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Abstract |We start by reviewing the concept of gauge invariance in quan-
tummechanics, for abelian and non-abelian cases. Then we describe how
the various gauge potential and field can be associated with the geomet-
rical phase acquired by a quantum mechanical wave function while adia-
batically evolving in a parameter space. Subsequently we show how this
concept is exploited to generate light induced gauge field for neutral ultra
cold bosonic atoms. As an example of such light induced Abelian and
Non Abelian gauge field for ultra cold atoms we discuss ultra cold atoms
in a rotating trap and creation of synthetic spin orbit coupling for ultra cold
atomic systems using Raman lasers.

1 Introduction
“Quantum Simulation with ultra cold atoms”1 is
a much discussed and investigated topic nowa-
days. Such quantum simulations imply that cer-
tain model hamiltonians that were originally pro-
posed to explain exotic quantum behavior in con-
densed matter systems and sometimes in high
energy physics can be realized with ultra cold
atoms in various types of optical potentials. In
a typical condensed matter or high energy sys-
tems, the actual system is far more complex than
the one described by such model hamiltonians,
and that leaves a lot of issues less than verified.
Ultra cold atomic systems on the other hand, are
much more controlled, and model behavior can be
studied almost exactly. In nature, electromagnetic
fields are known as Abelian gauge fields, whereas
more complicated non Abelian gauge fields are the
ones that are responsible for strong andweak inter-
action. Gauge fields are therefore known and con-
firmed to define three fundamental interactions,
and form the very basis of our understanding of
the microscopic world.2 Given this crucial role
of gauge fields in fundamental physics, the recent
success in simulation of Abelian and Non Abelian
gauge fields for ultra cold neutral atoms3–7 is one
of the most significant achievement in the field of
ultra cold atomic research.

Apart from allowing us to study the fields
responsible for fundamental interaction in a non-
trivial context, this development also opens up the

possibility of studying themodel hamiltonians that
predicts Quantum Hall Effect,8 Topological Insu-
lators and Superconductors,9 Interesting vortex
phases in superconductor10 and other interesting
magnetic field dependent phenomena in electronic
system. ere have been already a number of
excellent and detailed review articles written by
some of the most prominent experts in this field.
We are not going to repeat the topic of their review.
We describe the basic physics associated with the
processes that create such synthetic abelian and
non abelian gauge fields for ultra-cold atomic sys-
tem, and a systematic comparison with true gauge
fields that occurs in nature is presented, which is
responsible for the fundamental interactions with
the aim to analyze their “fundamental”-ness.

To that purpose we shall first begin with the
gauge invariance of Schrödinger Equation (for
example see [11]) for Abelian gauge theory in
Sec. 2. In Section 3 we shall introduce the Non
Abelian gauge theory. Rather than taking a field
theory route we shall do that in a theoretical back-
ground of Quantum Mechanics.12 In Section 4
we shall show how such gauge fields described in
the two preceeding sections can arise in ordinary
Quantum Mechanics purely for geometrical rea-
sons. In Section 5wepresent how the rotatingBose
Einstein Condensate such an abelian gauge field
can be simulated. Section 6 describes a general
scheme of producing Abelian and Non Abelian
gauge potential for multilevel ultra cold atoms by
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using laser induced coupling between different
hyperfine states. In the next section we shall try
to describe how both the geometric gauge poten-
tials are related to amore fundamental geometrical
concept of parallel transport. We shall also briefly
describe in this section why inspite of this connec-
tion the gauge fields for ultra cold atomic systems
are called “synthetic”. In Section 7, as a specific
example of synthetic non-abelian gauge field, we
shall explain how synthetic spin-orbit coupling for
ultra cold gases. We shall finally conclude.

2 Gauge Invariance of Schrödinger
Equation in Electromagnetic Field

In this section we shall start with the gauge invari-
ance properties of the ordinary Schrödinger Equa-
tion in Quantum Mechanics, namely how this
equation transforms under the gauge transfor-
mation and how it compares with our knowl-
edge about gauge invariance from classical physics.
ough any standard book on “QuantumMechan-
ics” may be consulted for more detail, we shall
closely follow the discourse given in the book by
J. J. Sakurai.11

In quantum mechanics our description of a
physical system starts with Schrödinger equation

i~
∂Ψ

∂t
= Hψ

e solution of this equation can be written as

Ψ(x, t) = U(t)Ψ(x, )

where the time evolution operator U(t) =

exp(−i Ĥt~ ). We shall consider the quantum
mechanical motion of a charged particle in pres-
ence of electric andmagnetic field. Such a situation
is very common to many solid state electronic sys-
tems where one can subject the free electrons that
carry electric current to such forces. According to
the law of electrodynamics, such electric and mag-
netic field can be given in terms of scalar potential
ϕ and vector potential B such that

E = −∇Φ;B = ∇× A

For the discussion below we shall only con-
centrate on the vector potentials alone, which can
be easily generalized to scalar potential. is is
because according to the convention of Special
Relativity, scalar and vector potentials are just the
time and space like components of a Four Poten-
tial.

Since,

∇×∇Λ =  ⇒ B = ∇× A'
= ∇× (A+∇Λ), (1)

Similarly if

V′ = V− 
c
∂Λ

∂t
and A' = A+∇Λ

en

E = −∇V− 
c
∂A
∂t

= −∇V′ − 
c
∂A'
∂t

= E' (2)

erefore, classical electrodynamics tells us
that upto a gauge transformations the vector and
scalar potentials are arbitrary. is means that two
vector potentials differ from each other by a gradi-
ent of a well behaved scalar function Λ, and will
lead to the same magnetic field which is clearly a
measurable quantity. is non uniqueness of the
vector potential for a given magnetic field how-
ever, does not create a problem in describing the
motion of charged partile in classical mechanics
under Newton’s Laws. is is because the force
on such classical charged particle, Lorenz force is
given by

F = qv× B.

erefore, in classical physics the fundamental
quantity is magnetic field and vector potential is
more like mathematical quantity that defines such
magnetic field upto a gauge transformation. By
this statement, all the physically measurable quan-
tities must depend on the magnetic field and not
on the vector potential.

We shall first construct the definition of gauge
transformation from the preceeding discussion
and then continue to improve over it in this section
before going to ultra cold atoms. Summarizing the
above description, such a transformation is the one
that links a vector potential with another with both
yielding the same magnetic field. Magnetic field is
therefore a gauge invariant quantity, and only this
appears in the classical equation of motion. is is
why all measurable dynamical variables in particle
mechanics are gauge invariant. Please note at this
stage we did not mention anything to the field part
of the Lagrangian which is required for a complete
description of the problem. is is done keeping
in mind the special situation in ultra cold atoms
which we will analyze in this particular review.
One can therefore expect at the level of Quantum
mechanics where we only quantize the motion of
the particle and use the same field as used in the
classical mechanics, such gauge invariance should
be respected.
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e Hamiltonian in presence of such magnetic
field is given as

H =



(
p− e

c
A
)
.

