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Abstract |Quantum emulation property of the cold atoms has generated a
lot of interest in studying systems with synthetic gauge fields. In this article,
we describe the physics of two component Fermi gas in the presence of
synthetic non-Abelian SU(2) gauge fields. Even for the non-interacting sys-
tem with the gauge fields, there is an interesting change in the topology of
the Fermi surface by tuning only the gauge field strength. When a trapping
potential is used in conjunction with the gauge fields, the non-interacting
system has the ability to produce novel Hamiltonians and show characteris-
tic change in the density profile of the cloud. Without trap, the gauge fields
act as an attractive interaction amplifier and for special kinds of gauge
field configurations, there are two-body bound states for any attraction
even in three dimensions. For a many body system, the gauge fields can
induce a crossover from a weak superfluid to a strong superfluid with tran-
sition temperature as high as the Fermi temperature. The superfluid state
obtained for a very large gauge field strength is a superfluid of new kind
of bosons, called “rashbons”, the properties of which are independent of
its constituent two component fermions and are solely determined by the
gauge field strength. We also discuss the collective excitations over the
superfluid ground states and the experimental relevance of the physics.

1 Introduction
In the last decade the subject of synthetic gauge
fields in ultra cold atoms received a lot of atten-
tion not only in the atomic physics and condensed
matter physics community, but also in the high
energy physics and field theory community. is
recent flurry of activities largely owe to the incred-
ible improvement in cooling and trapping meth-
ods of atoms, ions andmolecules. e precision in
such techniques1–3 have reached regimes of nano-
Kelvin in temperature and angstorm level in posi-
tion. e realization of Bose Einstein condensa-
tion4 in finite size dilute atomic systems at lab-
oratory, marked the beginning of an era where
atomic-molecular physics met condensed matter
physics. A major breakthrough in this field came
by the possibility of studying exotic many body
interacting systems with tunable interactions via
Feshbach resonance. Followed by this develop-
ment the physics of ultra-cold atoms entered the
area of strongly correlated systems with the obser-
vation of the superfluid-Mott insulator transition

in cold atoms in an optical lattice. Since then
a large number of efforts were made in emulat-
ing quantum systems under a controlled artificial
environment.

ese realizations of degenerate Bose and
Fermi gases in neutral atomic systems at ultra
cold temperature where the thermal fluctuations
are less than quantum fluctuations, brought us
close to Feynman’s vision5 of emulating quantum
effects in a controllable set up. In the experi-
mental studies of degenerate Fermi gases in ultra-
cold regime an important progress was the obser-
vation of long predicted crossover from a weakly
attracting Fermi gas in Bardeen-Cooper-Schrieffer
(BCS) superfluid state to a Bose Einstein Conden-
sate (BEC) of bosonic molecules, made of strongly
attracting fermion pairs. is observation was
possible by using Feshbach resonance to tune the
interaction between fermions. e next impor-
tant step was the emulation of systems in the pres-
ence of gauge fields in ultra-cold atomic experi-
ments.
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e main difficulty in these kind of experi-
ments is that the atoms are charge neutral, thus not
affected by external electromagnetic (EM) fields in
the way charged particles do. Since the form of
the Coriolis force is similar to that of the Lorentz
force felt by charge particles in the presence of
magnetic fields, there is a possibility of generation
of synthetic gauge field by rotating the whole sys-
tem.6 But as the procedure suggests, it has inher-
ent technical difficulty and since the strength of
the gauge field is proportional to the frequency
of rotation, the strength of the gauge field cre-
ated can not be made very large in which regime
most of the interesting physics like the quan-
tum Hall effect occurs. Although this difficulty
can be avoided by suitably coupling the hyper-
fine states of an atom by using Raman transition
such that adiabatic evolution of the atom in the
ground statemanifoldmimics aU() gauge field.7,8
is opens up a possibility of emulating funda-
mental interactions like EM forces which follow
from a U() gauge field, also weak and strong
interactions which are consequences of SU() and
SU() invariant non-abelian gauge fields respec-
tively. However, practical implementation of such
dynamical gauge fields as the sources of interac-
tion between elementary particles, remains one of
the most challenging prospects for quantum emu-
lations. ere are some recent experimental efforts
(for bosons9–12 and for fermions13,14) and theo-
retical proposals15–20 in experimental realization
of synthetic non-Abelian gauge field, but realizing
synthetic non-Abelian gauge fields with their full
glory is still a dream.

Examples of static gauge fields leading to fas-
cinating physics are many-fold. As mentioned
earlier, one can emulate the quantum mechan-
ics of fermions or bosons coupled to EM field
by arranging for the neutral particle wave func-
tion to pick up the same U() phase as that of a
charged particle wave function in presence of a
real EM field. Similarly, proposals exist for non-
Abelian gauge fields by coupling the spin to the
orbital motion. Note that unlike the spin orbit
interactions encountered in atoms that contribute
to spectral fine structure, here the spin is coupled
to linear momentum and not angular momentum.
e spin orbit term in real materials is found in
semiconductor heterostructure, where there is a
lack of inversion symmetry in the growth direc-
tion, couplingmomenta and spins along two direc-
tions. Rashba coupling is tuned by varying the
gate voltage and is typically weak owing to its ori-
gin from a relativistic effect. However, under-
standing the behavior of such systems is oen

non-trivial when interactions come into play, also
they display exotic physics unparalleled in any
other real systems. Since the cold atomic sys-
tems allows controlled simulation of gauge fields
and spin-orbit coupling, there is a potential to
emulate the physics of real solid state systems
and help us enriching our understanding of the
physics of fractional quantum Hall effect, high Tc
etc. Although a uniform Abelian gauge field is
merely equivalent to a Galilean transformation, it
was shown that even a uniform non-Abelian gauge
field gives rise to many interesting physics in case
of bosons.21–25

In this review we focus on the recent theoret-
ical work26–30 done mainly by one of the authors
of this review (and collaborators) on the behav-
ior of spin -  fermions in synthetic non-Abelian
SU(2) gauge fields. In section 2, we set up the
problem of non interacting fermions in a syn-
thetic non-Abelian SU(2) gauge field, we also dis-
cuss the symmetries and scales of the problem.
Followed by that we discuss an interesting tran-
sition observed in the topology of the Fermi sur-
face, which is driven by the strength of synthetic
gauge potential. is section is ended by dis-
cussing the prospects of synthesizing novel Hamil-
tonians by putting this non-interacting system in
a trap. en we turn on a two-body contact
interaction between the fermions and discuss its
effects in Section 3. e possibility of formation
of a novel kind of bound state at arbitrarily weak
interaction in three dimension is discussed includ-
ing the features of that bound state. In the next
section we consider interacting many body sys-
tem with the gauge fields and discuss the possi-
bility of a new kind of BCS-BEC crossover, this
BEC is a condensate of a new kind of bound state
whose properties depend only on the gauge field.
Even in the BCS side we note that the gauge field
enhances the transition temperature of this state
upto the order of Fermi temperature. is is fol-
lowed by a discussion of the collective excitations
and fluctuations of the superfluid ground state in
section 5. e section 6 contains the experimen-
tal relevance of the physics discussed in this arti-
cle and the final section (7) consists of an sum-
mary of this article and some possible future direc-
tions.

