied cellulose fibre) as it occurs wood can be estmated as follows Taking any lensth of a hgnifed re, let the area of cioss-section of the cellulose portion be a and ot - lignin portion be β Any extension lonsitudinally of the fibit will , duce equal extensions in the cellulose as well as the hignom portions t the stress distribution in the two portions will be differtint It we , ume the longatudinal elastic modultis of cellulose in wood to be q d the elastic modulus of hgnm to be q, the stress. in the two portions Il be proportional to the elastic moduli Let ' e ' be the longitudinal ain of the complete fibre

Then, the stiess in the collulose portion $=\mathrm{cq}$ and the stiess in the hgnm poition $=e q$
The force on the respective portrons will be equal to the stresses in the portions multuplied by then cross-sectional areas

Hence, forcc acting on the cellulose portion $=$ eq α and force acting on the lignin portion $=\mathrm{e} q \beta$
Total for ce producing the longitudinal stiann $=e(\alpha q+\beta q)$
This force will be applied on the cross-section of the fibre and so the apparent stress will be equal to the ratio of the total force to the total area

$$
\text { Apparent resultant stiess }=\frac{e(\alpha q+\beta q)}{(\alpha+\beta)}
$$

and sunce the strain is e, the apparent modulus will be equal to the ratio of the resultant stress to the total stiam

$$
\text { Resultant modulus }=\frac{\mathrm{e}(\alpha \mathrm{q}+\beta q)}{(\alpha+\beta) \mathrm{e}}=\frac{\alpha \mathrm{q}+\beta q}{(\alpha+\beta)}
$$

In the case where the volume of hgnin is half that of cellulose, the cross-section in any given length of fibre being pioportional to the volumes will also bear the same 1 atio to one anothe Hence in such cases,

- Substituting $4 \times 10^{\prime \prime}$ dynes $/ \mathrm{cm} .{ }^{2}$ for q ,
$02 \times 10^{\prime \prime}$ dynes $/ \mathrm{cm}^{2}$ for q and $\alpha=2 \beta$ we obtan the resuliant longitudinal elastic modulus of cellulose

$$
=q_{1}=\frac{2 \times 4+02}{3}=\frac{8.2}{3}=2.73 \times 10^{11} \text { dynes } / \mathrm{cm}^{2}
$$

In the case of Bombax, $q=2 \times 10^{11}$ dynes $/ \mathrm{cm}^{2}, q$ is the same as before, whule

$$
q_{1}=\frac{20 \cdot 2}{11}=184 \times 10^{11} \text { dynes } / \mathrm{cm}^{2}
$$

Transverse elastraty - The following conside1ations help to elucidate the tiansveise elastic modulus of a cellulose fibre sheathed in lignon Any transverse stiess applied to a fibie will be communicated equally on the cellylose poition as well as the hgnin portion and as such, the strain produced in the transverse drection in the two poitions will vary inversely as the elasic modulus in the respective poitions The
al transverse displacements poduced in the two pollom, will howdepend upon the actual thiches of the prition The the hats of cellulose or the lignm portion will depend on the idatio sut of the mal to the external radus ol the fibse, smue tor aspon amount adterial a greater diameter of fibre will scaluce the thakness of the of material

Consuder a cross-stction of the complete fibre of wood, in whin $\mathrm{AB}(=a)$ represents the radius of the hollow portion made the hbre, $\mathrm{AC}(=b)$ represents the outer radus of the cellulose portion and AD $(=c)$ represents the outer radhas of the hgnin portion

Fig 17
The thickness of the cellulose portion $=(b-a)$ and thickness of the lignin portion $=(c-b)$
Since the volume of cellulose is twice that of hgnin,

$$
\begin{equation*}
\pi\left(b^{2}-a^{2}\right)=2 \pi\left(c^{2}-b^{2}\right) \tag{I}
\end{equation*}
$$

Let us consider an average fibie of wood in which the cell I thickness is $\frac{1}{5}$ of the fibre dadmeter do exammed photo-microshically on the cellulose fibres under crossed nicols, then a) $=\frac{1}{5}(2 b)$

Hence $\mathrm{b}={ }_{5}^{5} a$
Substituting this value of b in equation I, we obtan
$c=19 a$ so that $(b-a)=066 a$ and $(b-b)=024 a$
If we now consider a thin strip $\mathrm{BDD}^{\prime} \mathrm{H}^{\prime}$ solated duns the ad direction and subjected to a radal stress S,