In the above expression, the canonicalmomen-
tum is p is distinguished from the mechanical
momentum

Π = p− e
c
A

However, the previously proposed idea about
gauge invariance now needs a careful scrutiny
since the vector potential now appears directly in
the Hamiltonian. It can be checked that the com-
mutation relations between different components
of the mechanical momentum does not vanish,

[Πi,Πj] =
i~e
c
εijkBk

However, the commutator is indeed gauge
invariant. Using the above commutator and the
fact that

H =
Π

m

It can be straightforwardly shown that the spec-
trum is given by the so called one dimensional har-
monic oscillator like Landau levels

En =
(
n+




)
~ωc; ωc =

eB
mc

e energy spectrum is thus a gauge invariant
quantity. However, the gauge invariant form of the
energy and the basic commutation relation does
not necessarily ensure that the relevant physical
quantities in quantummechanics, such as the tran-
sition matrix elements two different states under
the action of a given operator, are necessarily gauge
invariant.

To understand this issue better, let us recall
the Ehrenfest theorem, which states that expecta-
tion values of the observables in quantummechan-
ics behave in the same way as the classical quan-
tities. erefore, we can expect them to trans-
form in the same gauge invariant way like classical
quantities. As one can see this is not trivially sat-
isfied, since what appears in the dynamical vari-
able like Hamiltonian is A and not B. is tells
us that under a gauge transformation the operators
indeed get affected. To see how the gauge invari-
ance of expectation values can be ensured, let us
define a state ket |α⟩ in presence of vector poten-
tial A and the corresponding state ket |α′⟩ for the

same magnetic field with a different vector poten-
tial A' = A + ∇Λ. Our basic requirement for
gauge invariance is

⟨α|x|α⟩ = ⟨α′|x|α′⟩⟨
α
∣∣∣(p− e

c
A
∣∣∣α⟩ =

⟨
α′

∣∣∣p− e
c
A′
∣∣∣α′

⟩
, (3)

apart from the normality of each ket. Now, since
both kets are normalized there must be a unitary
operator such that

|α′⟩ = G|α⟩ (4)

e invariance of position and momentum
expectation value then demands

G†xG = x

G†
(
p− e

c
A− e

c
∇Λ

)
G = p− e

c
A

One can immediately see that the unitary oper-
ator that does the job is

G = exp

[
ie
hc

Λ(r)
]

(5)

is is actually the generator of U() gauge
transformation and is same as a phase transforma-
tion. is is also the simplest gauge transforma-
tion. e moral of the above story is that in Quan-
tum Mechanics, in order to keep dynamical vari-
ables U() gauge invariant, the wavefunction also
needs to changes under gauge transformation and
acquire an additional phase.

is has highly non trivial consequences, such
as the Aharanov-Bohm effect. However, to stay
focussed on our topic in the next section we shall
not discuss this issue further. e function Λ
that appeared as the exponent and implements the
gauge transformation is a function of local coor-
dinates. Since all such functions commute with
each other, such a gauge transformation is called
Abelian. In the next sectionwe shall considermore
complicated gauge transformations that are non-
Abelian.

3 Non-Abelian Phases
We shall now introduce Non Abelian gauge field
using the language of quantum mechanics rather
than quantum field theory. To this purpose we
shall follow the treatment given in Ref. [12]. Yang
and Mills in 1954 generalized this gauge (phase)
invariance properties of the Schrödinger Equa-
tion for multicomponent wave function, namely,
the wavefunction has internal degrees of freedom
apart from the co-ordinate space or orbital degrees
of freedom. As we know when the wavefunction
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has such internal degrees of freedom, the wave-
function is a complex vector defined at each point
in space time rather than a complex number. In
such cases

Ψ(r, t) =


Ψ(r, t)
Ψ(r, t)
· · ·

ΨN−(r, t)
ΨN(r, t)


We shall now extend the concept of gauge

invariance for a scalar Schrödinger equation in the
earlier section, to the case of vector Schrödinger
equation that will be satisfied by suchmulticompo-
nent wave function and analyze the consequences.
However, unlike in the previous case, here we pre-
tend that initially we have no idea about the type of
“Electromagnetic field” will demand the resulting
gauge invariance. So we start by demanding gen-
eralization of such gauge invariance for a multi-
component Schrödinger equation and wait for the
outcome.

Since here the wavefunction is multicompo-
nent the generalization of exp, (i e

hcΛ(x))will be an
unitary matrix, where the condition for unitarity
comes from the constraint that the norm of the
wavefunction

|Ψ(r, t)| = |Ψ(r, t)| + |Ψ(r, t)|

+ · · ·+ |ΨN(r, t)| (6)

should remain invariant under this transformation

Ψ′(r, t) = UΨ(r, t)

If we apply this transformation to the
Schrödinger equation for the multicomponent
wavefunction, which is (here we assume that
all operators are correctly multiplied by suitable
matrices so that they have the correct dimension),

i~
∂Ψ

∂t
=

(
−i~∇− e

c
A
)

Ψ(r, t) + eVΨ(r, t),

(7)

it can be written as

i~
∂

∂t
U−Ψ′(r, t) =

(
−i~∇− e

c
A
)

U−Ψ′(r, t)

+ eV(r)U−Ψ(r, t).

We multiply both sides of the above equation
from le by U and expand the covariant momen-
tum operator inside bracket and finally obtain

i~
∂

∂t
Ψ′(r, t) =

(−i~∇− e
c
UAU− − i~U∇U−)Ψ′(r, t)

+ eUVU−Ψ′(r, t)− i~U
∂

∂t
U−Ψ′(r, t) (8)

as the Schrödinger equation for transformed wave
functionΨ′. Equation (8) will have the same form
as Eq. (7) if we define

A' = UAU− + i
~c
e
U∇U−

V' = UvU− − i
~
e
U
∂

∂t
U− (9)

e above set of transformations define the
rules for gauge transformations for a multicom-
ponent wave function. e gauge transformations
defined in this way through the unitary matrix U
is a generalization of the one done for scalar wave
function in Sec. 2, but now A and V are matrices.
To see this connection explicitly let us note that any
unitary matrix U can be written as

U = eiH,

where H is a Hermitian matrix. In case of a scalar
function, H = e

hcΛ(r). Since Hermitian matri-
ces in general do not commute, the gauge fields
that transform according to the transformations
defined in (9) are called Non-Abelian gauge fields,
whereas for the scalar wave functions they are
abelian.

