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Abstract | The realization of optical lattices of cold atoms has opened
up the possibility of engineering interacting lattice systems of bosons
and fermions, stimulating a frenzy of research over the last decade.
More recently, experimental techniques have been developed to apply
synthetic gauge fields to these optical lattices. As a result, it has become
possible to study quantum Hall physics and the effects of frustration in
lattices of cold atoms. In this article we describe the combined effect of
frustration and interactions on the superfluidity of bosons. By focussing on
a frustrated ladder of interacting bosons, we show that the effect of frustra-
tion is for “chiral” order to develop, which manifests itself as an alternating
pattern of circulating supercurrents. Remarkably, this order persists even
when superfluidity is lost and the system enters a Mott phase giving rise to
a novel chiral Mott insulator. We describe the combined physics of frustra-
tion and interactions by studying a fully frustrated one dimensional model of
interacting bosons. The model is studied using mean-field theory, a direct
quantum simulation and a higher dimensional classical theory in order to
offer a full description of the different quantum phases contained in it and
transitions between the different phases. In addition, we provide phys-
ical descriptions of the chiral Mott insulator as a vortex-anitvortex super
solid and indirect excitonic condensate in addition to obtaining a varia-
tional wavefunction for it. We also briefly describe the chiral Mott states
arising in other microscopic models.

1 Introduction
Over the last two decades, several technical
advances in the field of trapping and cooling of
ultra-cold atoms has made it possible to study
the collective behaviour of bosons, fermions and
their mixtures. Pioneering experimental work in
this field led to the realisation of a Bose-Einstein-
Condensate (BEC) in a system of Rb atoms.1,2
Associated with the phenomenon of Bose-Einstein
Condensation is the related phenomenon of super-
fluidity, where a fluid of particles flows with no
viscosity. While He at very low temperatures
(<2.7 K) is known to be a superfluid, its relatively
high density makes it quite different from the ide-
alized non-interacting BEC predicted by Einstein
building on the work of Bose.3–5 A BEC of cold
alkali atoms, which is at much lower densities
than He is a much better approximation to the
idealized BEC. More recently, BECs of bosons

with non-zero spin have also been realized which
have made it possible to investigate a combination
of superfluid and magnetic behavior.6 Almost a
decade later, using Rb atoms, a condensate of
fermionic pairs was realized in a system of K
atoms.7 e fermionic atoms of K pair up like
in a superconductor due to an attractive inter-
action among them. An area of intense activity
is the study of the dynamics of pairing in such
fermionic systems, especially the transition from
having a superfluid of weakly attracting fermions
(the so-called BCS state) to one where a strong
attraction causes the fermions to pair up first and
then condense (the so-called BEC state).8

e realization of many body bosonic and
fermionic states in systems of cold atoms opens
up the possibility of using them to emulate such
states found in solid state systems. An advantage
afforded by cold atomic systems is the tunability of
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microscopic parameters, which is oen extremely
difficult in actual solid systems; another is the
elimination of effects of disorder and phonons,
which might hinder the study of the effects of cor-
relations among the bosons and fermions. Real
solid systems typically exist on lattices and have
correlations among the elementary degrees of free-
dom such as in magnets and superconductors
(for fermions) or Josephson junction arrays (for
bosons). A phase transition from a superfluid to
an insulating Mott state had been predicted theo-
retically for Josephson junction arrays9 which was
observed by Greiner et al. in an important exper-
iment, in a system of cold atoms trapped to form
an optical lattice.10 is observation sparked off a
rush of experimental and theoretical work over the
last decade aimed at studying the effect of correla-
tions in lattice systems of cold atoms.11,12

An important technological development
over the last few years has been the ability to
apply synthetic gauge fields to lattice systems
of ultra-cold atoms.13 e alkali atoms that are
used in conventional cold atom experiments are
electrically neutral, and hence their orbital degrees
of freedom do not couple to ordinary magnetic
fields. However, exploiting the physics of Raman
transitions in the alkali atoms has enabled the
production of synthetic gauge fields that couple to
orbital degrees of freedom, mimicking the effect
of a magnetic field on a gas of Rb atoms.14,15
Artificial magnetic fields have also been applied
to optical lattices of cold atoms in a variety of
different ways. ese include applying homoge-
neous16 and inhomogeneous fluxes,17,18 Zeeman
techniques,19 and driving the optical lattice with
a time dependent potential.20,21 e interplay of
lattice effects and magnetic fields gives rise to very
interesting physics such as that of the Hofstadter
butterfly and the quantum Hall effect in lattice
systems.22 Moreover, the technique of generating
artificial gauge fields can also be extended to
produce spin-orbit coupling23–27 which is known
to be responsible for producing novel states of
matter such as the topological insulator in solid
state systems.28–30 e spin hall effect has been
observed in cold atomic systems.31