Stian in the cellulose portion $\mathrm{BC}=\frac{S^{\prime}}{q^{\prime}}$ where q^{\prime} is the transse modulus of cellulose
and stram in the hgnm portion $=\frac{S}{Q}$

- Extension in the cellulose portion $=$ Strain \times length

$$
=\frac{S}{q^{\prime}} \times \mathrm{BC}=\frac{S}{q^{\prime}}(66 a)
$$

and Extension in the lignin poiton $=\frac{S}{q} \quad \mathrm{CD}=\frac{S}{q}(24 a)$
Total radial extension $=\mathrm{S} a\left[\frac{66}{q^{\prime}}+\frac{24}{q}\right]$
Resultant radial stress $=\frac{\text { Extension }}{\text { Length }}=\frac{\mathrm{S} a\left[\frac{66}{g^{\prime}}+\frac{24}{q}\right]}{66 a+24 a}$
Resultant modulus $=\frac{\text { Stress }}{\text { Strain }}=\frac{S}{\frac{S}{9}\left[\frac{66}{q^{T}}+\frac{24}{q}\right]}$
Substituting 042×10^{11} dynes $/ \mathrm{cm}^{2}$ for the transverse modulus of cellulose in wood and 020×10^{11} dynes $/ \mathrm{cm}$ for the modulus of lignm, we obtam for the transveise Young's modulus of hgnified cellulose fibre the value $\mathrm{q}_{n}=0305 \times 10^{11}$ dynes $/ \mathrm{cm}^{2}$

A smilar calculation for fibres in which the wall thickness is $1 / 4$ and $1 / 7$ of the total fibre dameter gives respectively, the values 0315×10^{12} and 0295×10^{11} dynes $/ \mathrm{cm}^{2}$ for the modulus

Corresponding values for 'Bombax Malabaricum' can be calculated by substituting for equation I, the equation

$$
\pi\left(b^{2}-a^{2}\right)=10 \pi\left(c^{2}-b^{2}\right)
$$

1 Combined effect of gross-structure and lugnin-We are now in a position to calculate the elastic modulus of wood along and across the fibre darections by taking into consideration both the stiuctural anisotropy and hignm to modify the inirinsic amsotropy of cellulose The following table sets forth the calculated and observed values of the longitudinal and transverse modulus of elasticity of the varous timbers obtaned by an application of the above method
Table XXXV

No	Name of Timber	Ratio of Wall-thickness to Fibre diameter	Young's Modulus along fibre		Young's Modulus acioss fibre	
			Calculated	Observed	Calculated	Observed
1	Termmalia Tomentosa	16	152	12	015	012
2	Terminalia Paniculata	15	176	15	013	022
,	Artocarpus Hirsuta	15	176	11	013	010
4	Dalbergia Latıtola	14	$\because 04$	17	019	021
7	Tectona Giands	$\left.\begin{array}{ll}1 & 4 \\ 1 & 5\end{array}\right)$	204 176	19	$\left.\begin{array}{ll} 0 & 19 \\ 0 & 1 \end{array}\right)$	011
0	Bombax Maldbart(aim	17	1085	11	006	00.5

Considering the unavordable uncertanties and necessar approximations involved in the calculations, the agrecment betwee: the calculatect and observed values should be considered good I general the observed values are slightly smaller than the calculate valucs due evidently to imperfections of actual stiucture deviating fron the regulanty of an assumed geometric structure The case of th longitudinal modulus of 'Bombax Malabaricum' is exceptional in th sense that the observed value is sensibly gieater than the calculate value This is very likely due to the fact that this timber is th only one of the tumbers exammed which has developed cioss members inside a fibre Such a development is conducive to extra strength and apparently the observed value is in excess of th calculated value since in the calculations, no account has bee, taken of the effect of these cross-members The reason why th transverse modulus of 'Terminalia Panculata' is gieater than th calculated value is ather obscure The slight excess of the observe transverse modulus over the calculated value in the case of 'Dalbergi Latifolia' is probably due to the effect along the tiansverse direction of the contribution towards elasticty of the extremely numerous an extraordnarily regulatly arranged medullary tays, characteristic c this wood

