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Abstract | In this article we provide a brief pedagogical introduction to
the physics of the Bose-Hubbard model near its superfluid-insulator tran-
sition. We focus on the properties of the system near this quantum critical
point in the presence of an external drive which constitutes a ramp of the
hopping strength J of the bosons with a fixed rate τ−1. We provide an
introduction to the projection operator method which can treat such non-
equlibrium dynamics of the model beyond mean-field theory and discuss
its relevance for current experiments.

1 Introduction
Ultracold bosonic atoms in optical lattices pro-
vide us with an unique setup to study properties
of bosons near a Mott insulator-superfluid (MI-
SF) quantum critical point.1,2 Such systems are
well known to be described by the Bose-Hubbard
model.3 is model described by the Hamiltonian

H = T+ H, T =
∑
⟨rr′⟩

−Jb†rbr′

H =
∑
r

[
−µn̂r +

U

n̂r(n̂r − )

]
(1)

where br (n̂r) is the boson annihilation (number)
operator living on site r of a d-dimensional lat-
tice with coordination number z, and the chemical
potential µ fixes the total number of particles. is
model has already been theoretically studied using
both analytical4–6 and numerical7 techniques. e
presence of such an experimental test bed has led
to a plethora of new theoretical studies on the
model.8–11 Most of the initial analytical studies
have concentrated on obtaining the phase diagram
of the model by using mean-field theory,4,5 exci-
tation energy computation,6 and strong-coupling
expansion for the boson Green function.11 e
results obtained by these methods have been com-
pared to quantum Monte Carlo (QMC) data.7,10
Out of these methods, the strong-coupling expan-
sion11 (excitation energy computation6) and the
NPRG approach9 provide the closest numerical
match toQMCdata in 2D (3D); however, the qual-
itative picture of the equilibrium property of the
transition.

Recently, it has been realized that such ultra-
cold bosonic systems also allow us easy access to
the non-equilibrium dynamics of its constituent
atoms near the MI-SF quantum critical point. e
theoretical study of such quantum dynamics on
various models has seen great progress in recent
years.12 Most of these works have either restricted
themselves to the physics of integrable and/or
one-dimensional (1D) models or concentrated on
generic scaling behavior of physical observable
for sudden or slow dynamics through a quantum
critical point.12–16 However quantum dynamics of
specific experimentally realizable non-integrable
models in higher spatial dimensions and strong
coupling regime has not been studied extensively
mainly due to the difficulty in handling quan-
tum dynamics of plethora of states in the system’s
Hilbert space. e Bose-Hubbard model with on-
site interaction strength U and nearest neighbor
hopping amplitude J, which provides an accurate
description for ultracold bosons in an optical lat-
tice, constitutes an example of such models. Most
of the studies on dynamics of this model have con-
centrated on d = ,18 weak coupling regime,19 and
mean-field order parameter dynamics following a
sudden ramp in the strong coupling regime.20–22
Recent experiments2 clearly necessitate computa-
tion of dynamical evolution of several other quan-
tities in higher dimensional Bose-Hubbard model
in the strong-coupling regime (U ≫ J) beyond
the mean-field theory and for arbitrary ramp
time τ . However, none of the works mentioned
above presents an analysis of the non-equilibrium
dynamics of the model beyond mean-field theory.
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More recently, the authors of Ref. 23 have devel-
oped a theoretical formalism which enables one to
analyze the dynamics of the Bose-Hubbard model
beyond mean-field theory near the MI-SF criti-
cal point.23 e method uses a projection opera-
tor technique which enables us to account for the
quantum fluctuations over the mean-field theory
perturbatively in Jf/U(J(t)/U) and therefore yields
accurate results as long Jf/U(J(t)/U) ≪  for sud-
den(ramp) dynamics. is allows one to treat sud-
den and slow ramps at equal footing near the MI-
SF quantum critical point. As shown in Ref. 23,
the projection operator method yields an accurate
phase diagram and also provides an estimate of
dynamically generated defect density which shows
a qualitatively reasonablematch with recent exper-
imental results.2

In this article, we would aim to provide a
pedagogical introduction to the dynamics of the
Bose-Hubbard model using projection operator
method. To this end, we first provide a brief intro-
duction to the Bose-Hubbardmodel in Sec. 2. is
will be followed by a detailed exposition of the pro-
jection operator method in Sec. 3.