Artificial gauge fields can be used to thread
fluxes through the plaquettes of optical lattices.
For the right values of the flux, this can intro-
duce “kinetic frustration” producing degenerate
multiple minima in the band structure. If bosons
had to condense in such a landscape, the multiple
minima would frustrate condensation into a sin-
gle minimum. Any superfluid state thus formed,
would in addition to breaking gauge symmetry,
(which is responsible for superfluidity) also break

a discrete symmetry corresponding to the choice
of minimum (or a particular linear combination)
to condense in. is has been demonstrated in
the case of weak repulsive interactions among the
bosons.32–36 A natural question to ask is, as to
what happens when the strength of the repulsion
increases. For a very large repulsion, it can be
argued that a regularMott insulator (MI) develops,
which does not break any symmetries. However,
at intermediate strength it has been argued that,
for maximum frustration, a novel Chiral Mott
Insulator (CMI) state that has no superfluidity
develops, but breaks the discrete symmetry arising
from frustration.37–41 An example of a lattice
that is maximally frustrated is one with square
plaquettes and a flux equal to π per plaquette.
When repulsive on site interactions are added
to such a lattice for bosons, the model obtained
is the Fully Frustrated Bose Hubbard (FFBH)
model. e chiral order that develops due to the
frustration manifests itself as an alternating pat-
tern of clockwise and anti-clockwise currents on
neighboring plaquettes. e superfluid obtained
at weak interaction strength also possesses this
order, and is thus a Chiral Superfluid (CSF).

Classical analogues of the FFBH have been
studied in the past.42–45 e simplest example of
such a model is the fully frustrated XY model,
which displays three phases: a low temperature
phase which corresponds to in-plane magnetic
order and a staggered chirality of the spins in adja-
cent plaquettes, an intermediate phase where the
chirality remains but the in-plane order is lost, and
finally a high temperature phase which is fully dis-
ordered. ese phase are the analogues of the CSF,
CMI and MI respectively.

In this article, we describe the physics of
chiral states in the interacting bosonic systems
by focussing a specific model, a one dimensional
fully frustrated square ladder. We first describe
the Hamiltonian of the model and the phases it is
expected to contain. We then provide a mean field
description of the Hamiltonian, which provides
the simplest description of the CSF phase and the
phase transition out of it. It will be seen that at the
mean-field level, the exist. To capture the CMI,
quantum fluctuations that are absent in the mean-
field description have to be included. is will be
done in two ways: 1) by simulating the quantum
mechanical system directly using the Density
Matrix Renormalization Group (DMRG) algo-
rithm, and 2) by mapping the Hamiltonian onto a
higher dimensional classical model and then per-
forming Monte-Carlo simulations on that model.
Both of these techniques will allow a clear descrip-
tion of all the phases contained in themodel (most
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importantly the CMI) and the transitions between
them. We will then provide physical pictures for
the CMI, as a vortex-antivortex supersolid and
an indirect excitonic condensate, and also furnish
a variational wavefunction that describes it. We
will conclude with a brief description of the CMI
phase in other bosonic systems.

2 Hamiltonian and Phases
e system of interacting bosons on a ladder with
a frustrating π flux per plaquette is shown in Fig. 1.
e microscopic Hamiltonian for such a system
(which we call the fully frustrated Bose-Hubbard
ladder) is

H = −t
∑
x

(a†xax++a†x+ax)

+ t
∑
x

(b†xbx++b†x+bx)

− t⊥
∑
x

(a†xbx + b†xax)

+
U


∑
x

(na,x + nb,x) (1)

where ax and bx are bosonic operators on each of
the two legs of the ladder whose sites are labeled
by x. e hopping amplitudes along the two legs
are t and −t, while t⊥ is the amplitude along the
rungs.37,38 U is the on-site repulsion. e oppo-
site signs of the hopping amplitude along the two
legs provides the π flux that fully frustrates the lad-
der. However, it should be noted that this corre-
sponds to a particular choice of gauge. Another
gauge choice is one in which the hopping ampli-
tude is the same along both legs but t⊥ alternates
in sign from rung to rung. e phases and phase
transitions we describe are characterized by gauge
independent quantities, and so we pick the most
convenient gauge for us to work in, which is the
one described above. We analyze the system at a
filling of one boson per site in order to study both
superfluid and Mott phases.