2 Thermal Conductruty - The explanation of the theim: conductivity of wood on any theoretical basis will be beset with cor siderable difficulty Accoiding to modern conception ${ }^{70}$, metallic cor duction is based upon the zone theory of the valence electrons in th crystal lattice In the case of the non-metals, however, the princip. factor involved in the mechanism of theimal properties is the energ states of the nuclear vibiations rather thrn those of the valence eler tions, although the latter may serve to throw additional light on theima propenties ${ }^{77}$ When heat is supplied to one part of a material th nuclear vibiations there become stionger and stionger and are pic pagated through the material in the form of what are commonl known as the Debye sound waves Even though these waves trave with the velocily of sound, their mean free-path is small This is du to two mann causes In the first place, the waves are scattered o
account of a mutual interference due to the atharmoncits of the elastic forces called into play duings then motron and in the seond place, a scatteing of the wave takes place duc to low flutudions in the structure of the medium In the case of a crystalline mudimen where a certam atomu pattem repeats itsclt uy repulals, the structural fluctuations of the medium will be mehighly umall and the tree-path of the waves will thetetore be preater in a crivtalline medrum than in an amorphous one This motcased value of the fiee-path of the waves will give an matased thermal combudind in the material Thus a substance in the crystalline state will conduct heat much bettel than the same substance in the amonphors state A rematkable cadmple of this behavour is hown by quata In the viticous state the thermal conductivity of quatt is $119 \times 10^{-}$ while that of crystal quartz is 134×10^{-1} Thus the process of ciystallisation has mureased the conductuty nearly ten-tuld This conception is also borne out by the fact that the thermal conductivity of caystalline substances diminishes with morcase of temperature Evidently with increase of temperatue the macased thermal aritation of the atoms will senously aftect the regularity of the lattice wath at corresponding decrease in the free-path of the Dube waves

Independant optical evidence for the propagation of these Debye waves in solids has been obtamed by Raman and Venhateswaran ${ }^{79}$ from observations on the light scattering in crystalline and amorphous substances In the case of cystalline medht, positive evidence has been obtamed for the presence of the Debye waves and their propagation with the velocity of sound, while very catctul observations with amorphous substances have not yielded any umular results

It 14 therefore reasonable to expect that a well-ordued structure as that in a crystal will conduce to a better themal conductivily Geneially in the case of organic compound it is tound that uystallisation incieases conductivity considerably though to a smalle deate than in mogeanc compounds Thus B-Nephthalene sulteylite ${ }^{\text {sin }}$ in gomg from the amonphous to the civstallme state ionduct, luat tume as well

Furthe, it is reasonable to expect that in a structure different binding stiengths in different dinections, the thermal ductivity will show a coiresponding anisotiopy being gicater alon direction of strongel binding it is known that in the ca. giaphite, ${ }^{81}$ the conductivity in the plane of the layers is four tim great as that acros the layers In asbestos, the conductivity alor fibies is twice what it is across the fibies In the case of wood known that the binding forces in the direction of the frbres is stronger than in the transverse direction and consequently the the conductivity should also show a marked anisoltopy, being great the longitudindl duection than in the transverse direction Inde would appear Irom the experimental icsults that the actual aniso is less than what could be expected theoretically The low val the anisotropy of thermal conductivity obseived in the expermen probably be understood from the following considerations. mechanism of theimal conductivity is a complex one invol as it does, for any one direction, the behaviour of three sets of D waves, one longitudinal and the two others transverse The long nal waves will involve the Young's Modulus of the material ir correspondang direction while the transverse waves will involve thi torsional moduli in the two mutually perpendicular darections 1 transverse plane Thus the anisotropy of thermal conductivity not stand in any smple relation to that of Young's Modulus bur be considerably modufied by the torsional moduli of the materia which, however, we have no knowledge at present

Perhaps the mole important factor which contributes to low value of the ansotiopy of conductivity in wood is the comt effect of the stiucture of the fibres and the propenties of the h enclosing them As is well-known, the fibres in wood are ho tubes of cellulose enclosed in a lignin sheath Considering average fibre in which the cell wall thickness is one-fifth of the diameter, as already shown in the section on elasticity (refer 1 295), the relative areas of cross-section of the hollow space, cellulose portion and the ligmon portion will be as 9168 , so thal hollow space and the lignin together make up more than the cellu
tion of the cross-section In the longitudinal transmission of heat contribution due to the hollow portion will be quite nerligible, -e the conductivity of the air present in thes space is vers bu \approx lignon poition can of course condurt some heat but its conrlucty is very small Consequently, the tffective condut ton of heat ig the longitudinal dinection will he reduced to neats hatt it. ue in cellulose due to the combined effect ot the hollow spare and hgnin sheath