What will be the corresponding gauge field for
such non-abelian gauge potential? To find out, that
let us note that the principle we adopted in find-
ing out the electromagnetic field is that under the
gauge transformation

Aµ(x) → Aµ + ∂µΛ(x)

is is basically the same equationswritten ear-
lier in Eq. (2) and Eq. (1), but written in a more
compact way using relativistic notation. e field
strength should remain invariant under such gauge
transformation. is implies that the field strength
can be given by

Fmuν = ∂µAν − ∂νAµ (10)

It can be readily checked that under the abelian
gauge transformation this is indeed gauge invari-
ant. Also in (10) the terms that only contain the
spatial derivative of gauge potential, combines to
give

∇× A = B.

For Non-Abelian gauge potential under the
transformation defined in Eq. (9), it can be shown
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that

Fµν → ∂µ[U−AνA+ iU−(∂νU)]
− ∂ν [U−AµA+ iU−(∂µU)]

= U−(∂µAν − ∂νAµ)U
+ i[(∂µU−)(∂νU)− (∂νU−)(∂µU)
+ (∂µU−)AνU+ U−Aν(∂µU)
− (∂νU−)AµU− U−Aµ(∂νU) (11)

It is clear the same expression does not trans-
form covariantly. To make it covariant let us note
that under the same gauge transformation,

−i[Aµ,Aν ] → −iU−[Aµ,Aν ]U
− i[(∂µU−)(∂νU)− (∂νU−)(∂µU)
− (∂µU−)AνU− U−Aν(∂µU)
+ (∂νU−)AµU+ U−Aµ(∂νU) (12)

is means the additional terms that appear in
the expression of Fµν , also appear in the trans-
formed commutator of the Non Abelian gauge
potentials, however with the opposite sign. us,
suggest that if we define

Fµν = ∂µAν − ∂νAµ − ig[Aµ,Aν ] (13)

then it transforms covariantly under the gauge
transformation. Here the quantity g depends on
the nature of the coupling with the gauge poten-
tial. Equation (13) defines the non abelian field
strength.

Non Abelian gauge fields do appear in nature,
and fields transforming according to the rules
given in Eq. (9) are actually responsible for weak
and strong interactions that happen inside nucleus.
is is one of the dominant topic in quantum field
theory.2,25 But as emphasised above, these may
appear in ordinary quantum mechanics also. is
is what we are going to discuss further in the next
section. One of the motivation for that it shares
a close connection with synthetic gauge field for
ultra cold atoms.

4 Geometric Phase in Quantum
Mechanics and the Related
Gauge Fields

Abelian and Non Abelian gauge fields are funda-
mental to our understanding of the nature since
it is known that the three fundamental interac-
tions Electromagnetic, Weak and Strong are due
to the existence of such gauge fields. However,
the Abelian gauge transformations are equivalent
to phase transformations and Non Abelian gauge
transformations are their higher dimensional gen-
eralization. One can therefore naturally ask the

question whether such a transformation arises in
the other domain of Quantum Mechanics, and if
the answer is yes what are the possible realiza-
tions. is question was answered in the clearest
form by M. V. Berry in his seminal work13 based
on a number of other works which already indi-
cated the existence of such different type of gauge
fields in a number of physical phenomena, that
spans optic,14 Chemistry,15 Atomic and Molecu-
lar Physics16 etc. A selected collection of papers
on this related topic is available in Shapere and
Wilczek edited book.17 Here we follow a pedagog-
ical account of the key argument given in Ref. [18].

To this purpose we shall consider the phase
change in a quantum mechanical wavefunction
under an adiabatic change. e adiabatic the-
orem in quantum mechanics tells us that if the
particle Hamiltonian is given by H(R(t)) where R
is some external co-ordinate which changes suffi-
ciently slowly (slower than the natural time scale
set by the typical energy spacing in the unper-
turbed system) and appears parametrically in H,
then the particle will sit in the n-th instantaneous
eigenstate of H(R(t)) at the time t if it started out
in the n-th eigenstate of H(R()).

e solution of the time dependent
Schrödinger equation for this case is

|ψ(t)⟩ = c(t) exp
(
− i
~

∫ t


En(t′)dt′

)
|n(t)⟩)

(14)

Here the exponential factor comes from the
usual time evolution of an eigenstate of the Hamil-
tonian, aer taking into account the fact that one
is dealing with the instantaneous eigenstate of the
time dependent Hamiltonian, which is changing
with time. e other factor c(t) is kept to check
if there is any non-trivial additional time depen-
dence due to the time evolution of the basis states.
Substituting the state (14) in the time dependent
Schrödinger equation and taking the inner prod-
uct with the instantaneous ⟨n(t)| one gets

dc(t)
dt

= −c(t)
⟨
n(t)

∣∣∣∣ ddt
∣∣∣∣ n(t)⟩

with the solution

c(t) = c()eiγ(t)

with γ(t) = i
∫ t
⟨n(t

′)| d
dt′ |n(t

′)⟩dt′. e impor-
tant thing here to notice that this phase is arising
because the basis state |n(t)⟩ is constantly chang-
ing with time. e instantaneous adiabatic state
can therefore be written as

|n(R)(t)⟩a = eiγ(t)|n(R(t))⟩
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where the subscript a is used to denote the differ-
ence with a time evolved state in the absence of
such phase factor. We know that an extra phase
factor in a quantummechanical statemay not have
any measurable consequences. However, in the
present case actually it does have. We shall explain
it here. Let us rewrite

exp
(
−
∫ t


⟨n(t′)

∣∣∣∣ ddt′
∣∣∣∣ n(t′)⟩dt′) = exp

(
i
~
i intt

⟨
n(t′)

∣∣∣∣ ddt′
∣∣∣∣ n(t′)⟩ dt′

)
= exp

(
i
~

∫ t


i~
⟨
n(R(t′)

∣∣∣∣ d
dR

∣∣∣∣ n(R(t′)⟩ dR
dt′

dt′
)

= exp
(
i
~

∫ t


An(R)

dR
dt′

dt′
)

()

where

An(R) = i~
⟨
n(R)

∣∣∣∣ d
dR

∣∣∣∣ n(R)⟩
is known as the “Berry curvature”. Now under a
phase transformation on the state

|n(R)⟩ → exp(iΦ(R))|n(R)⟩ = |n′(R)⟩

Berry Curvature transforms as An(R) ⇒ An(R)− ~
dΦ(R)
dR

()

is is exactly the gauge invariance condition
that was imposed on the vector potential in Eq.
(1) in Section 2. e transformation of the wave-
function defined in (16) is same as the one defined
in Eq. (4) for real electromagnetic field. What
motivates a gauge invariant quantity in this case?
To see that, consider a case where the adiabatic
parameter R comes back to the same value aer
a time period T. is implies R(T) = R() and
H(T) = H(). Under that case the single val-
uedness of the wave function in the parameter (R)
space demands that the line integral of the Berry
curvature around the closed loop in the parameter
space must be invariant under such gauge or phase
transformation. is is exactly the same condition
which states that two vector potential A and A'
differing from each other through a gauge trans-
formation when integrated over a closed contour
will be same since this is equal to the flux enclosed
by the area (

∫
B · dS). us, the Berry curvature

exactly plays the same role as the vector potential
due to a real magnetic field under gauge transfor-
mation and its effect on the wave function, namely
the integral of the vector potential around a close
loop in the co-ordinate space, is gauge invariant as
demanded by the single valuedness of the wave-
function.