2 Non Interacting Fermions
2.1 Preliminaries
Consider a system of non-interacting spin- 
fermions moving in the continuum of three spa-
tial dimensions in presence of a spatially uniform
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and a temporally static SU() non-Abelian gauge
field. e Hamiltonian of the system is given by:

HGF =

∫
dr Ψ†(r)

[


(pi1− Aµ

i τ
µ)

×(pi1− Aν
i τ

ν)

]
Ψ(r), (1)

where Ψ(r) = {ψσ(r)}, σ =↑, ↓ is a two compo-
nent spinor field (spin quantization along z-axis),
pi is the momentum operator corresponding to i-
direction (i = x, y, z), 1 is the SU() identity, τµ

are Pauli spin operators (µ = x, y, z), Aµ
i describe

a uniform gauge field.
Gauge field configurations of the type Aµ

i =
λiδ

µ
i are of special interest for experiments, of

which some have been realized.10,13,14 A gauge
field of that structure, leads to aHamiltonian of the
form,

HR =

∫
drΨ †(r)

(
p


1− pλ · τ

)
Ψ(r), (2)

with pλ = λxpxex + λypyey + λzpzez. e term
containing τ  being a constant has no effect on the
physics. us, the spin orbit coupling of these kind
induces amomentumdependentmagnetic field on
themotion of fermions and the form of the Hamil-
tonian can be seen as a generalized Rashba type
Hamiltonian, with a generic anisotropic spin orbit
coupling.

is Rashba gauge field configuration (RGFC)
is described entirely by the “vector” λ ≡ λλ̂ =

λxex + λyey + λzez where λ =
√
λx

 + λy
 + λz



is the gauge coupling strength. is defines a gauge
field configuration (GFC) in the RGFC space as
shown in fig. 1(a). In the figure the RGFCs of par-
ticular interest are the “extreme oblate” (EO) gauge
field with λ = λ( √

 ,
√
 , ) which corresponds to

the “Rashba spin orbit coupling” encountered in
solid state systems31, the spherical (S) gauge field
with λ = λ( √

 ,
√
 ,

√
 ) and the “extreme pro-

late” (EP) gauge field with λ = λ(, , ).
e symmetry properties of theHamiltonian in

eqn. (2) plays a very important role in the phys-
ical behaviors of this system. When Aµ

i = ,
the system possesses three important symmetries,
namely: global translational invariance, global
phase invariance and time reversal invariance. As
Aµ
i is turned on (i.e. Aµ

i ̸= ), translational
invariance remains, but the system looses Galilean
invariance (this will play a crucial role later), spin
rotation and spatial inversion symmetry.

It is also important to note the relevant scales in
the problem. e scattering length as introduces a
length scale while the gauge coupling strength λ

introduces a momentum scale. We choose natural
units, in which both temperature T and chemical
potential µ are of energy dimensions. e finite
density ρ of fermions also introduces an energy
scale which is the Fermi energy EF (and an associ-
ated Fermi wave vector kF) in the absence of gauge
field (λ = ) (from now onwards we will some-
times refer this as free vacuum):

EF =
kF


=



(πρ)

/
. (3)

erefore the dimensionless parameters under
consideration are mainly kFas, λas, λ/kF, and unit
vector λ̂ in GFC space. In our units EF = TF.

Now with all these preliminaries being
declared, let us look at the non-interacting many
fermion system in presence of the synthetic gauge
field. e many-body system will be always
described in the grand canonical ensemble,
where the volume (V), temperature (T) and
chemical potential (µ) are held fixed. e term
−µN is absorbed into the Hamiltonian, where
N =

∫
dr Ψ †(r)Ψ(r) is the total number

operator.
Since the Hamiltonian (eqn. (2)) is transla-

tional invariant, momentum k is a good quan-
tum number. However note that spin is no longer
a good quantum number due to the presence of
“spin-orbit” coupling term. us the eigenstates of
HR in eqn. (2) are given by,

|kα⟩ = |k⟩ ⊗ |χα(k)⟩ (4)

where |k⟩ is a plane wave state, |χα(k)⟩ is a spin
state,α = ± is the generalized helicity. A physical
way to think about the helicity quantum number
can be following: the Hamiltonian in eqn. (2) pro-
duces a “momentum dependent magnetic field”;
the positive helicity state (α = +) can be thought
of as a spin state |χ+(k)⟩ that points along this
magnetic field, while the negative helicity state
|χ−(k)⟩ is opposite to the magnetic field. us
one canwrite down the energy eigenvalues of these
states as

εα(k) =
k


− α|kλ|. (5)

As an example, for the SGFC ε±(k) = k

 ∓
λ√
 |k|;

for k in the x − y plane this dispersion is plotted
in fig. 1(b). For this case, spin state |χ+(k)⟩ corre-
sponds to a spin in the direction of k and |χ−(k)⟩
is opposite to k.

Next we will consider an interesting effect of
Rashba gauge fields on the Fermi surface. As an
example we consider the EO gauge field configu-
ration. We noted that for the non-interacting sys-
tem there are two scales kF and λ, and the physics
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Figure 1: (a) The Rashba gauge field configuration space, where the marked points EP, S and EO repre-
sent the extreme prolate, spherical and extreme oblate gauge fields respectively. (b) The energy dispersion
of the two helicity eigenstates where the + helicity state (blue) has lower energy than the − helicity state
(brown). It is to be noted that the lowest energy has a large number of degenerate states of the + helicity
states at the bottom of the + helicity sheet (shown as a blue circle).

..

Figure 2: Fermi surface topology transition (FSTT) of noninteracting fermions with increasing the strength
λ of the EO gauge field. Half slice of the Fermi surface is shown for different regimes of λ with the + and
− helicity Fermi surfaces correspond to dark brown and cyan colors respectively. At λ = λT , the Fermi
surface associated with the − helicity states vanishes (see (c)), and for λ > λT , the states are all of +
helicity (shown in (d)).

is governed by the dimensionless parameter λ/kF,
which is the only tunable parameter in this case
with the density (ρ) being fixed.