In a transvetse chection, however, the effective condurtwitv ellulose will not be affected verv much The natural conductivity cellulose normal to the cham-avis will itself be lou on account of weak secondary bonds in this diucturn Also, the hollow space n if it could not conduct heat to any uppectable extent, will open the possibility of heat radiation across the empty space from one lof the fibre to the opposite one and to this may be added also contribution to heat transfer by convectum m the mtuveming ce The radiation and convection added on to the small conducty of the ar in the hollow space may together mate up the heat asfer across this space comparable to the conductivity of higmon and) quite possibly to the tianserse conductivits of cellulure

Thus the resultant eftect of structure war hisnm on the ductivity of cellulose m wood will be to conndetably dimmash longitudinal conductivity while leaving the taasverse one practiy unaffected, so that the rmsotropy of concluctivits will be sibly reduced

Theory apart, an examination of the experimental rusults ags out certan facts promnenth As agencial rule, the conductir increases with density The conductivits along the the of rminalia Tomentosa' is nearly trice that of 'Bombax Maldhantum I a comparison of the densities of the two wonds shons that the isity ratio is also two Wherc there is a deviatom from this eral rule, photomictography of the section appears to oftei an danation Thus we find that the conductivit of 'Tenmmalla mentosa' is only 62×10^{-1} whle 'Tectona Grandis' with a detmetly
smaller density has a conductivity of 74×10^{-4} The fibres of the former wood are distinctly wavy in chatacter frequently interposed by numerous patches of modullary rays. The medullary rays are usually very much lighter tissues with large hollow spaces and would contribute very hittle to conductivity especially in a direction at right angles to then length 'Tectona Grandis' on the other hand has almost quute stianght fibres runnmg parallel in big patches Thus what is lost in density is more than counter-balanced by a well-ordered structure

Even more remarkable than this variation with density is the variation of thermal conductivity with direction in wood The conductivity in the direction of the fibre is a maximum whle as a general rule the conductivity acioss a tangential section is about two-thrds of it and that acioss a radial section is only about half of it If it is remembered that while flowmg actoss a tangential scction the heat is being tianspoited across the fibres but along the rays while in flowing across a iadial section it is being transported across both the lays and the fibres, it is casy to see that the latter conductivity should be smaller than the former The exception in the case of 'Dalbergia Lalifola' in which the conductuvity across the tadial plane is greater than that across the tangential plane is apparently due to the fact that the fibres are stiongly interlocked and twisted, so that a fibre, instead of running every where longitudually, will fiequently be cutting into the transverse direction with its length now acioss a radial plane and now acioss a tangential plane The higher conductivity along the fibie will therefore contribute to the transverse conductivity and if the shape of the twisted fibre is a helix, as is well-known, with an elliptic section whose majoi axis is normal to the radial plane, the conductivity across the radial planc will be greatet Further it is seen from the photomicrogrdphs that the rays are not at all stianght but aue very much distorted on account of the large twisting and inter locking of the fibies with the result that the transport of heat along the rays which will contribute to the conductivity acioss a tangential plane is very much impeded. It is very signficunt that in 'Bombax Malabaricum' in
sh no real fibre formation is cvident and in whel mechancal ies are thin-walled and proviled with alube number of cossabers, the conductivity is tauly the same 11 all diucitrons Exen us case, the little ditterence thure is betwoen the adial and the ,ental directions is in conformits with the general behar our of -twisted fibres The very low the mad conductivity of this last ies combined with the fact the it is wa hight, arabable in rally r large sizes and $1 s$, unlike the more costh coik, capable of ig eassly worked by hand or on the lathe at vert hesh ds opens up a large possibility for this wood in thermal msulation istries