A pertinent question at this point is whether
such adiabatic evolution of the time (parameter)

dependent Hamiltonian will also generate a scalar
potential along side a vector potential. is is
important to establish a full analogy with electro-
magnetic theory, since vector and scalar potentials
are space and time like component of the four

potential that appear in a relativistically invariant
theory of Electromagnetism. It turns out that in
this case there also exists a corresponding scalar
potential which has the form

V(R) =
~

m
[| d
dR

|n(R)⟩|

−
⟨

d
dR

n(R)|n(R)
⟩⟨

n(R)| d
dR

|n(R)
⟩
.

We again refer to ref. [18] for the detailed
derivation of this accompanying scalar potential.
e gauge potentials described in this section are
known in literature as geometric gauge potential
because of their origin.

e adiabatic parameter that appears here is
not necessarily a scalar, it could be a vector as well,
namelyR, having a certain number of components.
In that case a straightforward generalization of the
above calculation will show in that case Berry Cur-
vature will be a matrix and its different compo-
nent will generate the Non Abelian counterpart of
the Geometric gauge potential. e most signifi-
cant impact of the concept of “Berry curvature” or
“Geometric Vector Potential” is that it opens the
possibility of identifying gauge potential and fields
in a wide variety of quantum systems. In the fol-
lowing sectionwe shall analyze how these concepts
lead to the creation of synthetic gauge field for ultra
cold atoms.
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Laser

Rotating mask

Lens

BEC

..

Figure 1: A typical configuration for rotated trap.
Here the laser induced optical potential imprinted
on BEC is rotated with the help of a rotating mask.
In some experiments such a set up was used.

5 Rotating Bose-Einstein Condensates
e simplest example of implementing the artifi-
cial or synthetic gauge field for cold atomic con-
densates is through rotation. is was accom-
plished by ENS Group,3 MIT group4 and JILA
group.5 is method exploits the equivalence
between the Coriolis force in a rotating frame and
Lorenz force acting on an electron in a uniform
magnetic field.19 In this scheme the trap in which
an ultra cold condensate is created is rotated by
using a moving laser. A schematic figure for the
set up is depicted in Fig. 1.

If the plane of this rotation is taken as x − y
plane and the symmetry axis as ẑ, the effect of such
rotation on spatial co-ordinate is given by

Rz(ϕ)

[
x
y

]
Rz(ϕ)

† =

[
cosϕ sinϕ
− sinϕ cosϕ

] [
x
y

]
HereRz(ϕ) = exp(−iϕL̂z~ ) is the Rotation oper-

ator about ẑ axis. If the rotation is executed at an
uniform angular velocity Ω, then ϕ = Ωt. We
can immediately see the connection betweenRz(ϕ)
and the U(1) gauge transformation defined in (5).

e time dependent Hamiltonian that
describes a trapped boson in a rotating frame is
given by

H(t) = Rz(Ωt)
[
p

m
+



m(ω

xx
 + ω

yy
)

]
R†
z (Ωt)

Since the p remains invariant under the rota-
tion it yields

H(t) =
p

m
+

m

[(ω

x(x cosΩt+ y sinΩt)

+ ω
y(−x sinΩt+ y cosΩt)] (17)

One needs to solve the time dependent
Schrödinger equation (TDSE) for such system
which is

i~
∂ψ

∂t
= H(t)ψ. (18)

However, to do equilibrium thermodynamics
of such bosonic systems, it is useful to go to the
co-rotating from where the Hamiltonian does not
change with time. For that one needs to do a uni-
tary transformation on the wave function by writ-
ing

ψ′ = R†
z (Ωt)ψ

is is again equivalent to the gauge transfor-
mation given in (4) where the ψ′ is the wave func-
tion in the co-rotating frame. e transformed
TDSE for ψ′ looks like

i~
∂ψ′

∂t
=

[
p

m
+

m

(ω

xx
 + ω

yy
) + ΩLz

]
ψ′

(19)

One can check the time independent Hamilto-
nian on the right hand side can be written as

H =
(p−mA)

m
+



m
[
ω
xx

 + ω
yy

 − Ωr
]
(20)

us the unitary transformation that takes
the wavefunction to the co-rotating frame, also
induces a gauge potential in the stationary hamil-
tonian in the co-rotating frame. Comparing with
our discussion in Section 2 we can comment that
the unitary operator Rz(ϕ) defined here is math-
ematically same as unitary gauge transformation
operator U = exp(i e

hcΛ(x)) defined. e trans-
formation of the Hamiltonian operator introduces
a gauge potential.

e gauge (vector) potential and the gauge field
obtained in this way is of the form

A = −Ωyx̂+Ωxŷ
B = Ωẑ

is is however, not the only effect on the
Hamiltonian by the unitary transformation. It will
also introduce a scalar potential

VR(r) = − 

mΩr (21)

us the effective trap potential in the rotating
frame gets reduced.

Aswe can see, equivalently, the creation of such
“artificial” gauge field through rotation can also
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be explained using the concept of Berry Curvature
discussed in Ref. [13]. One can recognize here
that the adiabatic parameter is the time dependent
rotation angle Ωt and the Hamiltonian is a func-
tion of this parameterR = Ωt. If the rotational fre-
quency is ramped up adiabatically, then it can be
ensured that system will always stay in the ground
state of the rotated hamiltonian provided the ini-
tial system is in the ground state.

e ultra cold atomic Bose Einstein conden-
sate we are going to talk about consists of inter-
acting bosons. However, in the typical experi-
mental condition, the system is described very well
by the mean field Gross-Pitaevskii equation.20 For
simplicity we choose a two dimensional conden-
sate that can be derived from a three dimensional
model for a rotating cigar shaped condensate. e
Gross-Pitaevskii equation is

i~∂Ψ
∂t

=

(
− ~

m
∇ +



m(ω

xx
 + ω

yy
) + g|Ψ|

)
Ψ

(22)

Even though the Ψ that appeared in the above
equation is the mean field superfluid order param-
eter of the N-boson condensate and not the quan-
tum mechanical wavefunction of the correspond-
ing many body Schrödinger equation, the above
equation has the same mathematical structure of
a usual one particle Schrödinger equation apart
from the non-linear term which represents inter-
action.20 It can be readily verified that the non-
linear term is invariant under the action of theUni-
tary operator Rz(Ωt). us the entire previous dis-
cussion on the artificial gauge transformation of
single boson Schrödinger equation can be applied
here for the Gross-Pitaevskii equation also. In the
early days of BEC this was the technique through
which vortices and vortex lattice was created in
ultra cold condensate. e entry of such vortices
in a rotating condensates and the change of con-
densate profile due to this is shown in Fig. 2.