In the absence of the gauge field, the chemi-
cal potential µNI in this non-interacting system is
EF. In presence of the EO gauge field the chemical
potential in the regime of small λ is,

(µNI(λ)− EF)
EF

∼
(
λ

kF

)

(λ≪ kF) (6)

while for large λ,

(µNI(λ)− EF)
EF

∼ kF
λ

(λ≫ kF). (7)

It is noted that there is a qualitative change in
the dependence of the chemical potential on λ.
is change is manifested also as a change in the
topology of the Fermi surface27 (named as Fermi
surface topological transition or FSTT) of the sys-
tem with increasing λ (as shown in Fig. 2, at λ =

λT, the Fermi surface associated with the − helic-
ity states vanishes, and for λ > λT, the states
are all of + helicity. e other highly symmetric
gauge fields also show qualitatively similar topo-
logical transition in the Fermi surfacewith increas-
ing strength of the gauge coupling λ.

2.2 Effect of trapping potential
e cold atomic experiments are performed in the
presence of a trapping potential and information
about the properties of the system is obtained by
measuring the density profile of the system. In this
section, the effects of a spherically symmetric trap-
ping potential on the spin-orbit coupled system are
discussed, although the discussions aer this sec-
tionwill be in the absence of the trapping potential.
Consider an isotropic harmonic trapping potential
with frequency ω:

HT =
ω





∫
dr rψ†(r)ψ(r). (8)
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is potential spoils the symmetries of the sys-
tem since it does not commute with the usual
kinetic energy term and prevents helicity α to be
a good quantum number. Hence, the diagonaliza-
tion of the full Hamiltonian

H = HR +HT (9)

for a generic ω and λ is analytically intractable
but identification of important scales in the prob-
lem can throw some light into this matter. e sin-
gle particle Hamiltonian in momentum represen-
tation can be written as

H(k) = −ω



∂

∂k
+HGF(k). (10)

Although helicity is, in general, no longer an
eigenstate of this Hamiltonian, if trap frequency
ω is considered to be much smaller compared to
the characteristic energy scale associated with the
gauge field (such as λ for the Rashba gauge field),
one could consider an adiabatic approximation,
where the helicity is considered as a fast degree
of freedom which “instantly equilibrates” with
momentum. From this consideration, an adiabatic
ansatz can be made for the eigenstates of eqn. (10)

|ψ⟩ =
∫

dkψ(k) |k⟩ ⊗ |χ+(k)⟩ (11)

using only the+ helicity states. e wave function
ψ(k) is now governed by an effective Hamiltonian
of the form

Heff =
ω



(
i
∂

∂k
− AI

)

+ε+(k)+VBO(k) (12)

which includes Berry phase effects. e connec-
tion AI is an induced U() gauge field given by

AI = −i

⟨
χ+(k)|

∂χ+(k)

∂k

⟩
(13)

and VBO is the Born-Oppenheimer potential

VBO(k) =
ω




(⟨
∂χ+(k)

∂ki
|∂χ+(k)

∂ki

⟩

−

⟨
∂χ+(k)

∂ki
|χ+(k)

⟩⟨
χ+(k)|

∂χ+(k)

∂ki

⟩)
(14)

(repeated spatial indices i are summed). For the
spherical (S) gauge field, the effective Hamiltonian
in k-space in terms of spherical polar coordinates

(k, ϑ, ϕ) has a special form

Heff = −ω




(

k

∂

∂k
k
∂

∂k

)
+
ω


k

[
− 
sinϑ

∂

∂ϑ
sinϑ

∂

∂ϑ

+

(


cotϑ+

i
sinϑ

∂

∂ϕ

)
]

+
ω


k
+

(
k


− λ√


k
)
. (15)

From this form of the effective Hamiltonian, it
is noted that for this gauge field, AI corresponds to
a monopole field in momentum space, i.e. this is
a realization of a monopole in momentum space
(see fig. 3(a))! More interesting phenomena hap-
pen for large λ, when the system will be confined
to k ≈ λ due to the Born-Oppenheimer poten-
tial. is, then, has a resemblance to the spher-
ical geometry quantum Hall Hamiltonian32 real-
ized in the momentum representation! e dis-
cussion above does not depend upon the statistics
of particles and applies to bosons as well.

Hence, when a non-Abelian gauge field is used
in conjunction with a trapping potential, there
are possibilities of generating interesting quantum
Hamiltonians. e trapping potential in conjunc-
tion with non-Abelian gauge fields has many other
interesting effects on the density profile of the sys-
tem. e radius of the cloud and the pressure
exerted by the system decreases with increasing
gauge field strength. ese effects lead to charac-
teristic change in the density distribution of the
system. For example the spherically symmetric
cloud becomes cigar shaped in the presence of EO
gauge field (shown in fig. 3(b)).29

3 Turning on Interaction
Now we will discuss the effect of turning on the
interaction between the fermions in presence of
Rashba gauge fields. As discussed in the introduc-
tion, one particular advantage in the cold atom sys-
tems is that here the interactions are tunable; usu-
ally that is done via Feshbach resonance in exper-
iments. e usual Feshbach physics produces a
short ranged attraction (in the singlet channel of
the fermions), which is described by a scattering
length.⋆

For broad resonances, the scattering length
effectively becomes energy independent. In this
review we focus on that kind of situations where
the fermion interactions are described by an
energy-independent scattering length.
⋆Here the usual custom of quantifying the attraction in terms
of the negative inverse of the scattering length is followed.
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Figure 3: (a) Monopole field induced by an isotropic harmonic potential in conjunction with a Rashba
gauge field. For large λ, the particle is confined to move on the sphere |k| = λ in momentum space. (b)
Contour plot of the spatial density profile of a non-interacting trapped gas in an EO GFC with λ = 20

√
2ω0 .

This clearly illustrates the anisotropy in the cloud shape induced by the gauge field. The axes r and z
denote in-plane radial coordinate and perpendicular traverse coordinate respectively and the color bar
denotes the values of density.

Owing to the extreme dilute nature of cold-
atom systems, the particles interactwith each other
only when they come close enough. Hence the
interaction between fermions can be described by
a contact attraction model in the singlet channel33
as

Hυ = υ

∫
dr ψ†

↑(r)ψ
†
↓(r)ψ↓(r)ψ↑(r), (16)

υ is the bare contact interaction. ExpressingHυ in
momentum space, whereV is the volume andC†

k is
a fermion creation operator in momentum space,
the Hamiltonian is given by,

Hυ =
υ

V
∑
q k k′

C†
q
 +k ↑ C†

q
 −k ↓ C q

 −k′ ↓ C q
 +k′ ↑.

(17)

us contact interaction Hυ is modeled as a
two-body operator that scatters an incoming pair
with center of mass momentum q and any rela-
tive momentum (k′) to the same center of mass
momentum and any other relative momentum (k)
with equal amplitude.