While there is no much uncertanty and vagueness about the al mechanism of thermal conductivity in nood it is hardly possuble xpect that the temperature vanation of conductivity could bo lained on any simple giounds The results in general, dmont atitatively, confim the observations of Lidiatl about the merease onductivity of wood with rise of temperature Thas howner has 1 observed to be the case only with respect to the and conductivity e the transverse conductivity dmmoshes ubually with isc of temsture up to a point and then begms to inctease Taking the result, ongitudinal conductivaty in conjunction with Euken's observations he variation of conductivity of non-metallic ciyntalline and amoris substances, one is likely to conclude that wood m bulk behars an amorphous substance, but then it will be hard to icconcile this slusion with diminution of conductivity with mucasmis temperature, zast up to a limit, in the transverse diection The very marked otropy of elasticity and thermal expansion will be still more diffeult econcile with this idea Evidently it is not quite in simple a matter lraw such hard and fast conclusions on the nature of matter, ecially of such complex material as wond, merely fiom the behatiour one single property like themal conductivity Indeed, whan ady been pointed out, the phenomenon of thermal condutivity is ditioned by so many other tators, of wheh we hate at prestut so 3 information, that it wall be hazudous to venture upon any gentral clusions at this stage

3 Ther mal expansion - In the following discussion, in orde. to avord the frequent repetition of a qualifying clause, ' a_{1} ' is chosen to represent the coefficient of linear expansion along the fibie, ' a_{2} ' tha actoss the fibie in a tangential plane 1 e , the tangential transverse coefficient of linear expansion and ' a_{9} ' that acioss the fibre in a radia plane $1 e$, the 1 adial transverse coefficient.

An examination of the results given out in Tables 28 to 34 brings out ceitain salient points and il will be well to consider thesi points before attempting a theoretical explanation of them
(1) In genetal, it is found that the coefficient of thermal ex pansion iuns inversely with the Young's Modulus in any direction Thus the longitudund expansion is seveial tumes smallet than th transverse one and it is alieady known that the Iongitudinal elasticit is several times latgei than the transverse one If, however, w find out the exact 1 atio of the transverse coefficient of expansion t the longitudinal one and also the 1 atio of the longitudinal Young' Modulus to the tiansverse one, it is found that the fomes ratio smallet than the latter except in the case of 'Dalbergic Latifolia It is known that the expansion of a body whether in the for of a very thin walled tube or a solid rod of the same dimensio will be the same, so that the very thin walled lays, even thoug they are too weak to add to the strength of wood, add the expansion to that of the fibres The addition of a constant quantit representing the expansion of the rays to those of the fibres 1 the transverse and longitudinal duections will ceitanly reduce th value of this iatio, it being remembered that this 1 atio based upon it inverse relation to elasticity will be an mpioper fiaction (ie, with numerator gieater than the denominator) The exception in the cas of 'Dalbergia Latifolia' is perhaps due to the large twisting and inter locking of the fibres of this wood which might tend to dimunsh th longitudinal expansion still further and thus increase this ratic Further the differences between these two ratios increase wit diminishing value of the density showing that as the amount of fibiou material (which, by the way, will contribute more to the densit
te very thin walled, wade rays) dimmishes, the eflect of the ton of the rays becomes more and more pronounced
, The next point which deserses consideration is the result all the woods stuched, ' a_{2} ' 15 invarnably larger than ' a ' though solute value of the difterence seldom caceeds about 8 , mination of the photo-micrographs of the sections cor respondthese coefficients shows that ' a_{-}' corresponds to the lateral on of fibres frequently inter rupted by layes of medullary 'hile ' a_{3} ' conesponds except in the case of twisted fibres, to an unnteriupted layer of fibres Obvously in the former te expansion of the fibre aganst the weaker rays can take nore easily but more than this is the fact that the expansion rays in therr tiansverse dicction is added on to that of the since ' a_{a} ' corsesponds to a direction normal to hoth the hbre a ray In the case of ' a.', the unnteriupted arrangement fibres might mpede mutual expanson and tuther, the rays parallel to this plane, their contribution towards expansion quite small
(ii1) The last and perhaps the most interesting observatuon ut of the results is the remakable eftuct of temperature mal expansion in the longitudinal and translerit directions. ows a more or less umform mureast in value with rising atures whereas ' a_{2} ' shows a rapid tall in talue It is tuither that nearabouts of $200^{\circ} \mathrm{C}$ the two coethcients tend to become The rapidity in fall of the transverse expansion with mereasing ature, even suggesto that wood, if it can retan its physical ies up to this limit, will probably cease to expand transsersely $250^{\circ} \mathrm{C}$ or so, as though, before reaching this temperature, nsverse expansion of noud had reached its maximum value t no tut ther appieciable expansion was pursible with rise of ature
Any theoretical explanation of the thermal expansion of wood take into account the tollowing mportant expermental fats