..

Figure 1: The fully frustrated Bose-Hubbard lad-
der. The hopping is equal and opposite on the
two legs a and b legs generating a π-flux through
each plaquette. This gives rise to spontaneously
generated staggered loop currents that are also
shown.

..

Figure 2: (Top) The band structure obtained in
Eqn. 1 with U = 0 and t⊥ = 0. For t > 0, the
lower (upper) band corresponds to the a (b) leg as
is shown by the solid (dashed) line. (Bottom) For
t⊥ ̸= 0, the degeneracies at k = ±π/2 are lifted
resulting in a gap and two minima. The k = 0 (π)
minimumoriginates from the lower (upper) band of
the two decoupled chains, and thus corresponds
to the particles being localized mostly in the a
(b) legs.

To understand the superfluid phase, we look
at Eqn. 1 with U = . e band structure thus
obtained can be understood systematically in
the following way: If t⊥ = , the two legs are
decoupled and give rise to the two bands shown
in the top panel of Fig. 2 which are degenerate at
k = ±π/. t⊥ ̸=  lis this degeneracy yielding
the band structure shown in the bottom panel of
Fig. 2. ere are now two minima at k =  and
k = π, which correspond to the particles being
mostly on the a and b legs. e occurrence of these
two minima is a consequence of the frustration in
the system.

e most general superfluid state that can be
obtained for bosons with the above dispersion is
one in which they condense in a state which has
the general forma

|ψ⟩ = A|k = ⟩+ B|k = π⟩

e mean occupancies of the two legs are pro-
portional to |A| and |B|. Switching on U dis-
favours double occupancy. Since the filling is one
boson per site, this implies that |A| = |B| and thus
the wavefunction has the form

|ψ⟩ = |A|eiθ
(
|k = ⟩+ eiϕ|k = π⟩

)
(2)

where θ is the global phase and ϕ, the relative
phase between the states corresponding to the two

a Since this is a one dimensional system, only a quasi-
condensate is formed.
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minima. As will be shown below, ϕ = ±π/,
implying that a U() × Z symmetry is broken
in the superfluid state with U() corresponding
to θ and Z to ϕ. Since this a one dimensional
system, the U() order is quasi-long-ranged while
the Z order is truly long-ranged. e Z Ising
degree of freedom corresponds to the pattern of
staggered currents shown in Fig. 1. us, the
superfluid state is one in which there is “chiral”
pattern of supercurrents and is the Chiral Super-
fluid (CSF). Increasing U leads to a localization of
the bosons resulting in a Mott insulator.9 How-
ever, in contrast to the regular Mott transition in
interacting Bose systems, this system of frustrated
bosons undergoes two transitions, one each corre-
sponding to restoring theU() and Z symmetries.
e situation here is reminiscent of classical two
dimensional fully frustrated XY systems, which
too have a low temperature phase with quasi-
long-rangedU() order and true long-ranged Ising
order.42 As the temperature is increased, the U()
symmetry is first restored followed by the Z sym-
metry via Berezinski-Kosterlitz-ouless (BKT)
and 2D Ising transitions respectively.46 We will
make this analogy of the frustrated system of
bosons with the classical two dimensional sys-
tem more concrete, and show that the former too
undergoes the same sequence of transitions.

For our system, the phase that is obtained aer
both symmetries has been restored is the regular
Mott insulator, seen in more conventional systems
of interacting bosons.10 However, the intermedi-
ate phase, which corresponds to the U() symme-
try being restored but the Z symmetry broken
is a new kind of insulating phase, which has a
staggered pattern of currents. is is the Chiral
Mott Insulator (CMI), and as we will argue, can
be thought of as a vortex-antivortex supersolid or
an indirect excitonic condensate. us, the fully
frustrated ladder of interacting bosons has three
phases—the chiral superfluid, the chiralMott insu-
lator and the Mott insulator.