Now the full Hamiltonian that describes our
system is given by

H = HR +Hυ. (18)

Before the physics of two particles in a non-
Abelian gauge field is discussed, let us briefly

recall the results33 of the two body problem in the
absence of the gauge field. e theory described by
the Hamiltonian in eqn. (18) is ultraviolet diver-
gent and requires a momentum cut-off Λ given by
Λ = 

V
∑

k

k . e contact interaction param-

eter υ is then treated as a flowing coupling con-
stant and is related to the physical scattering length
via


υ
+ Λ =


πas

. (19)

e point to note and remember is that in free
vacuum a critical strength of the attractive inter-
action is needed to form a bound state of two
fermions. In fact, in free vacuum, for as < ,
there is no bound state. At the resonant scattering
length 

as = , the bound state just appears, and
exists for as >  with a binding energy of 

as
, as

is depicted in fig. 4(a). e condition /as =  is
called resonance, where as is the s-wave scattering
length in the absence of the gauge field (see refer-
ence34).

3.1 Two-body problem
e secular equation for the formation of a
two-body bound state can be obtained by using
a T-matrix analysis which follows very closely
the analysis for the two-body problem without
gauge fields.35 e secular equation becomes,
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Figure 4: The binding energy of the two body bound state as a function of the scattering length as . (a)
Shows the case without any gauge field where the vertical line indicates resonant scattering length and
(b) shows when there are special kind of gauge field configurations extreme prolate (EP), extreme oblate
(EO) and spherical (S). In the EP case, a bound state is obtained only for 1/as ≥ 0, while for the other two
it is obtained for every as . When as is small and negative, Eb depends exponentially on λas for the EO
configurations, while it is a power law in the spherical case.


πas

=

V
∑
k

∑
αβ

|Aαβ(q,k)|

E(q)− εαβ(q,k)

+

k

 .

(20)

Here, Aαβ(q,k) is the singlet amplitude defined
as an overlap between the singlet states and two-
particle helicity states with relative momentum k
and center ofmassmomentum q. Eb is the binding
energy defined by Eb = εsth(q)− E(q) with εsth(q)
being the singlet threshold.

Before we go to the discussion on possibilities
of bound state formation and nature of the same in
specific GFCs, let us discuss the general nature of
such a bound state wave function. In free vacuum
the bound state wave function is a singlet owing
to the fact that spin is a good quantum number
with the attraction being in the singlet channel. In
contrast, in presence of a non-Abelian gauge field,
the normalized bound-state wave function is not a
spin eigenstate, thus a superposition of both spa-
tially symmetric singlet and spatially antisymmet-
ric triplet pieces |ψb⟩ = |ψs⟩ + |ψt⟩. A quantity
called the triplet content is defined here to mea-
sure the weight of the wave function in the triplet
sector as

ηt = ⟨ψtψt⟩ (21)

As we shall see, this quantity plays an impor-
tant role in both understanding the nature of the
two-body bound states and many body ground
states.

3.1.1 Results at zero center of mass
momentum: We first consider the case when two

particles have zero COMmomentum (q = ). As
we turn on the Rashba gauge field,26 for the EP
gauge field (see fig. 1(a)), the condition of bound
state formation is identical to that of the free
vacuum irrespective of the strength of the gauge
coupling λ. A negative scattering length as < ,
does not allow a bound state, on the other hand
a positive scattering length allow formation of
bound state with a binding energy Eb = 

as
which

is independent of λ.
e EO gauge field shows remarkably different

behaviors from EP. In this case the critical scatter-
ing length for bound state formation vanishes, i.e.,
no matter what is the scattering length there will
be always a bound state. e binding energy in the
limit of λ|as| ≪  and as <  is given by,

Eb ≈
λ

e
e

−
√


λ|as| . (22)

e S gauge field also displays unique features
from EO and EP. Like EO there is a bound state for
any scattering length, where the binding energy26
is

Eb =



(

as

+

√

as

+
λ



)

. (23)

For small negative scattering length with
λ|as| ≪ , Eb ≈ (λas/), indicating much
stronger binding even for weak attraction, as
depicted in fig. 4(b).

e main difference in presence of high sym-
metry Rashba gauge fields (along EO-S arc in
fig. 1(a)) is the disappearence of critical scattering
length asc necessary for bound state formation. In
other words, for these gauge fields, any attraction
produces a bound state (see fig. 5(b)). e situa-
tion is similar for a generic gauge field as shown in
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Figure 5: Variation of the critical scattering length asc for different GFCs. (a) Shows the asc for a generic
GFC as a function of λ̂ described by θ (polar) and ϕ (azimuthal) angles in GFC space and (b) shows the
variation of it along the path EP-S-EO as shown in fig. 1(a). For the EP GFCs, the symmetry of the bound
state wave function corresponds to an extended Balian-Werthamer (BW) state with a biaxial nematic spin
order, while that in the EO state corresponds to an extended Anderson-Brinkman-Morel (ABM) state with a
uniaxial nematic spin order. The state evolves smoothly from a biaxial nematic to a uniaxial nematic passing
through the spherical configuration (S) where the bound state is rotationally symmetric.

fig. 5(a), where it is evident that the critical scat-
tering is finite and negative (asc < ). ese result
suggest that the Rashba gauge field has the effect
of “amplifying” the attractive interaction. For a
detailed summary of the two-body bound states in
Rashba gauge field look at Table 1.

3.1.2 Rashbon properties-nature of bound
state: Next we consider the features of these
Rashba bound state wave functions. As noted
in the previous section, the total spin of the sys-
tem is not a conserved quantity in these systems
owing to the spin orbit coupling. Further, the
interaction in the singlet channel causes mixing
between states of different two particle helicity,
which causes presence of both singlet and triplet
components in orbital part of the bound state wave
function. is is characterized by the triplet con-
tent ηt (eqn. (21)).

e interesting feature to note here is that
the spin structure of the triplet state depends
on the gauge field. For the EP gauge field, the
triplet state has a spin structure of a bi-axial
nematic similar to the BW (Balian-Werthamer)
state of He, while for the EO gauge field the
spin structure is a uniaxial spin nematic like that
of the ABM (Anderson-Brinkman-Morel) state of
He.36 Indeed, the spin structure of the triplet
piece evolves smoothly (see fig. 5(a)) from the
biaxial nematic to a uniaxial nematic in going
along the EP-S-EO arc in fig. 1(a). It is empha-
sized that this spin structure does not owe to
a spontaneously broken symmetry (as in He),
but is more like the spin structure obtained in
spin-orbit coupled unconventional superconduc-
tors37 where the spin structure of the pair is

imposed by the symmetry of the spin-orbit inter-
action.

e main point to note here is the two body
bound state obtained in a Rashba gauge field with
a resonant scattering length, as we will see later the
properties of such a bound state is solely depen-
dent on theRashba gauge field. Hence, such bound
state of two fermions at resonant scattering length
is called the rashbon.27 For a detailed summary of
the two-body bound states in Rashba gauge field
look at Table 1.