1. At ordmay temperatures, the thansverse expansion is
several times larger than the longitudmal expantion $1 e$, theie is a lange anisotropy of expansion

11 As the temperature inses the longitudinal coefficient goes on steadily but slowly incicasing while the taansverse coefficient rapidly dimmorshes in value

111 At temperatures approaching $200^{\circ} \mathrm{C}$ the ansotropy of expansion is negligibly small

For understanding the thermal propertres of matle espectally of the non-metallic kind in the solid state, Debye's conception is very helpful Accoiding to Debye, theimal eneigy is resident in matter as the energy of a system of elastic waves cdused by the nuclear vibiations of the atoms constitulung matter In the theory of specric heats, the theimal energy of a smple lattice luke that of a metal is expressible in terms of Debye functions while in the case of a complex lattice, in addition to the Debye functions, the Enstem funchons corresponding to characteristic oscillators will have to be taken into account also In the case of thermal expansion lukewise, in the case of simple lattices at will be enough to consider the Debye functions on the basis of the Boin-Giunersen theory while for complex lattices it will be necessaiy to take into account the Einstem functions also But whatever oscillators may be considered, the application of quantum considerations to the energy distribution between the vaious nuclear vibrations, with the restriction that the elastic spectrum will be limited by the number of degrees of freedor $N(=3 Z)$ of the Z atoms constituting the system leads to the associ ation of each vibration frequency with a definte quantity called te characteristic temperatue The lower the frequency of oscillation the lower will be the characterstic temperatue Near the chatactensic temperature, any oscillator is as it weie in a state of resonanco and the bulk of the energy of the body will reside in such oscillatons If a system consists of a number of groups of oscillators, each gioup con sisting of a number of oscillators with chanacteristic temperature. lying close together, while the characternstic tempenature varies con siderably from group to group, then as the temperature inses with the
supply of thermal energy, the group cortesponding for the lowest characteristic temperature will be first excited and ds the temperature rises above the highest characteristic temperatue con esponding to this group, all the oscallators of this group would have reached the state corresponding to a statistical equpartition of energy and it more encrgy is supplied, the chances are that other groups previously not canted whose characteristic temperatures he in the neighbourhood of the new temperature would pick up the additional energs and the lower frequency oscillators would be lett more or less at a steady energy state It is very likely that the energy of increasing temponature will go into the fundamental states of the higher groups before diny ot the overtones of the lower groups get appreciably excited

Born ${ }^{82}$ has shown that this conception will requace a slight modification when applied to the case of amsotionu bodies According to Born, the Debye waves in an ansotropic medium wall be propagated with three difterent velocities in the theee promapal duections of elasticity with three sets of overtones An catcnsion of Boin's theory has enabled Gruneisen to explam the otherwise mcomprehensible phenomenon of a negative thermal expansion in certain directions of some crystals at low temperature Giuneisen and Goens ${ }^{83}$ studied the thermal expansion of hexayonal ciystals at low temperatues and find that at these temperatures, the negative expansion takes place along the axes of maximum tlastiuty and as the temperature rises, the magnitude of the negative expansion goes on diminshing numerically, till atter a certam range, the expansion ceases to be negative and becomes positive At low temperatures the excited oscillators will be those corresponding to low frequencies of oscillation and hence will be those in the direction of mmmum elasticity The expansion in the diruction of mmmum elastacity corresponding to these oscallations will calusc lateral contraction (in dccordance with Poisson's ratio) in the direction of maximum thastiaty and since the oscillations corresponding to this latter dinccion would not be excited at low temperatures, the observed ettect will be a contraction in this direction With mureasmg temperature the oscillations in the latter direction will be exuted and the expansions
due to these oscillations will mask the latetal contraction due to the former effect and a positive coefficient is obtaned Adensted ${ }^{88}$ studying single ciystal latices has been able to confum Grunessen's theory and Erflugg ${ }^{88}$ has extended the experiment to a laige number of substances at low temperatures In all these cases the crystal lattices chosen were comparatively sumple and well-known A genetal survey of thermal expansion in elation to crystal stiucture is given by Megaw ${ }^{86}$