2 Bose-Hubbard Model: A Brief
Introduction

e physics of bosons has the fascinating theo-
retical aspect called Bose-Einstein condensation
(BEC), i.e., occupation of a single quantum state
by macroscopic number of bosons at low enough
temperature leading to fascinating phenomenon
such as superfluidity. Moreover, there has been
renewed interest in physics of these systems due to
their recent experimental realizations in trapped
atoms.1 Such experiments can manipulate BECs
with incredible precision. In particular, it has been
possible to form an optical lattice in a system of
these trapped bosons, which, when deep enough,
may result in Mott localization of Bosons leading
to destruction of the BEC state. Such a destruction
is a result of a phase transition in the bosonic sys-
tem. e physical temperatures relevant in these
experiments are of the order of tens of nanokelvins
(which makes these systems the coldest known
place in the universe) and is at least  −  order
of magnitudes lower than all other energy scales.
us such a transition is an example of a quan-
tum phase transition. In this section we shall give
a brief account of the physics associated with such
a transition, by considering the simplest possible
BECs, i.e., BECs formed from spin-less bosonic
atoms such as Rb.

e optical lattice is formed by applying
six counter-propagating laser beams of fixed

wavelengths to the condensed Bose atoms in a
trap(which can be magnetic or optical). ese
lasers have a electric field E and form stand-
ing waves of light in all three directions. e
atoms have a polarizibilityα(ω;ω), whereω is the
applied laser’s frequency and ω is some character-
istic frequency of the atoms. As a result, the atoms
feel a potential V = −α(ω;ω)|E|. By tuning the
frequency of the applied laser, one can now make
α positive, so that the atoms have a tendency to
sit at the bottom of the potential which acts as lat-
tice sites. Once they do that, the kinetic energy of
the atoms makes them hop from one site to the
next. As the lattice becomes deeper, this process
is exponentially suppressed since it can be shown
that the hopping amplitude J ∼ exp(−

√
V/ER),

where ER = ~/mλ, called the recoil energy, is
the basic energy scale created out of the mass(m)
of the atoms and the wavelength(λ) of the laser.
e bosons which form the condensate is neutral
and so the interaction between them is short-range
Van-der-Walls type. In the presence of a lattice, the
interaction between the boson is most significant
when they are on the same lattice site which we
shall call U. Interaction between the atoms in the
neighboring site can be neglected as a first approx-
imation. e key point to recognize is that this
interactions, unlike the hopping strength J, do not
depend exponentially on the strength of the lattice
potential V.

Now consider the an optical lattice with one
boson per site. If the kinetic energy is large com-
pared to the on-site interaction (J ≫ U), the
bosons are free to hop around and therefore the
ground state of the system is clearly the one in
which a major number of bosons sit in the k = 
state. us the bosons form a BEC. However, if we
now increase the depth of the lattice J/U becomes
small, and hence a stage comes when the bosons
do not find it convenient to hop around since they
have to pay too much interaction energy cost to do
so. In this limit all the bosons become localized.
Since this localization is induced by interaction, its
called a Mott insulating state.