Now let us look at the properties of Rashbon
bound state in high symmetry gauge fields such
as those along the EO-S-EP arc in fig. 1.28 ese
gauge fields are conveniently described by λ =
(λl, λl, λr); we also use sin θ = λr/λ in the discus-
sions. For such a gauge field the rashbon mass is
anisotropic with an “in-plane” mass mR

l and “per-
pendicular” massmR

r defined as


mR

l
=

∂ER(ql, qr)
∂ql

∣∣∣∣
q=

,

mR

r
=

∂ER(ql, qr)
∂qr

∣∣∣∣
q=

(24)

where q = (ql, ql, qr). e effective mass

mR
ef =


√
mR

r m
l . (25)

e dispersion E(q) calculated by solving
eqn. (20) is in general anisotropic setting. How-
ever, due to their symmetry, for the GFCs consid-
ered in this section, ER(q) = E(ql, qr), where ql is
the component of q on the x − y plane, and qr is
the component along ez.

Fig. 6 shows a plot of the mass and the triplet
content of rashbons. What is noteworthy is that the
rashbon mass, while larger than 2 (twice fermion
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Figure 6: Properties of rashbons as a function of
λ = (λl , λl , λr ) for different GFCs along the arc
shown in fig. 1(a). Here (a) shows in-plane, per-
pendicular and effective masses and (b) shows
the triplet content (eqn. (21)) of the rashbons.

mass), is never very much greater than 2. In fact
the largest effective mass occurs for the S gauge
field for which mR = mR

ef = 
 ( +

√
) ≈ ..

We will see in next section that this “lightness” of
the rashbons will be responsible for enhancing the
transition temperature of superfluid ground states.

3.1.3 Results at finite center of mass
momentum: In this section we will discuss
the effects of Rashba gauge field on the fermionic
system with two body interactions at a non zero
value of COM momentum q. Let us first briefly
recall the known results in free vacuum. In the
absence of the gauge field, the threshold energy
εth(q) =

q
 . For a negative scattering length, there

is no bound state, while for a positive scattering
length E(q) = q

 + 
as
.

Now let us turn on the highly symmetric S
gauge field and first look at the “dispersion” rela-
tion for the bound state,28 i.e., the function ER(q)
in fig. 7(a). First note that the scattering threshold
is independent of q = |q| in the regime q ≤ q =
√
λ. In that regime, the bound state energy ER(q)

increases for all scattering lengths, which means
that the binding energy decreases with increasing
q. On the other hand we know that if we turn off
the Rashba gauge field the binding energy is inde-
pendent of q. emost important new feature here
is that for a given scattering length there is a critical
COM momentum above which there is no bound
state (shown in fig. 7(b)).

When q < q, the critical scattering length
required for bound state formation vanishes, i.e.,
there is a bound state for any scattering length. As
we just mentioned, for q > q, the critical scat-
tering length required to form a bound state is not
zero. For very large COMmomenta q ≫ λ, a small
positive critical scattering length asc ∼ √q is nec-
essary to produce a bound state. In other words,
at large COMmomenta, the same attractive inter-
action which produces a bound state in free vac-
uum is unable to produce a bound state in the pres-
ence of the gauge field. e gauge field which acted
to promote bound state formation at small COM
momenta, acts in exactly opposite manner at large
COM momenta in that it inhibits bound state for-
mation at large COMmomenta.

e physics behind all these can be understood
from the behavior of infrared singlet density of
states. At zero COM the non-Abelian gauge fields
act to enhance the infrared singlet density of
states. is enables the particles to form bound
states easily. e same situation prevails for
q ≤ q. However, at q = q there is a qualitative
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Figure 7: (a) Dispersion of the two body bound states as a function of center of mass momentum for
various scattering lengths in spherical GFC. It is noted that for any given scattering length, the bound state
disappears after a critical momentum. (b) Critical scattering length (asc ) as a function of center of mass
momentum. This critical scattering length asc goes as 1/

√
q in the large q/λ limit.

change, caused by the gauge field, in the nature
of the low energy singlet density of states.28 is
is also reflected in the jump of critical scattering
length (see fig. 7(b)). e gauge field depletes the
population of low energy singlet states, which is
responsible for the inhibition of the bound state
formation at large COM.

3.2 Many body problem
In this section we will consider the effect of
interaction on many-body system of fermions in
a Rashba gauge field. Like before. Let us recall
before we turn on the gauge field, the ground state
of the finite density of fermions in presence of a
contact singlet attraction (eqn. (16)) is a superfluid
state36,38 for any scattering length as. Here we
will27 follow the evolution of the system starting
from this superfluid state with an increasing value
of the strength of the gauge coupling (Rashba
spin-orbit interaction-λ (for a given λ̂). In this
section we will discuss the ground states of the
many body systemwithin the scope of amean field
picture. e mean field ansatz involves providing
an static expectation value of the operator S†(q)
defined in eqn. (27).

e full Hamiltonian eqn. (18) of the system
can be rewritten as

H =
∑
kα

ξkαC†
kαCkα +

υ

V

∑
q

S†(q)S(q) (26)

where, ξα(k) = εα(k) − µ. e operator S†(q)
creates a singlet with center of mass momentum q
and is defined as

S†(q)=
∑
k

√


(
C†

q
 +k,↑C

†
q
 −k,↓ − C†

q
 +k,↓C

†
q
 −k,↑

)
︸ ︷︷ ︸

S†(q,k)

.

(27)

e non-interacting Hamiltonian is quadratic
in fermion operators and hence was diagonalized

analytically. But the interaction term being quar-
tic, we perform a mean field approximation. e
mean field form of the full Hamiltonian turns out
to be

HMF =
′∑

kα

(
C†
kα C−kα

)
×
[
ξkα α∆
α∆ −ξkα

](
Ckα

C†
−kα

)
+

′∑
kα

ξkα − V∆


υ
(28)

where,
∑′ denotes the sum over only half of the

k-space, ∆ = υ⟨S†()⟩√
V is the excitation gap

(also called pairing amplitude or order parameter)
which, without loss of generality, is taken as real.

Defining Bogoliubov operators
γkα = (ukαCkα − αvkαC†

−kα) and
γ†kα = (αvkαCkα + ukαC†

−kα) with

ukα = 


(
+ ξkα

Ekα

)
,vkα = 



(
− ξkα

Ekα

)
and

Ekα =
√
ξkα +∆

, the diagonalised mean field
Hamiltonian takes the form

HMF =
′∑

kα

Ekα
(
γ†kαγkα + γ†kαγkα

)
+

′∑
kα

(ξkα − Ekα)−
V∆



υ
. (29)

It may appear that for each helicity there are
two branches of quasi-particle excitations labeled
1 and 2, making the total count four. However,
these four branches are defined only in half of the
momentum space. If the Bogoliubov excitations
were defined for all k, they will not be indepen-
dent, for example, γ†k+ ≡ γ†−k+. is is the rea-
son for performing the sum over only half of the
momentum space. Hence, this formulation recov-
ers the correct count of excitations.