The application of the above theory to organic ciystal lattices becomes more and more complicated sunce usually, organic lattices are much more complex than morganic latices and also because the actual amount of definte information on onganc lattices is small In such a case it is more fiulful to correlate expansion not simply with the elastic anisotiopy but also with the chemical structure of the molecules Fortunately even where elastic data ate not correctly known, the nolecular stiucture of many organic molecules is well-known on chemical or X-1ay data Working on this basis, Robertson and Ubellohde ${ }^{87}$ have investigated a number of morganic and organic compounds wilh both ordinaly and heavy hydiogen in the constitution and have found that in compounds contaming hydiogen and hydroxyl bonds, these is marked anisotropy of expansion This is in consonance with the fact already considered in Section IV-I that in compounds contaming hydiogen and hydroxyl bonds, there is marked anisotropy of elısticity

It now becomes easy on the basis of the above considerations to obtan a general explanation of the characteristics of the thermal expansion of wood, but before doing so it will be well to consider the effect of lignon on the thermal expansion of cellulose A.s we know, the structure is a hollow tube of cellulose sheathed in a co-axial lignm tube it is quite well-known that the coefficient of theimal expansion 'is the same for a maternd whether the cross-section is hollow or solid Hence of the two factors, viz., hollow stiucture and the surrounding lignin, which have been consideied in the previous sections as modifying the properties of cellulose, it will only be lignin
to be considered in connection with thermal capansion The citect of lignm, even though lignin is isotropic, will mathe ithelf felt difterently on the longitudinal and on the transicise thermal expansions on account of the large anisotropy of cellulone Comparmg the coefficient of expansion of hgmin and wood in the hogitudinal direction, we find the values ate of comparable magmitudes, w that in the longitudinal direction, when expansion thes place, the cellulose portion and the lignin portion will expand mose or les equally on account of the very large disparity in the staength of cellulose and lignin along the longitudinal dinection any small dittercme in the expansions of the cellulose and lignon camot caicise any appreable influence on the expansion of the cellulose pution

The case of the tiansverse expansion will however be ditterent In this direction the stiength of cellulose 1 s only dbout twice that of hgnon and mutual meteaction will be more pronotuncud Alsa, on account of the weak lateral binding in cellulune, the expansion in this direction of cellulose will be much gieater than the cxparmon ot ligmon Since the relative stiengths are of comparable magmotules, lignin will exert a defmitely restraming eftect on the expansion of cellulose This is apparently the reason why the ratio of the taansverse expansion to the longitudinal expansion in mood is leas than the ratio of the longitudinal Young's Modulus to the transverse Young's Modulus This restraning influence of hignn will dimmsh with increase of temperature since at higher temperaturen the lateral expansion of wood rapidly diminishes and becomes compatide to that of hgmm and hence hgnm does not exercise any apprewable ditterential action on cellulose with respect to dinction

Now coming to a general consideration of the expanston of wood, it is well-known that the lignificd cellalose thsute in wood is an elongated fibre with a length many times greater than the cioss-dimensions and in such a case, the stiucture of the matural will in a large measue determme the expansom Whether wh consuder the macioscopic fibre of woud or the submarosuphe mielles which make up the fibse or the stall smatle cellulose molutules wheh
make up the micelles, it is found that the structure is distunctly in the form of a long thin rod These long thin rods under the supply of heat will behave like a system of lincal haimonic oscillators absorbing energy The ftequency of the thansverse oscillations of such an oscillator will be much smaller than that of the longtudnal oscillations with coriesponding lower characterstic temperatures fot the lateral oscillations and higher chatacteristic temperatures for the longitudinal oscillations Hence at low tempciatures corresponding to low eneigy states, ai will manly be the transverse oscillations corresponding to low energy levels that would be excited This cneigy of transverse oscillation is conserved as between the kinetic energy of the oscilldion and the potential energy of stian m the transverse durection On account of the low value of Young's Modulus of the fibres m a transverse duection (0 the weak hydiogen bonds in the case of the cellulose molecule) even a small eneigy will correspond to a lange amplitude of oscillation, so that at low temperatures the transverse expansion is much greater than the longitudual one