3 Mean-Field Theory
e simplest way to understand the CSF state is
through a mean-field analysis of the Hamiltonian
of Eqn. 1. It can be shown that the low energy
mean-field theory describing the system is of the
form

Emft
low = (−E − µ)

∑
i=,π

|φi|

+ U(u + v)
∑
i=,π

|φi|

+ Uuv

|φ||φπ|

+ Uuv

(φ

∗
 φ


π + φ∗

π φ

) (3)

where φi is the amplitude to condense bosons in
the i =  or π minimum.38 µ is the chemical
potential and

uk =
√

+ gk
=

√



(
+

t cos k
Ek

)
(4)

vk =
gk√
+ gk

=

√



(
− t cos k

Ek

)
(5)

ukvk =
t⊥
Ek

(6)

where gk = (Ek − t)/t⊥ with

Ek =
√
t⊥ + (t cos k) (7)

the single bosondispersion. It should be noted that
uk+π = vk and vk+π = uk, so that in particu-
lar uπ = v and vπ = u, which are the quanti-
ties that appear in Eqn. 3. Minimizing the energy
in Eqn. 3 with respect to φi gives |φ| = |φπ|,
and the phase difference between the two ampli-
tudes equal to ±π/. e latter is a consequence
of the last umklapp term on the right-hand side of
Eqn. 3. It can be shown that the superfluid state
thus described has bond currents of the form

jax,x+ = ∓tψuv(−)x

jbx,x+ = ±tψuv(−)x

jabx = ∓t⊥ψ(u − v)(−)x (8)

where ja(b)x,x+ is the current along a bond between
sites x and x +  along the a(b) leg, and jabx is the
current along the rung situated at x. It can be seen
from the forms of these currents that they corre-
spond exactly to the pattern of currents shown in
Fig. 1 and also that current is conserved at each
vertex.

A single-site mean field analysis of the Hamil-
tonian of Eqn. 1 allows us to study the Mott phase.
It can be shown that such an analysis yields only
a single transition from the CSF to the MI with a
phase boundary for the nth Mott lobe given by

√
t + t⊥

=
n

µ− U(n− )
+

n+ 
Un− µ

(9)

with U(n − ) < µ < Un.38 us, the CMI phase
is a product of quantum fluctuations not captured
by a single-site mean field theory and requires
other techniques for its analysis. We describe two
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such techniques below which are a) a Density
Matrix Renormalization Group (DMRG) study of
the Hamiltonian of Eqn. 1 and b) a Monte-Carlo
simulation of an equivalent classical two dimen-
sional system.

4 DMRG Calculations
DMRG is a technique that is most suited for the
determination of the ground state of a one dimen-
sional Hamiltonian, and is based on the matrix
product representation of the state.47,48 DMRG
calculations for the Hamiltonian of Eqn. 1 have
been performed for systems up to 200 siteswith the
occupancy restricted to 6 bosons per site.37 Fur-
ther, up to 200 terms were retained in the matrix
product representation. e different phases were
characterized by calculating the occupancy of the
k =  state, n(k = ) and the current-current
structure factor

Sj(k) =

L

∑
x,x′

eik(x−x′)⟨jxjx′⟩ (10)

where the current jx = i
(
a†xbx − b†xax

)
. Staggered

current ordering corresponds to a non-zero struc-
ture factor at k = π, which can be regarded as the
order parameter for this type of ordering.

e transition from the CSF to CMI phase is of
the BKT type as can be seen from the character-
istic BKT finite-size scaling of n(k = ) in Fig. 4.
At the transition, a charge gap opens up going into
the CMI phase even as S(k = π) remains non-
zero and continuous since both phases have chi-
ral order. is concurrent opening of a charge gap
at the transition determined from the BKT scaling
can also be seen in Fig. 3.

e transition from the CMI to the MI phase
corresponds to the disappearance of chiral order.
e relevant order parameter to detect this transi-
tion is thus S(k = π). Appropriate scaling plots
of S(k = π) are shown in Fig. 3, where it can be
seen that a sharp transition is obtained when the
relevant critical exponents are of the 2D Ising uni-
versality class. It should be noted that the scaling
analysis to obtain each of the two transitions is dif-
ferent since the CSF phase only has algebraically
long-ranged superfluid order while the CMI phase
has true long-ranged chiral order.

On the basis of the DMRG calculations, we can
obtain the phase diagram shown in Fig. 4. It can be
seen that while the two transitions are quite close
to each other in the parameter space of the Hamil-
tonian of Eqn. 1, they clearly mark out a sliver of
the CMI phase separating the CSF and the CMI
phase.

..