208 Journal of the Indian Institute of Science | VOL 94:2 | Apr.–Jun. 2014 | journal.iisc.ernet.in



Fermions in Synthetic Non-Abelian Gauge Fields

At a temperature T, we obtain the thermody-
namic potential F as

VF(T, µ,∆) = −T
′∑
kn

ln (+ e−
En(q,k)

T )

+

′∑
kα

ξα

(q

− k

)
− V∆

υ
(30)

where En(q,k)with n =1,4, are the eigenvalues of
the mean field Hamiltonian written in the helicity
basis. e equilibrium values of∆ andµ are deter-
mined by minimizing the free energy and hence

∂F
∂∆

= , (31)

and the number equation

−∂F
∂µ

= ρ. (32)

ese lead to the gap equation


πas

=

V

∑
kα

(
−
(
−  nF (Ekα)

Ekα

)
+


k

)
(33)

and the number equation

ρ =

V

∑
kα




(
− ξkα

Ekα
(− nF (Ekα))

)
. (34)

e simultaneous solution of eqn. (33) and
eqn. (34) determines the chemical potential µ and
the gap parameter∆ at that temperature.

e ground state of the system is given by

|ΨG⟩ =
′∏

kα

(ukα + αvkαC†
kαC

†
−kα)|⟩ (35)

where |⟩ is the fermion vacuum. e triplet con-
tent ηt for the many-body ground state is defined
as the weight of the triplet sector of the pair cre-
ation operator. We will see in this section that in
the presence of an attractive interaction in the sin-
glet channel, the pairs have a triplet content less
than that of the noninteracting system.

3.2.1 BCS-BEC crossover induced by the
gauge field: We will now follow the nature of
the many body ground state by gradually increas-
ing the gauge field strength starting from zero.
First let us recall that in free vacuum the many
body superfluid state goes through a BCS-BEC
crossover which is induced by tuning the attrac-
tion (scattering length as).

Now as we turn on the Rashba gauge field,
the most interesting effect occurs at small nega-
tive scattering lengths. For small λ, i.e., λ ≪ λT,
the system is described by the BCS theory, the
excitation gap- ∆ is exponentially small and the
chemical potential is same as that of the nonin-
teracting problem for S GFC. Except for the less
symmetric EP GFC, when λ is increased beyond
λT, the chemical potential µ begins to fall and
approaches −Eb/, i.e. energy of the two-body
bound state. Additionally, the pair wave func-
tion can be seen to approach the two-body bound
state wave function. is signals the onset to the
BEC state. Notice the important difference here,
this BCS-BEC crossover is by the gauge field at a
fixed attraction whereas the one in free vacuum is
induced by attraction.

On the other hand for small positive scattering
lengths, the system is already a BEC even in free
vacuum. e pair wave function is a singlet, i.e.,
ηt = . By tuning λ, the system continues to be a
BEC, but picks up a triplet component.

For details of this crossoverwe again choose the
case for S-GFC as a representative case, for which
Fig. 8(a) and (b) show, respectively, the numeri-
cal solutions of the chemical potential and gap as a
function ofλ. Fig. 8(a) also shows the noninteract-
ing chemical potential, and the two-body energy
−Eb/ (which depends onλ and as only). As is evi-
dent the chemical potentialµ is same as the nonin-
teracting value µNI(λ) for λ≪ λT. When λ→ λT
the chemical potential begins to fall belowµNI, and
on further increase of λ (λ & λT), the chemical
potential tends towards that of the two-body prob-
lem. is is a clear sign of a crossover from theBCS
like state for λ≪ λT to a BEC state at the zero cen-
ter of mass momentum.

More evidence to the crossover to the BEC
like state with increasing λ can be obtained by a
study of the triplet content ηt which is shown in
fig. 8(c). ηt of the noninteracting systemmonoton-
ically increases and attains a value of 

 at λT. e
triplet content of the superfluid pair, as expected, is
less than that of the noninteracting system, but has
a similar qualitative behavior as the NI case in the
regime λ≪ λT. e triplet content attains a max-
imum at a λ close to λT and then begins to fall. On
further increase ofλ, ηt approaches that of the two-
body bound-state wave function, demonstrating
again that the pair wave function tends to the two-
body bound-state wave function. We also see that
λ = λT marks the crossover regime, that is pre-
cisely the regime ofλwhere change in the topology
of the noninteracting Fermi sea takes place.

Wenote that the qualitative nature of the results
for negative scattering lengths (as < ) of larger
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Figure 8: Evolution of the ground state of a
collection of interacting fermions (kF as = −1

4 )
with gauge-coupling strength λ for the S GFC.
(a) Chemical potential obtained from a numeri-
cal solution of mean field theory (MFT) is com-
pared with that of the noninteracting system (NI)
and that set by the binding energy of the two-body
problem (−Eb/2). (b) Dependence of the numer-
ically obtained excitation gap ∆0 with the gauge-
coupling strength λ and its approximate analytic
form for λ ≪ λT are shown. (c) The dependence
of the triplet content (ηt ) of the pair wave func-
tion λ. This is compared with that of the non-
interacting system (NI) and with that of the wave
function of the two-body bound state.

magnitude are similar to those for kF|as| ≪ . We
summarize the BCS-BEC crossover properties for
various GFCs in Table 2.

In this context it will be interesting to note the
evolution of dispersion of the Bogoliubov quasi-
particles as a function of gauge coupling strength
λ with particular focus on negative scattering
lengths. e gauge-coupling strength at which the
chemical potential µ(λ) equals that of the non-
interacting system at the FSTT is defined as λB.
Note that λB, in general, depends on the scattering
length as with λB ≈ λT when kF|as| ≪ . It turns
out that as λ < λB, there exists low lying quasi par-
ticle excitations of both helicity. At the transition
point λ = λB, the low lying − helicity excitation

appears at k = , and for λ > λB, there are no
low-lying excitations corresponding to − helicity.
e transition in the topology of the dispersion of
the Bogoliubov quasiparticles at λB can be owed to
the FSTT as for kF|as| ≪ , this transition in the
quasi particle spectrum very nearly coincides with
FSTT.

3.2.2 Properties of RashbonBEC:Asdiscussed
earlier in this section, for λ → ∞, the BEC is
formed by a new kind of particles. It is interest-
ing to explore the properties of this BEC state. e
special feature in the presence of the gauge field
is that the physics of the two-body bound state
is fully determined by the dimensionless param-
eter λas. Hence, the obtained state is same as that
obtained for the two-body bound state with a reso-
nant scattering length in the presence of the gauge
field (λ > ). is bound bosonic pairs consti-
tuted of two fermions are named to be “rashbon”.
Hence, the properties of the BEC for λ → ∞ are
completely determined byλ and is independent of
the scattering length (as long as it is nonzero), i.e.,
the system is a collection of bosons whose proper-
ties are determined solely by the Rashba gauge field
which is named to be RBEC (rashbon Bose Ein-
stein condensate).