As the temperatue rises with a continued supply of heat eneigy, the energy goes more and more into the longitudinal mode of vibration sunce tiansverse oscillations at these higher temperatures would have already reached the condition of equipaitition consesponding to then trequencies Thus the lateral amplitude will, as it were, ieach a stationary state while the incieasing energy of the longitudinal oscillations with incieasing temperature will give this expansion an meceasing value The decrease of Young's Modulus with incicasing temperatuc might help to augment the amplitude of the longtudmal vibiation and thereby help further to mocrease this coefficient wih temper ature

It will be interesting to obscrve of other fibious matenial, as for instance asbestos, shows a sumilar behaviour to wood

31 Banatt, Proc Phu' Soc, Lohl, 27, x1, 1914
ㄹ. Fan att and Winter, Almin. I'lv, IV-77, 1, 142
j3 Heman, I mber man, 29, 71, 14s

35 Villan, Pogg Inn, 133, 100, 1 anton
36 Glatel, Pogg A $u n, 160,14 \pi, 1 n \pi 7$

38 Stmeasan, Proc Indun Acud 4u, 5, tu: 19,7

10 K'isser and Cluwell Stan Ieh , 5, 1世, 19,0

42 Fant, Natule, 146, 15s, Aus 1911

40 Fies, Wyorlm, Se Plog, 34, 249, 19, is
1t Payen, CR 7, 1052, 18:8, 48, 119, 18, 4
(i) Femy (R 48, 202, 1959

47 Willstatu and Zechmester, Be1, 46, 2101, 141,
48 Klisun, Bet, 53, 706, 1920, 55, 418, 1427
49 Schulac, Chem Lent, 28, :21, 18:7
50 Didgemdiut, Plant Analysin, Eng Eilitan, I mad, in 1
31 Dore, Ilul Eng (hem, 12, 475, 19.0
52 Ritter and Flech, Inl Lug dhem, 15, $10,1,1{ }^{\prime \prime}$
54 Komy and Becket, \angle ang acm, 32, 155, 1914
54 Cuhen ud Muhnes, 7 Coun fe Ind Res (111), Vul XII, Au 4, 1934
$5 b$ Nomman and Jenkms, Broch fo , 28, 2147, 19: 1
5t, Noman dud Jenhims, Buch 7, 27, 2it, 19,3
57 Kittu, Soborg and Mitchell, Inl Lug chem lhaly eal, 4, 2H2, 19.5.
38 Staudnger, Numberos contuibutovs to bor Du howimolehulaten
Verbindungen, Beilun, 1932
59 Hawoith, Nature, 129, 365, 19:3 if CS (I ond), 119, 193, 1921
129, 2809, 1927

6. Heas, Ber, 63, 1922, 19:0

65 Sponsler, Natureq 125, 6d: $19: 0$

bí Buage, Xature, 125, 635, 1950

6a Meyel and Lotmak, Hab Lem Lula, 19, bs 14,
10

68 Huggins, \mathcal{F} org chem, 1, 407, 1987, Bernal and Megaw, PRSA 151, 384, 1985

69 For a buet discustion on hydiogen ind hydioxyl bonds, tefer Evans, Ciystal Chemustiy, Camb Unv Press, 19.39, p 259, at seq

70 Benal and Megaw, l'RSA151, 418, 1995, Wilson, FCS, 1935, page 492

71 Rittei, Ind, Eng Chen , 17, 1194, 1925
72 Fieudenberg, f Chem Lduc, 9, 1171, 1932
73 Clath, 9 Folestry, 9, 132,1935
74 bouthwell, Iheory of Ela, Imaty, O, fond, 1930, 1 10t
Ts Pigeaud, Resustance des Maternan ol Elastocite, p 164
76 Refet Sent/ and Johnsm, 9 App Phyucs, 8, 81, 186 and 246, 1937
77 Blackinan, P RS 4,148 , 365 and 381,1935
76) Inten natonal cutucal Tabler, Vol V, p 100

79 Raman and Venhateswatcun, Natue, 142, 450, 1988
80 Intennational cuitual Tables, Vol V, p 126
81 Intenational cutical T'ables, Vol V, p 231
82 Max Bon, Phy Zett, 13, 297, 1942
83 Gilunessen*and Goens, Z ['hy, 29, 141,1924
81 Adenstedl, Aun Phy, V 26, 69, 1936
85 Eafling, Anu Plyy, V. 34, 1361, 1939
86 Megaw, Zelt Krist, 100, 70, 1938
87. Robettson and Ubellohde, P R S A 174, 241, 1939