Figure 3: From Ref 37. (A) DMRG results for

n(k = 0)L
−3/4

versus U/t, for the Hamiltonian in
Eqn. 1 with t⊥ = t and various L. The crossing
of these curves at a particular value of Uc1/t is
indicative of a BKT transition from the CSF to CMI
phase. The inset shows the onset of the charge
gap at Uc1/t. (B) The structure factor S j (k =

π)L
2β/ν

versus U/t for different L with t⊥ = t
where β = 1/8 and ν = 1 are the order parameter
and correlation length critical exponents of the 2D
Ising universality class. The intersection of these
curves at a point Uc2/t indicates a transition from
the CMI to MI in the 2D Ising universality class.

The inset shows S j (k = π)L
2β/ν

versus δL
1/ν

with
δ ≡ (U − Uc2 )/t, plotted for different U/t, leading
to a scaling collapse.

..

Figure 4: From Ref 37. Phase diagram of the
Hamiltonian in Eqn. 1 obtained using DMRG.
A sliver of CMI can be seen in parameter space
separating the CSF and MI phases.

5 Classical 2D Model
In this section we make the connection of our sys-
tem to classical 2DXY type systems, alluded to ear-
lier, clearer. Our starting point is a representation
of the bosons in terms of quantum rotor fields. We
set ax ∼ e−iφa

x and bx ∼ e−iφb
x , where ϕa(b)x is

the rotor field corresponding to the leg a(b). e

Journal of the Indian Institute of Science | VOL 94:2 | Apr.–Jun. 2014 | journal.iisc.ernet.in 193



Subroto Mukherjee

number operators na,b are replaced by the angu-
lar momentum operators ∂

∂φ(a,b) . e quantum
propagator of the system can now be obtained in
terms of a classical action in one higher dimension
given by

S+
cl = −

∑
xτ

[
J∥ cos(φa

x+,τ − φa
x,τ )

− J∥ cos(φb
x+,τ − φb

x,τ )

+ J⊥ cos(φa
x,τ − φb

x,τ )
]

− Jτ
∑
xτ

[
cos(φa

x,τ+ − φa
x,τ )

+ cos(φb
x,τ+ − φb

x,τ )
]

(11)

where ϵ = J∥, ϵ⊥ = J⊥, and /ϵU = Jτ with
ϵ being the discretization in the extra (imaginary
time) dimension.38 τ labels the imaginary time
coordinate. It should be noted that ϵ is not just a
simple multiplicative constant and thus the quan-
tum model does not have a unique classical coun-
terpart; there is a different classical model for each
value of ϵ. Nevertheless, all of these models are
in the same universality class and will display the
same phases and phase transitions.

Monte-Carlo simulations have been performed
for the action in Eqn. 11.38 It can be seen that
this action has three parameters J∥, J⊥ and Jτ as
opposed to the two parametersU/t and t⊥/t of the
Hamiltonian of Eqn. 1 reflecting the appearance of
the parameter ϵ. Monte-Carlo simulations results
with J∥ = Jτ and J⊥ =  are shown in Fig. 5.

e CSF phase in this model has quasi-long
range order in the variables φ and staggered cur-
rents in the plaquettes perpendicular to the imag-
inary time direction. e CMI phase has only the
staggered current orderwhile theMI phase is com-
pletely disordered. eCSF-CMI transition is thus
of the BKT characterized by the disappearance of
the phase stiffness or helicitymodulusΓ associated
with the variable φ. Formally,

Γ =


∂F
∂Φ

∣∣∣∣
Φ→

(12)

where the free energy

F = − log
∑

{φx,τ}

e−S+
cl (13)

andΦ is the flux twist along the ∥ direction. A plot
of Γ as a function of /Jτ is shown in Fig. 5 and
it can be seen that there is indeed a BKT transition
accompanied by a jump in Γ that gets sharper with
increasing system size approaching its thermody-
namic limit value of /π. e inset shows the RMS
error of a fit to a finite-sized scaling form for Γ(L)

..