We now discuss, the limit of large λ for an arbi-
trary GFC in more detail. In RBEC (λ ≫ kF, 

as ),
it is noted that µ <  and |µ| ≃ Eb

 ≃ λ

 R(λ̂) ≫
∆, whereR(λ̂) is a dimensionless function of the
gauge field configuration. In this regime, Ekα ≃
ξkα, and the number equation (eqn. (34)) for zero
temperature becomes

ρ ≃ ∆


V

∑
kα




(
ε̃α(k) +

λ

 R(λ̂)
) , (36)

where ε̃α(k) = εα(k) + λmax


 and λmax =
Maximum(λx, λy, λz). e above equation can be
rewritten as

∆
 = ρ λH(λ̂), (37)

where H(λ̂) is a dimensionless number which
depends only on the GFC.

e regularized gap equation (eqn. (33)) at zero
temperature takes the form

− 
πaefs

= B(|µ|,λ), (38)
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Figure 9: Dependence of chemical potential
(µ) and triplet content (ηt ) on gauge-coupling
strength λ (S GFC) in the λ ≫ λT regime, for vari-
ous scattering lengths as . (a) Chemical potential,
for all scattering lengths, asymptotically attains
the value set by the rashbon energy (see Table 1)
as λ/kF → ∞. (b) Triplet content also attains
the rashbon value independent of the scattering
length.

where,

B(Eb,λ) =

V

∑
kα

(


ε̃α(k) + Eb
− 

k

)
,


aefs

=

as

− π∆
G(λ̂)
λ

.

Here, G(λ̂) is another dimensionless number
that depends only on the GFC. Solving the above
equation, the chemical potential can be approxi-
mated as

µ = −λ
R(λ̂)


+



M(λ̂)

ρ

λ
, (39)

where,M(λ̂) = H(λ̂) G(λ̂).
e dimensionless function M(λ̂) is shown in

fig. 10 for important set of GFCs. For spheri-
cal (S) GFC, these quantities evaluate to H =
π√
 , G = 

√


π and M = π
√
. e quan-

tity M(λ̂) is very important since the effective
rashbon-rashbon scattering length and properties
of the superfluid depends on it.

4 Estimation of Transition Temperature
Two different procedures of estimation of the tran-
sition temperature are first outlined. On the BCS
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Figure 10: The effective rashbon chemical
potential µR = M(λ̂)

ρ

λ
and the effective rashbon-

rashbon scattering length aR =
M(λ̂)m

ef

R
2πλ

with

m
ef

R
being the effective rashbon mass. The plot

shows M(λ̂) for high symmetry Rashba gauge
fields such as those along the arc EO-S-EP shown

in fig. 1(a) where λ̂ =

(
cosθ
√
2

,
cosθ
√
2

, sinθ
)

where

sinθ =
λr
λ
.

side the transition from a superfluid state to a
normal state is indicated by vanishing of the gap
∆. So one can estimate the transition temper-
ature (Tc) from the mean field equations of gap
(eqn. (33)) and number density (eqn. (34)) by
simultaneously solving for T and µ. On the other
hand, in case of the transition from BEC regime,
pair breaking becomes energetically costly. In this
case Tc is governed by phase fluctuations and can
be estimated as the Bose condensation temper-
ature of the tightly bound (anisotropic) bosonic
pairs of fermions. is is given by,

Tc

TF
=

(


π(ζ(/))

)/ 
mef

, (40)

wheremef is the effective mass of the bosons deter-
mined by the low energy dispersion as a function
of q.

How these considerations apply to free vac-
uum and how much do they agree with the fluc-
tuation calculation in their respective regimes will
be discussed in section 5. ese calculations are
extended to include different GFCs (Tc in EO
GFCs was also calculated in reference39 to which
these results agree). In fig. 11 we show that at a
fixed small negative as for λ ≪ kF the transition
temperature Tc of the BCS like superfluid is deter-
mined by the mean field theory and hence is expo-
nentially small. However, for the regime of large
λ, the system is like a RBEC, Tc is determined by
eqn. (40) and is of the order of Fermi temperature

..

Figure 11: Transition temperature T c estimate
for the S GFC as a function of λ. T c in small and
large λ/kF limits are obtained frommean field the-
ory and condensation temperature of two body
bound pairs respectively. Horizontal and verti-
cal dashed lines correspond to rashbon T c and
λ = λT respectively.

TF! ese findings are quite remarkable. In other
words, an exponentially small Tc of a weak super-
fluid can be enhanced to the order of Fermi temper-
ature by tuning only the Rashba gauge field strength
without having to increase the interaction.

When as is a small positive number, the Tc for
all values of λ is given by eqn. (40). Whatever be
the scattering length, when λ → ∞, the Tc tends
to that determined by the rashbons and depends
only on λ̂ through the effective mass mef. mef for
important GFCs is shown in fig. 6(a). Since effec-
tive rashbon mass for S GFC is largest, it has the
smallest rashbon Tc (≈ .TF).

5 Collective Excitations
e collective excitations of a superfluid has many
interesting properties and study of these is natu-
rally motivated by questions like those regarding
the stability of the superfluid. A functional inte-
gral framework, which has been used extensively
in the context of BCS-BEC crossover, is used.30 A
general framework is formulated for arbitrary tem-
peratureT although the primary interest is to study
zero temperature properties. e action of the sys-
tem can be written as

S[c] =
∑
k,k′

c⋆(k)σ(−G−
σ,σ′(k, k′))cσ′(k′)

+
Tυ
V

∑
q

S⋆(q)S(q), (41)

where cs and c⋆s are Grassmann fields correspond-
ing to the fermions and the free (without interac-
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..

Figure 12: (a) Superfluid phase stiffness (K
S
) with K

S

0
= ρ/4 being the superfluid phase stiffness in free

vacuum, (b) Speed of sound (cS ) and (c) Anderson Higgs mass (MAH ) as a function of λ for the S gauge
field. Large λ limits of these quantities are given in eqn. (48), eqn. (49) and eqn. (50) respectively.

tion) Green’s function is defined as

G−
σ,σ′ =

[
iknδσσ′ − (HR

σσ′(k)− µδσσ′)
]
δk,k′ ,

(42)

where k = (ikn,k) and q = (iqℓ, q)
with ikn(iql) being a Fermi(Bose) Matsubara fre-
quencies. Since the pair operator S⋆(q) =∑

k,αβ Aαβ(q,k)c⋆α(
q
 + k)c⋆β(

q
 − k), the effective

action can be written in the following way,

S[ϕ] = 


∑
q

ϕ∗(q)
(
κ(iqℓ) − qiKs

ijqj
)
ϕ(q),

(43)

whereϕ(q) is the field corresponding to phase fluc-
tuation and

Ks
ij =

∆

V

∑
kα

vαi (k)vαj (k)
E

α(k)
+

∆

V

×
∑
k

(ε+(k)− ε−(k))