We shall not discuss the vortex physics in Ultra
Cold BEC any further in this review since this
has already been discussed in a number of earlier
reviews. e early experiments in rotating ultra
cold gases, vortices etc. was discussed in Refs. [21,
22]. An interesting regime is where the rotational
frequency Ω is almost equal to the trap frequency
in the transverse plane ω⊥. is means that the
trap potential becomes almost negligible. Because
of the entry of the large number of vortices in the
ultra cold condensate under this condensation, a
number of interesting phases of large number of
vortices appear in this regime. is is the regime
of rapidly rotating ultra-cold gas, and has been
reviewed extensively in Refs. [23, 24].

6 The Creation of Abelian and
Non-Abelian Gauge Field for Ultra
Cold Gases Using Berry Curvature

In the previous section we saw how synthetic
Abelian field can be created for ultra cold atoms
exploiting the similarity between the rotational
operator about a particular axis with a U() gauge
transformation. e above scheme has a serious
limitation. e additional deconfining potential
in Eq. (21) destabilizes the trap in which conden-
sate is created beyond a critical value of the rota-
tional frequency, when Ω → ω⊥. is in turn
limits the strength of the Abelian field that can be
created in this method. us, the cold atom ana-
logue of strongly correlated phases of two dimen-
sional electronic systems in a perpendicular mag-
netic field with high value (of the order of several
Tesla) such as Quantum Hall phases8 cannot be
created in this set-up. is requires one to look
for alternative schemes. We shall describe that in
a very general way following the excellent review
article26 where one may look for further details.

6.1 Geometrically induced abelian
gauge field

Consider a general model of a two level atom with
|g⟩ and |e⟩ states being respectively its ground state
and excited state and forms a two dimensional
Hilbert space. ey can be considered as the eigen-
state of a simple Hamiltonian like

H =
P

m
(23)

We consider the dynamics of the particle in
space dependent external field that couples these
two states (Fig. 3 (a)). One can recognize that a
given laser with suitable parameters can accom-
plish this job through dipole interaction. Formore
details on laser-atom interaction refer to standard
textbook onQuantumOptics such as ref. [27]. e
general Hamiltonian of such coupled system can
be written as

HI = Hgg(r)|g⟩⟨g|+Hee(r)|e⟩⟨e|
+ Hge|g⟩⟨e|+Heg|e⟩⟨g| (24)

Since this is a two level system one canmap this
to spin 

 system and rewrite this as

HI =
~Ω

n · σ

where n is a three dimensional unit vector param-
eterized in terms of polar angle θ(r) and azimuthal
angle ϕ(r). As one can see that the spatial
dependence comes from the fact that the cou-
pling between the states is assumed to be spatially
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Figure 2: The entry of a vortex in a rotating condensate with increased rotational frequency and the change
of condensate profile. The sequence of the plots are like (1,1) → (1,2) → (2,1) → (2,2) → (3,1) → (3,2).
The numerical result is obtained by simulating Gross-Pitaevskii equation (22) in a co-rotating frame. The x
and y axis is the condensate co-ordinates in dimensionless units. We also take ωx = ωy = ω⊥. The z axis

is the superfluid density |Ψ|
2
. At the position of the vortex the complex order parameter of the superfluid

condensate ψ vanishes and the phase of complex order winds around the position of the vortex.

dependent since it will depend on electric field of
the laser and the atomic wavefunction.

At the spatial point r, the local eigenstates ofHI
are now given by

|n↑(r)⟩ =

 cos θ(r)


sin θ(r)
 eiϕ(r)


|n↓(r)⟩ =

− sin θ(r)
 e−iϕ(r)

cos θ(r)


 (25)

ese two states form a local basis for the
Hilbert space at each point in the co-ordinate space
r. In the language of quantum optics they are
called dressed states. If the system evolves adiabat-
ically through this space, this means that this local
basis of the Hilbert space is also changing at every
point in space. Following our discussion in Section
15 this adiabaticmotionwill generate Berry curva-
ture. Further/moreover the quantity i⟨n↑|∇n↓⟩ is
real since n↑,↓ forms an orthogonal basis. A gen-
eral state in this Hilbert space at any point of time

can be written as

|Ψ(r, t)⟩ = ψ↑(r, t)|n↑(r)⟩+ ψ↓(r, t)|n↓(r)⟩ (26)

Since the basis vector is changing from one
point to another in co-ordinate space,

∇(ψi(r)|ni(r)⟩) = ∇ψi(r))|ni(r)
+ ψi(r)|∇ni(r)⟩, i =↑, ↓

Given this relation when such state is operated
by the momentum operator, one yields

p|Ψ⟩ =
↓∑

i,j=↑

(δi,jp− Aij)ψj|ni⟩

Now suppose an initial state the particle is in
the state |n↓⟩ and the motional state is such that
it stays in this state all the time (the transition
amplitude to the up-state is negligible). Under
this condition we assume ψ↑ =  and project the
Schrödinger equation in the dressed state |n(r)↓)⟩.

Journal of the Indian Institute of Science | VOL 94:2 | Apr.–Jun. 2014 | journal.iisc.ernet.in 225



Sankalpa Ghosh and Rashi Sachdeva

(a) Abelian Set-up

(b) Non-Abelian Set-up
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Figure 3: (a) A typical atom-laser configuration
that can be used to generate Berry curvature of
the form of Abelian gauge potential. The atom
is modelled as two level system having states |g⟩
and |e⟩. For more details refer to the discussion in
Sec. 6.1. (b) Generalization of the set up in (a) to
produce Non Abelian gauge potential. For more
details refer to the discussion in Sec. 6.2.

is gives us the following “gauged” Schrödinger
equation for ψ↓.

i~
∂ψ

∂t
=

[
(p− A)

m
+

~Ω


+ V
]
ψ (27)

Here A and V are essentially the vector poten-
tial and scalar potential that arise due to the
geometric phase created by the slowly changing
Hilbert space basis from one point to other. e
resulting vector potential is given by in this case

A(r) = i~⟨n↓(r)|∇n↓(r)⟩ =
~

(cos θ − )∇ϕ

e synthetic magnetic field that is created due
to the vector potential is given by