Figure 5: From Ref 37. (A) Helicity modulus Γ

versus 1/Jτ for different system sizes for J⊥ = 1
and J∥ = Jτ . (A-Inset) RMS error of fit to the
BKT finite size scaling form of Γ enables a precise
determination of the transition at the transition and
jump ∆Γ ≈ 0.637, close to the BKT value of 2/π.
(B) Binder cumulants for the staggered current
versus 1/Jτ (for different L for J⊥ = 1) intersect
showing a continuous transition. (B-inset) Criti-
cal susceptibility versus L gives the ratio of critical
exponents γ/ν≈1.72, very close to 2D Ising value
γ/ν = 7/4.

whose minimum lets us detect the transition more
clearly.49

e method of Binder cumulants50 is most
suited to detect the transition from the CMI to
the MI since the former has true long range order.
For an order parameterm, the Binder cumulant is
defined as

BL =

(
− ⟨m⟩L

⟨m⟩L

)
(14)

where L is the system size. e staggered current
order parameter is given by

m =

L

∑
iτ

(−)i Jiτ (15)

where Jiτ is the current around a plaquette normal
to the time direction. i and τ label the coordinates
in the ∥ and time directions. If a(i, τ), a(i + , τ),
b(i+, τ) and b(i, τ) are the vertices of the plaque-
tte going around clockwise, then

Jiτ = J∥
[
sin

(
φa
i+,τ − φa

i,τ
)

+ sin
(
φb
i,τ − φb

i+,τ
)]

+ J⊥
[
sin

(
φb
i+,τ − φa

i+,τ
)

+ sin
(
φa
i,τ − φb

i,τ
)]

(16)

m is an Ising type order parameter since the cur-
rent in a plaquette can be clockwise or coun-
terclockwise. Curves of BL for different L as a
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..

Figure 6: From Ref. 37. Phase diagram for the
action in Eqn. 11 with J∥ = Jτ obtained from
Monte-Carlo simulations. The three phases CSF,
CMI and MI can be clearly seen and the transition
from the CSF to CMI phase is of the BKT type while
from the CMI to the MI is of the Ising type.

function of the tuning parameter intersect at the
transition, and this intersection point can be used
to find the precise location of the transition. An
advantage of this method is that the detection of
the transition does not require any knowledge of
its universality class, only that the ordered state has
long range order. Plots of the Binder cumulant are
shown in Fig. 5, from which it can be clearly seen
that there is a transition at which staggered cur-
rent order disappears. Having located the transi-
tion this way, it is confirmed to be in the 2D Ising
universality class by plotting the critical suscepti-
bility as a function of system size, yielding the right
value for the exponent γ/ν.

e phase diagram obtained from these
Monte-Carlo simulations is shown in Fig. 6. As
in Fig. 4, it can be seen that there is a region of
the CMI sandwiched between the CSF and the
MI phases. It should be noted that the size and
shape of the region of the CMI in parameter
space in Fig. 6 is different from that in Fig. 4.
is is because, as mentioned earlier, the classical
action in Eqn. 11 does not uniquely correspond
to the quantum Hamiltonian Eqn. 1, requiring an
additional parameter ϵ. However, as expected the
phases and phase transitions are the same for the
two models.

6 Physical Pictures of the CMI
As seen from the above analysis, the CMI phase
is an interesting new phase with a charge gap
and staggered currents (chiral order). Two phys-
ical descriptions are of this phase as a) a vortex-
antivortex supersolid and b) an indirect excitonic
condensate.38

6.1 Vortex-antivortex supersolid
We first start with the CSF, which in the absence
of quantum fluctuations can be thought of as
a perfect vortex-antivortex crystal since such a
crystal has the required long-ranged staggered
current order. On the other hand, the MI without
quantum fluctuations can be thought of as a
superfluid with perfectly mobile vortices and
antivortices which destroy superfluid order and
introduce a charge gap. An intermediate situation
can be envisaged in which the vortex-antivortex
solid develops a small number of coherent defects
which can move about destroying the super-
fluidity but still maintaining the chiral order.
is resulting phase, which can be thought of
as a vortex-antivortex supersolid, is the CMI.
From the above discussion, it is clear that the
transition from vortex-antivortex solid (CSF) to
vortex-antivortex supersolid (CMI) to vortex-
antivortex superfluid (MI) happens as a function
of increasing interaction strength.