E+(k)E−(k) (E+(k) + E−(k))
Sij(k),

(44)

is the phase stiffness tensor,

κ = Z+
X

U
(45)

is the compressibility. emass (gap) of the ampli-
tude (Anderson-Higgs) mode is

M
AH =

ZU+ X

ZW
. (46)

e functions Z, X,U andW at T =  are given
by, Z = ∆

V
∑

kα


Eα(k) , X = ∆

V
∑

kα
ξα(k)
Eα(k) ,

U = ∆

V
∑

kα


Eα(k) , W = ∆

V
∑

kα
ξα(k)
Eα(k) , and

Eα(k) is defined near eqn. (29). In eqn. (44),
vαi (k) =

∂εα(k)
∂ki , and Sij(k) is a tensor defined by

|A+−(q,k)| = |A−+(q,k)| ≈ qiSij(k)qj, for
small |q|. e anisotropic propagation of sound

..

Figure 13: Schematic phase diagram of a sys-
tem with weak attraction kF |as | . 1,as < 0; indi-
cating the nature of the states in various regimes.

is captured by obtaining the speed of sound and in
the direction q̂ it is given by

cs (q̂) =
q̂iKs

ijq̂j
κ

. (47)

e behaviors of superfluid phase stiffness,
speed of sound and the mass of the Anderson
Higgs mode are shown as a function of λ for the
spherical GFC in fig. 12(a), fig. 12(b) and fig. 12(c)
respectively. We see that the superfluid density is
not same as the particle density and has a charac-
teristic non-monotonic behavior. is owes to the
absence of Galilean invariance in presence of the
gauge field. e non-zero value of the superfluid
stiffness seen in fig. 12(a) and that of sound speed
seen in fig. 12(b) suggest that there is interaction
amongst the rashbons.

We now consider the most interesting regime
where the ground state is a RBEC. In this regime
λ≫ kF, 

as and it is found that the phase stiffness is
determined by the rashbonmass. For the spherical
gauge field Ks is isotropic

Ks =
ρR
mR

, (48)
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where ρR = ρ/ is density of the rashbons with
massmR, speed of sound is

cs =
πρ
mR

(√

λ

)
, (49)

and the mass of the Anderson-Higgs mode is

MAH =


λ. (50)

e behavior ofKs in this limit is in accordance
with Legget’s theorem and implies reemergence of
Galilean invariance. Comparing the expressions
of the speed of sound and the mass with those
obtained in the standard Bogoliubov theory of
anisotropic bosons40 yields the effective rashbon-
rashbon scattering length. For example, for spher-
ical gauge field, the rashbon-rashbon scattering
length is,

aR =
mR√
λ

=

√
(+

√
)



λ
≈ 
λ
. (51)

is is found to be solely dependent upon λ.
is suggests that the effective interaction between
the rashbons depends only on the gauge field and
not on the interaction between their constituent
fermions!

e estimation of transition temperature dis-
cussed earlier is based on mean field theory and
two body analysis. e Gaussian fluctuation above
the mean field ground state also gives an estimate
of transition temperature which will be discussed
in a forthcoming paper41 alongwith some more
interesting physics. e normal state above the
transition temperature also has some interesting
features (fig. 13) which are important from the
experimental point view.

6 Experimental Relevance
In this section we discuss the experimental rel-
evance of the physics discussed in this article.
Several encouraging experimental efforts have
been made with spin-orbit coupled bosons.8–12
Recently, in experiments13,14 with fermionic sys-
tems with synthetic gauge fields, a close cousin
of the EP gauge field called the SM gauge fields
have been realized. is gauge field is, in fact, the
EP gauge field with two additional magnetic fields.
Unfortunately, it does not produce a rashbon con-
densate but there are many other interesting phe-
nomena that occur in the presence of this gauge
field.42 e Rashba gauge field is yet to be real-
ized because of the key difficulty associated with
the heating caused by the spontaneous emission
due to the interaction of the atoms with the lasers.

ere is a very interesting proposal using a pulsed
magnetic field on an atom chip to produce the spin
orbit coupling of the Rashba type19,20 whichwould
overcome this difficulty. If the physics discussed
here is realized in real materials, it could lead to
the development of materials with high transition
temperatures, even to room temperatures!

7 Conclusion and Future Directions
In this review, we have considered the physics
of two-component Fermi gas in the presence of
SU() synthetic non-Abelian gauge fields which
induce a generalized Rashba type spin-orbit cou-
pling. e key points of this article can be summa-
rized as follows:

1. ere is a change in the topology of the non-
interacting Fermi surface with changing the
strength of the non-Abelian gauge field. In par-
ticular, the positive helicity Fermi surface van-
ishes aer a critical gauge field strength λT.

2. e non-interacting Fermi gas in the presence
of an isotropic trapping potential and synthetic
non-Abelian gauge fields has the potential to
produce novel Hamiltonians and lead to char-
acteristic change in the density profile of the
cloud.

3. For zero center of mass momentum, the non-
Abelian gauge fields always help in the for-
mation of two-body bound states and hence
act as an attractive interaction amplifier. Spe-
cial classes of gauge fields admit formation of
bound states for arbitrary weak attraction even
in three spatial dimension! e bound state
wave-functions have interesting spin struc-
tures.

4. Aer a critical value of center of mass momen-
tum, the two-body bound state vanishes due to
the lack of Galilean invariance.

5. Even with a fixed weak attraction the many
body system undergoes a BCS to BEC
crossover only by tuning the gauge field
strength.

6. At large gauge coupling strength, the BEC
obtained is a condensate of new kind of bosons,
called rashbons. e properties of these new
kind of emergent particles, including their
interaction strength, depend only on the gauge
field strength and not on their constituent par-
ticles!

7. Being in the BCS side of the crossover, when
the gauge field strength is tuned to obtain
RBEC, in this process the transition temper-
ature is increased from exponentially small
value to the order of the Fermi temperature!
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8. e study of the collective excitations over the
superfluid ground states indicate that although
the system explicitly breaks Galilean invari-
ance, there is an emergent Galilean invariance
for large gauge coupling strength.

e synthetic non-Abelian gauge fields have
interesting consequences on the Feshbach reso-
nances as well as flows of a superfluid.43,44 Finally,
the problem of fermions in the presence of syn-
thetic gauge fields has many important future
prospects. Non trivial topological features of the
Fermi surface is expected in the presence of SU(M)
gauge fields and this may lead to new kind of FSTT
with the possibility of formation of topological
superfluid and rashbon like states. Understanding
and realizing these physics in real materials may
lead to the production of the golden egg of room
temperature superconductors.
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