B(r) =
~

∇ cos θ ×∇ϕ (28)

e magnetic field and vector potential created
in this way have geometric origin. It can be con-
cluded from the preceeding discussion on Berry’s
phase that this gauge potential cannot be “gauged
away” completely if the magnetic field (28) is non
zero, since the line integral of this vector poten-
tial around a closed contour in a region where the
magnetic field is non-zero should be equal to the
flux enclosed by this region. is apart, the chang-
ing basis of the Hilbert space also introduces a

scalar potential

V(r) =
~

m
|⟨n↑(r)|∇n↓⟩|

=
~

m
[(∇θ) + sin θ(∇ϕ)

One of the practical advantages of generating
a synthetic vector and scalar potential in this way
is that if we consider the Hamiltonian of a trapped
system, the scalar potential does not offset the trap
potential. e scalar potential in this case also
can be repulsive and attractive.29 Also given the
fact that there are various ways of coupling differ-
ent hyperfine states of ultra cold atomicmultiplets,
such a scheme, provides one an wide range of pos-
sibilities to create such geometrically induced syn-
thetic gauge potential and gauge field. But as we
see in the next section that one of the most inter-
esting aspect of this scheme is the fact that it can be
easily generalized to create a Non Abelian-gauge
field.

6.2 Geometrically induced non-abelian
gauge field

One of the earliest paper that introduces the con-
cept of such non-abelian Geometric phases in a
general context is the work by Wilczek and Zee.28
Here we shall discuss a specific example involv-
ing ultra cold atoms and laser following.26 Partic-
ularly, we shall show how the idea discussed in the
preceeding section can be easily generalized to cre-
ate synthetic non-abelian gauge field when a N+ 
state atomic system with N ≥  is suitable config-
uration of laser beams. A prototype configuration
is displayed in Fig. 3(b). e structure of the cou-
pling matrix U(r) will be

U(r) =


⟨|U(r)|⟩ ⟨|U(r))⟩ · · · ⟨|U(r)|N+ ⟩
⟨|U(r)|⟩ · · · · · · ⟨|U(r))|N+ ⟩

...
...

...
...

⟨N+ |U(r)|⟩ · · · · · · ⟨N+ |U(r)|N+ ⟩

 ()

For a fixed position r, the above matrix can be
diagonalized to give N +  dressed states |ni(r)⟩
with energy eigenvalues Ei(r) where i goes from
 to N + . Under certain circumstances it hap-
pens that a subset Q out of this N +  states are
either degenerate or quasi-degenerate and are well
separated from the rest of states energetically. It
is under this condition that it is possible to real-
ize adiabatic motion in this low lying degenerate
subspace HQ of dimension Q. Assuming that the
motional states are such that there is almost no
scattering from this low energy subspace HQ to
(N+ )− Q higher energy state.
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Againwe canwrite the full wave function of the

|Ψ⟩ =
N+∑
i=

ψi(r)|ni(r)⟩

and then we can project this Schrödinger equation
to the reduce Hilbert space HQ to get an equa-
tion for the reduced spinorial wavefunction ΨQ =
(ψ, . . . , ψQ)

T. We can straightforwardedly extent
the gauged Schrödinger equation given in Eq. (27)
to its spinorial counterpart, namely

i~
∂ΨQ

∂t
=

[
(P − A)

m
+ ϵ+ V

]
ΨQ (30)

With the important differences thatA andV are
now matrices with their matrix elements given by.

Ai,j = i~⟨ni(r)|∇nj(r)⟩

Vi,j =


m

N+∑
l=Q+

Ail · Al,j (31)

With different component (x, y, z) these effec-
tive vector potentials being matrices will not gen-
erally commute with each other, and are therefore
called non abelian vector potential. Here ϵ corre-
sponds to the energy of the unperturbed atomic
systems.

e above described atom-light interaction
induced synthetic abelian or non-abelian gauge
potential has been successfully implemented by
I. B. Spielman’s group6,7 in NIST by coupling
atomic states with Raman lasers. ey created syn-
thetic magnetic field, electric field as well as SO
coupling in ultra cold atomic systems. However, it
may be noted inspite of the fact that NIST method
was able to overcome some of the difficulties that
was encountered in rotating an ultra cold atomic
system, particularly in the process of creating high
“synthetic” magnetic field, it has its own limita-
tions. Here the highest possible value of the syn-
thetic magnetic field is capped by the wavevector
of the Raman Laser. A detailed discussion on these
experiments appeared in Ref. [29] which one can
see for more details. Very recently, an experimen-
tal success was achieved in creating optical flux lat-
tices 31 where it is possible to create much higher
value of synthetic magnetic field. We are not cov-
ering this topic here and direct the reader to the
Refs. [32, 33] and the refs. cited there for the same.
Studying the effect of artificial gauge field in pres-
ence of optical lattice is another interesting topic
which is also not covered in this article. A sum-
mary of the relevant work and discussion on some
relevant issues for this topic is available in Ref. [34].
e other case of synthetic gauge field for cold

atoms that we shall discuss in some detail in sub-
sequent Section 7 is the principle of creating syn-
thetic Spin-orbit coupling for ultra cold bosonic
atoms. However, before that here we shall provide
a comprehensive analysis of the “synthetic-ness” of
the gauge field created from the geometric phases.

6.3 Geometrical interpretation of the
gauge potential: Parallel transport

In this section we shall briefly digress the origin of
gauge field in Quantum Mechanics/Field eory
and discuss the existence of similar reason in the
current case of synthetic gauge field for ultra cold
atoms. We know from quantum mechanics11,18

that a spinorial (two-component) wave function
transforms under a spin rotation as

Ψ′ = exp

(
i

σ · nϕ

)
Ψ

Here

[σi, σj] = ϵijkσk

obeys the standard commutation relation between
the generators of the SU(2) rotation in the spin-
space. Under such general SU(2) transformation a
n-dimensional iso-spinor similarly transforms to

Ψ′ = exp(iMµΛµ)Ψ = U(x)Ψ(x).

In field theory a system is said to have gauge
invariance, if under such transformation the defin-
ing Lagrangian density remains invariant. e
Lagrangian density involves the derivative of the
field. Same is true for the wavefunction in Quan-
tum Mechanics where the Hamiltonian involves
the derivative of the wavefunction. For that it is
important that the ∂µΨ, must change covariantly.
Now it can be immediately checked that this is not
the case for the usual derivative as

∂µΨ
′ = U(∂µΨ) + (∂µU)Ψ

is happens because under the generalized
spin-rotation, the axes in the space of such isospin
is getting at each point in space. us Ψ(x) and
Ψ(x + dx) are measured in different co-ordinate
systems. To make the derivative co-variant one
should compareΨ(x+dx)with themodified value
ofΨ(x) if it were transported from x to x+dx keep-
ing the iso-spin axis fixed. is is known as paral-
lel transport in isospace. is is depicted in Fig. 3.
Under this condition the change in the Ψ will be
different and this change δΨ can be written as

δΨ = igMaAa
µdx

µΨ
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Figure 4: The concept of parallel transport is
illustrated with the help of two figures adopted
from ref. [25]. In (a) no parallel transport was
done. In (b) the parallel transport was done.