6.2 Indirect excitonic condensate
Amore quantitative picture of the CMI is afforded
by thinking of it as an indirect excitonic conden-
sate. In this picture, the CMI is approached from
the MI phase. e excitations of the Mott phase
are states of double occupancy (doublons) and zero
occupancy (holes). ese excitations require a
finite amount of energy to create since the Mott
state is gapped and aremobile and so have a disper-
sion in momentum k. It can be shown that the dis-
persion of the doublons and holons ε(k) is given by

ε(k) =
U

−
(
n +




)
E(k) (17)

where the chemical potential has been adjusted
to give the same dispersion for both types of
excitations.38 E(k) is the single particle dispersion
given by Eqn. 7. A very crude estimate of the
transition from the Mott state to a superfluid state
is obtained by setting ε(k) =  such that the
doublon and holon excitations become gapless.
is gives a value of the transition point that is
within a factor of 2 of the DMRG result for t = t⊥.
is result also suggests that the doublons and
holons can be thought of as being like gapped par-
ticles and holes in a semiconductor and the Mott
transition can be thought of as the metallization
of a semiconductor. e semiconductor picture
of a Mott insulating state allows us to think of
particle-hole bound states analogous to excitons.
When the charge gap is small, in the vicinity of the
superfluid to Mott transition, it might be favorable
to create such excitons. Since the dispersion E(k)
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has twominima (at k =  and k = π), the excitons
thus created can be direct or indirect. It can be
shown that the rung current operator in the Mott
phase can be written as

jab(x)|Mott⟩ = −it⊥
√
n(n+)(d†a(x)h

†
b(x)

− d†b(x)h
†
a(x))|Mott, ⟩ (18)

where n is the filling factor and d†a(b)(x) creates
a doublon at positon x in leg a(b), while h†a(b)(x)
creates a holon at position x in leg a(b).38 Writing
d†a(b) and h†a(b) in momentum space, it can be
shown that long range staggered order in jab
can be produced when the composite operator
d†h†π − h†d†π acquires an expectation value while
d†/π and h†/π do not.38 Here d†/π and h†/π create
doublons and holons respectively at k =  and
k = π. Physically, this corresponds to condensing
excitons with the particles and holes at different
minima, and thus a picture of the CMI is that of an
indirect condensate of excitons. It should be noted
that the number of excitations at each minimum
can change due to umklapp processes which can
scatter a pair of bosons from one valley to another
without changing crystal momentum. us, the
exciton condensate only breaks a discrete Z
symmetry associated with the parity of bosons
in each valley as opposed to a U() symmetry
normally associated with condensates.

While the above analysis gives us a physical pic-
ture of the CMI, it does not establish that such
a state should actually exist. Indeed, an alterna-
tive picture could involve a combined presence
of holon and doublon modes and such excitons
which might render the transition first order.

6.3 Variational wavefunction
A wavefunction for the CMI can be constructed
starting with the wavefunction for the CSF and
multiplying it by appropriate Jastrow factors. Such
a wavefunction is of the form

Ψ(r, r, . . . , rN) = e−
∑

i,j ṽ(ri−rj)

×ΨCSF(r, r, . . . , rN) (19)

where r, r, . . . , rN are the coordinates of the N
bosons in the state. e Jastrow factor ṽ is cho-
sen to have an on site (Gutzwiller) piece with
strength gS and a long-ranged piece with Fourier
transform ṽLR(q) = /( − cos q) with strength
gL. is choice of ṽLR produces the /q depen-
dence at small q required for a 1D insulator.51 e
properties of the resultant wavefunction have been
studied using Monte-Carlo sampling with –
boson configurations on a two leg ladder with up

..

Figure 7: From Ref. 38. The two point correla-

tor G
(2)

(x − x′) = ⟨a†x ax ′ ⟩ computed using varia-
tional Monte Carlo method for: (i) the mean field
CSF state (circles) with off-diagonal long range
order, (ii) a correlated CSF with only an on site
Gutzwiller factor (squares), and (iii) the CMI state
with an additional long-range Jastrow (triangles)

which leads to an exponential decay of G
(2)

(x −
x ′). The oscillations arise from low energy boson
modes at momenta k = 0 and k = π. (Inset) The
staggered current order (−1)

x ⟨J2(x)⟩ is non-zero
in the mean field CSF and in the CMI.

to 500 sites. e result of such a sampling for the
two point correlatorG()(x−x′) is shown in Fig. 7.

It can be seen that G()(x− x′) does not decay
in the CSF state as expected, and even the intro-
duction of short range Gutzwiller correlations
with gS = , while weakening the off-diagonal
long range order (and thereby lowering the value
ofG()(x−x′)) does not destroy superfluidity. It is
only upon the introduction of a further long range
Jastrow factor with gL = . that G()(x − x′)
decays exponentially indicating the opening of a
gap. e inset of Fig. 7 shows that the staggered
current order parameter is indeed non-zero when
both gS and gL are non-zero. us, the state
described by the variational wavefunction with
short and long ranged Jastrow factors is indeed
the CMI.