Here, Aa
µ takes care of the change in the local

co-ordinate axes in the isospace from one point
to another. e derivative defined in this way
becomes

DΨ = (Ψ + dΨ)− (Ψ + δΨ)

= dψ − igMaAa
µdx

µΨ

DΨ
dxµ

= DµΨ = (∂µ − igMaAa
µ)Ψ (32)

It can be checked that the above modified
derivative transforms covariantly under the gauge
transformation and is therefore qualified to enter
into the gauge invariant Lagrangian density. Here
Ma are the generators of the rotation in the iso-spin
space and their detail form depends on relevant
group that represents the symmetry. e simplest
of this case is U() rotation where M = . In par-
ticular, it corresponds to our problem of a charged
particle in electromagnetic field g = e. Under that
situation

Dµ = ∂µ + ieAµ.

eabove discussion is available in a number of
Field eory books that discuss gauge field theory.
We here mostly followed the notation and discus-
sion of Ref. [25]. Now comparing this discussion
with the discussion in the preceeding sections (6.1
and 6.2), we can immediately recognise that there
also it is the changing basis in the pseudospin space
under adiabatic evolution. e adiabatic evolution
of these basis states leads to the development of

synthetic gauge field or Berry Curvature, and has
a similar geometrical interpretation like the true
gauge field.

Finally this brings us to a important question,
namely, why inspite of this similar geometrical
origin, we call the Berry curvature related gauge
field in ultra cold atoms as “synthetic”. e rea-
son is in true gauge field theory there is purely
gauge field dependent term in the Lagrangian den-
sity2,25 which stands for the Field energy. It is this
term that gives the gauge field their independent
dynamics in the complete matter-field Lagrangian
density. us such gauge fields are dynamical.
e corresponding gauge potentials appeared in
the covariant momentum operator. However,
in the atom-laser configuration the full Lagrangian
density does not contain any such field energy
term which is related to the Berry curvature gen-
erated due to adiabatic motion. e field part
that appears here is just the electromagnetic field
energy associated with the laser and the not one
related to the geometric gauge field. is is why
geometric gauge fields do not have any indepen-
dent dynamics.

7 Synthetic Spin-Orbit Coupling for Ultra
Cold Atomic Gases: Case of Non
Abelian Gauge Field

e motivation behind creating synthetic spin-
orbit coupling for ultra cold atoms primarily
comes from the fact that spin orbit coupling plays
a very important role in spinotronics30 and Topo-
logical Insulators,9 both of which have interesting
practical applications. However, spin-orbit cou-
pling also forms an interesting example for Non
Abelian gauge potential which we shall describe in
the following discussion.

7.1 Non abelian gauge potential and
spin-orbit coupling

In our familiar notation a Non Abelian vector
potential can be written as

A = Axx̂+ Ayŷ+ Azẑ

where Ax, Ay and Az are now matrices. Field
strength for such Non Abelian vector potential
given by the expression (13) can be written as

B = ∇× A− i
~
A× A (33)

One can now easily identify that in the expres-
sion (33), the first part is a straight forward gener-
alization of the relation between vector potential
and magnetic field for the Abelian case, the sec-
ond part is only non zero if the gauge potential is
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Non Abelian. For Abelian cases, the second part is
identically zero.

A major motivation of simulating synthetic
magnetic field for ultra cold atoms is to observe
Quantum Hall Effect like phenomenon which
occurswhen a two dimensional electron gas is sub-
jected to an transverse uniform magnetic field.8 A
related question can therefore be asked what are
the gauge potentials that can create a uniform Non
Abelian magnetic field. A detailed analysis of this
problem was done in Ref. [35]. Here we pro-
vide a brief summary of the relevant results to dis-
cuss subsequently in some detail why and how one
creates synthetic spin-orbit coupling for ultra cold
atomic systems.

An important difference between Abelian and
Non Abelian gauge field is that, whereas in the
case of the former two vector potentials that cre-
ate the same magnetic field are related to each
other by a simple gauge transformations, in the
case of Non Abelian field it is not so. By
that one means that two non-equivalent Non-
Abelian gauge potential can lead to the same
Non-Abelian magnetic field. Following35 we shall
illustrate this case for the non abelian magnetic
field

B = σzẑ = 
[
ẑ 
 −ẑ

]
(34)

e above magnetic field is uniform but its
direction is opposite for spin-up and spin-down
component of the wavefunction of the particle on
which it is applied.

One type of vector potential that can give such
uniform field is given by

A =


B× r = yσzx̂− xσzŷ (35)

is is again a starightforward generalization of
vector potential in symmetric gauge for uniform
magnetic field B = Bẑ, and here the vector poten-
tial contributes to the magnetic field only through
the first term (on R.H.S.) of the expression (33) for
Non Abelian field strength. Even though all com-
ponent of the vector potential are matrices, they
are Abelian matrices. us this is also the case of
Abelian gauge field. e single particle spectrum
of Schrödinger Equation, in presence of such gauge
potential, is a generalization of the Landau prob-
lem. Quantity like magnetic length, phenomenon
like Aharonov Bohm effect etc. can be defined for
such a problem.

Another type of vector potential that can also
generate the same magnetic field is given by

A = −σyx̂+ σxŷ. (36)

is is a uniform (does not depend on local co-
ordinate) non commuting vector potential. is
is indeed Non Abelian gauge potential. e con-
tribution to the field purely comes from the sec-
ond term in the expression (33). e single parti-
cle spectrum of Schrödinger Equation in presence
of such gauge potential is very different from the
Landau problem.35 However, there is more inter-
esting motivation for realizing such Non Abelian
gauge potential for ultra cold atoms.

To see this let is recall thewell known spin-orbit
coupling (omas Term) which arises due to rela-
tivistic correction to the motion of a spin-1/2 elec-
tron obeying Schrödinger Equation, namely

HSO = − e~
m

ec
σ · (E× p) (37)

Using the triple product rule the above hamil-
tonian can be rewritten as

HSO =
e~

m
ec

p · (E× σ)

For a uniform electric field along z-axis, E×σ
is just the Non Abelian uniform vector potential
defined in Eq. (36). Identifying this we can rewrite

HSO ∝ (p · A)

where A corresponds to the vector potential
defined in Eq. (36). Such a term also appear in
the kinetic energy term of the Hamiltonian,

Hk =


m
(p−mA)

that describes a free particle in the presence of Non
Abelian gauge field (36). us the simulation of
such synthetic Non Abelian gauge field for ultra
cold atoms is equivalent to creating synthetic spin-
orbit (SO) coupling for such systems. SO coupling
plays a crucial role in Spinotronics30 and Topo-
logical Insulator.9 With this background we shall
now briefly discuss how such SO coupling is cre-
ated experimentally for ultra cold BEC.

7.2 Principle of spin orbit coupling in
ultra cold bosonic systems: NIST
method

To generate SO coupling one considers the Rb
atoms whose ground state electronic structure is
S/, giving electron spin as S = /, and nuclear
spin as I = /. erefore, the total spin F can
take value F =  and F =  due to hyperfine cou-
pling. e low energy manifold therefore consists
of three F =  states. Such states are characterized
by state vectors |F,mF⟩ which represents simulta-
neous eigenstates of F and Fz operators, and for
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F =  they are given as |, ⟩, |, ⟩ and |,−⟩
respectively. A schematic for the set-up is given in
Fig. 5. In presence of Zeeman field all these three
levels that have same energy will split into three
different levels. e resultant system is exposed to
two counter propagating Raman laser beams along
the x̂ direction. e atom which is moving with
velocity ~kx

m along x̂ direction will absorb a pho-
ton coming from the opposite direction of Laser I,
and will have the momentum ~(kx − kL). From
this excited state it will emit a photon in the direc-
tion of laser II. As a result finally the momentum
of the state along the x-direction will be ~(kx −
kL). erefore, the state will finally be written
as | − , kx − kL⟩. Here the first quantum num-
ber corresponds to the hyperfine quantumnumber
mF, whereas the second one gives the momentum
along the x̂ direction. Similarly the atoms absorb-
ing photon from laser II and emitting a photon in
the direction of laser I will be finally in the state
|, kx + kL⟩. e final outcome is to have the fol-
lowing three states

|⟩ = |, kx + kL⟩
|⟩ = |, kx⟩

| − ⟩ = |, kx − kL⟩ (38)

It is possible to write down the effective hamil-
tonian now in  ×  matrix form that includes
contribution from atom, field (laser) and atom-
laser interaction. However, shown explicitly in
Ref. [36], it is possible to tune the Zeeman energy
and the laser frequency in such a way, that the
low energy subspace created by |, ⟩ and ,−
states are well separated from the |, ⟩ state. Under
this situation it is possible to construct an effective
Hamiltonian in this two dimensionalHilbert space
spanned by hyperfine state |⟩ and | − ⟩ which we
shall respectively call as spin up | ↑⟩ and spin-down
| ↓⟩ state. is is somewhatmodified version of the
scheme suggested in Section 6.2. e × effective
hamiltonian becomes,

H =

 k
x

m + δ


Ω
 e

ikLx

Ω
 e

−ikLx k
x

m − δ


 (39)

Here k is the momentum transfer due to
the relative motion between the laser and the
hyperfine state of the atom, and δ is the detuning
between the Raman resonance and the energy dif-
ference between the spin up and spin-down level.
We have also absorbed an overall ~ factor in vari-
ous terms. We refer to ref. [36] for the details about
the derivation of the above hamiltonian.

..

Figure 5: (a) Schematic set up by NIST set up for
exposing a BEC to two counter-propagating laser
beam. (b) The Raman coupling between three
hyperfine states.

If one makes a unitary transformation on the
two component wave function that will describe
this system such that ψ′ = Uψ, with

U =

[
e−ikLx 

 eikLx

]
is changes theHamiltonian fromH toUHU†

which is given by

HSO =

 (kx+kL)
m + δ


Ω


Ω


(kx−kL)
m − δ



 (40)

As one can see the resulting Hamiltonian can
be written as

HSO =
(kxI + kLσz)

m
+

Ω


σx +

δ


σz (41)

e above hamiltonian is the spin-orbit cou-
pled hamiltonian realized in NIST experiment.6
Even though here the vector potential has only
one component Ax, since that does not commute
with the scalar potential Ω

 σx +
δ
σz, this is one of

simplest realization of uniform non Abelian gauge
potential. With a suitable spin rotation it can also
be shown that the first term actually represents and
linear combination of equal weight Rashba and
Dresselhaus SO coupling. e energy eigenvalues
are

ϵk =
k
x + k

L
m

±

√(
kxkL
m

− δ



)

+
Ω


(42)

which for zero detuning δ = , the momentum
dependent energy eigenvalues can be given as

ϵk =
k
x + k

L
m

±

√(
kxkL
m

)

+
Ω


(43)
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Quasi momentum, q/k
L

Energy,
E(q)/E

L |↑′> |↓′>

..

Figure 6: The transition from a single to dou-
ble non-degenerate minima with the variation of
detuning for a spin orbit coupled gas. The idea of
the figure is taken from ref. [6].

econdition for theminima of the energy can
now be obtained from ∂ϵk

∂kx =  which gives

kx = 

or kx = ±k

√
 −

(
Ω

EL

)

(44)

Here EL =
k
L

m one can now check the fol-
lowing things from the above expression. If the
detuning δ is , there will be distinctly one min-
ima for Ω > EL at kx =  and another min-
ima at kx = ±k

√
 − ( Ω

EL )
 for Ω ≤ EL. How-

ever, if the detuning δ is finite, there is still a sin-
gle minima at kx =  for Ω > EL, but there
are also two non-degenerate minima at different
height for Ω < EL. e height difference can be
controlled by the detuning, and the transition from
single to two minima is the way one can detect
the spin-orbit coupling.6 For details of the exper-
imental method one can look at Refs. [29, 36]. A
schematic of the variation of the energyE as a func-
tion of the wavevector q = kx is given in Fig. 6.

8 Conclusion
In this introductory review we provided a careful
comparison between the true gauge fields that
is responsible for the fundamental interaction
between elementary particles and the synthetic
gauge field for ultra cold atoms. We analysed
both Abelian and Non Abelian gauge field for
this purpose. We have particularly show how
both fundamental and synthetic gauge fields
can be interpreted in a similar geometric way;
however the latter does not have any independent
dynamics and hence dubbed as synthetic. We also
illustrate the examples of such synthetic gauge

field for ultra cold atoms by considering two
specific cases: Abelian gauge field in rotating Bose
Einstein condensates and Non Abelian gauge field
in spin-orbit coupled Bose Einstein condensates.
is primer by no way covered the large amount
of exciting work that was done in the field of
synthetic gauge field for ultra cold atoms. We
referred to a number of excellent review articles to
that purpose. We also cited only a limited number
of mostly pedagogical articles and books on the
relevant topic, and apologize for our inability to
cite a large number of exciting and important and
highly relevant work in this field. We hope the
direction and information given in this review will
be sufficient to direct the interested reader to more
complete set of references on synthetic gauge field.
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