7 The Chiral Mott Insulator
in Other Systems

In the previous sections, we have shown that
the CMI develops in the fully frustrated two-leg
Bose ladder. A natural question to ask is whether
it can be seen in other frustrated lattice mod-
els. A natural candidate is a triangular lattice,
which was recently studied by Zalatel et al.39 e
Hamiltonian they considered was

H =
∑
⟨i,j⟩

[
tb†i bj + h.c.+ Vδniδnj

]
+

U


∑
i

(δni)
 (20)
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where ⟨i, j⟩ labels pairs of nearest-neighbour sites
on the triangular lattice and δni is the occupancy
of site i above an integer filling n. t >  ensures
that the band structure is inverted and there are
two minima at the Brillouin zone boundaries pro-
viding the frustration in this model. Starting with
the wavefunction for the MI (which corresponds
to an occupancy of exactly n bosons at every
site), Zalatel et al. documented/presented/derived
variational wavefunctions for the CSF and CMI.
Minimizing the energy given by Eqn. 20 for each
of the three states, they found that the CSF, CMI
and MI can all exist within the parameter space of
the Hamiltonian. However, a nearest neighbour
interaction term with V >  was required at this
mean-field level to obtain the CMI; without the
interaction, there is a direct transition from the
CSF to the MI like in the mean-field theory for the
fully frustrated two-leg Bose ladder. Zalatel et al.
also performed a DMRG calculation on triangular
ladders of up to 4 legs to detect the CMI and a
bosonization calculation to argue for the existence
of the three phases in these ladders.

A different system in which the CMI phase is
seen was studied by Petrescu and Le Hur.41 ey
considered a system of two species of interacting
bosons capable of inter-conversion and subject to
a gauge field. eHamiltonian describing this sys-
tem is given by

H = −

 ∑
α,⟨i,j⟩

teiA
α
ij b†αibαj + geiA⊥ib†ibj + h.c.


+ V⊥

∑
i

nini +
U


∑
αi

nαi (nαi − )

− µ
∑
αi

nαi (21)

where  and  label the two species of bosonswhich
can be though to reside on the upper and lower legs
of a one dimensional ladder respectively, and ⟨ij⟩
represents nearest neighbour sites i and j along a
leg of the adder. g is the amplitude for interspecies
conversion and V an interaction term for the two
species of bosons on the same site which exists in
addition to the on-site intra-species interaction U.
ere exists in addition, a gauge fieldAwhich pro-
vides a fluxχ through each plaquette. Petrescu and
Le Hur studied this model using bosonization and
exact diagonalization, and obtained the phase dia-
gram for different types of Mott phases (obtained
by tuning the chemical potential µ appropriately)
as a function of the flux χ. For χ = π, the
Hamiltonian of Eqn. 21 describes the fully frus-
trated two leg Bose-Hubbad ladder except for the
on-site interaction, and displays a CMI phase. For

lower values of flux above a critical value χc, flux
lattices are obtained with a certain number of pla-
quettes per unit cell depending on the value of flux
as a fraction of 2π. Below χc, there is a “Meissner
phase” with currents flowing only along the legs
(and not the rungs), going one way on the upper
leg and the other way along the bottom leg.

8 Conclusions
e combination of frustration and interactions
on lattice bosons opens up a window to exciting
new physics and novel new phases and transitions.
Frustration can be realized by applying synthetic
gauge fields whichmakes it possible to observe and
study these phases experimentally. In particular,
in this article we have shown that a novel chiral
Mott insulator is realized in the fully frustrated
two leg Bose-Hubbard ladder. is phase has a
charge gap (and hence no superfluidity), but chi-
ral order through a pattern of staggered vortices
and antivortice. is phase and the transitions out
of it into the chiral superfluid and regular Mott
insulator can be described in terms of mean-field
theory, a direct quantum simulation using DMRG
and mapping onto a higher dimensional classical
theory. In addition, physical pictures of the chi-
ral Mott insulator in terms of a vortex-antovortex
supersolid and indirect excitonic condensate exist,
and the phase can also be described by an appro-
priate variational wavefunction. e chiral Mott
insulator is also realized in triangular ladders and
a system of two species of bosons.
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