How do we see this transition experimentally?
It turns out the easiest way to look at this bosons
is to switch at the lattice and the trap at the same
time and let the bosons fly out. Aer some time of
such free flight, the position distribution of these
bosons can be measured by absorption imaging of
the bosons in a free flight. Since the position of
the bosons aer a time t of such a flight depends
on their starting velocity or equivalently momen-
tum, the position distribution of these bosons actu-
ally reflect their momentum distribution inside the
trap. Now if there were no lattice, all the bosons
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would be in the k =  state (the condensate) and
hence their momentum distribution will be local-
ized around k = . On the other hand, if the
bosons were in the Mott state, they are localized in
real space which means their momentum can take
all possible values. us the Mott state momen-
tum distribution should reflect a featureless blur.
As the strength of the optical lattice is increased,
it is therefore expected that the momentum dis-
tribution of the bosons will crossover from a cen-
tral peaked one to a featureless blurred one. is is
precisely what is seen in experiments.1 e phase
transition occurs somewhere around V ≃ ER
where the central bright spot disappears.

To develop a simple theory for this transition,
let us first look at the Mott* state when J ≪ U
and there is an integer number of bosons per site.
Neglecting the effect of hopping of bosons here, we
can see that the Hamiltonian is

HMott = U
∑
i



ni(ni − )− µ

U
ni (2)

Since the Hamiltonian is on-site one could easily
find out the ground state wavefunction and energy.
is state is given by

Ψground =
∏
i

|ni

= n >
E[n]

U
=



n(n − )− µ

U
n

(3)

where n ≡ n(µ/U) is the integer which mini-
mizes E[n]. One can easily check that

n =  for µ ≤ 
=  for  ≤ µ ≤ U
=  for U ≤ µ ≤ U.... (4)

e Mott† state is the stable ground state when
J/U ≪ . e next question to ask is what
happens when we increase t. From the experi-
ments, we already know the answer; the ground
state becomes unstable when a critical J is reached.
Now to find when the ground state is destabilized,
*Note that starting fromperfectMott state at J = where f = 
and fn̸= =  does not lead to any dynamics since all fields in
the right side of Eq. 10 exceptχn(r) vanishes leading to a trivial
phase-only contribution to f. is property can be seen to be a
consequence of conservation of n at all sites for any J(t).
†We note that d + z =  at the tip of the Mott lobe so that
we are exactly at the upper critical dimensional of theory. e
value of ν is thus expected to deviate from its mean-field value
/ due to usual logarithmic corrections associated with critical
theories at their upper critical dimensions. Its precise value for
the Bose-Hubbard model remain uncertain; see for example B.
Capogrosso-Sansone, B. V. Svistunov, andN.V. Prokofiev, Phys.
Rev. B 75, 134302 (2007).

we need to find out what are the possible excited
states of the systemover the ground state andwhen
can they destabilize the ground state. At finite J,
the excited state which corresponds to addition of
an extra particle/hole over the Mott ground state
with n particles per site has aminimum excitation
energy given by

δEp = −µ+ Un − zJ(n + )
δEh = µ− U(n − )− zJn (5)

which destabilizes the Mott ground state at

Jpc =
−µ+ Un

z(n + )
Jhc =

µ− U(n − )
zn

(6)

leading to a critical hopping of Jc = Min[Jpc , Jhc ].
e simple estimate of Jc as outlined above cap-
tures some essential features of the transition.
First, we note that at the boundary between the
Mott phases with n and n + (−) particles, µ =
Un(n − ) so that Jc vanishes. At these points
the excited state energies δEp(δEh) vanishes for
Jpc (Jhc ) ≃  and there is noMott state. Second at the
tip of the Mott lobe, where Jpc = Jhc = (n + )/z
andµ = n(n+)/z(n+), it becomes equally
costly to add a particle or a hole to the system.
In other words, the system possess particle-hole
symmetry at this special point. is property has
profound consequence on the universality class of
this phase transition which we shall not dig into
in details in the present lecture. More refined cal-
culations such as a mean-field analysis and even
those which keep track of higher order fluctua-
tions has been carried out in the literature and we
shall discuss this later. e qualitative symmetry
issues that we have discussed above, however, do
not change.

3 Projection Operator Method
e Hamiltonian of the Bose-Hubbard model is
given by Eq. 1. e corresponding many-body
Schrödinger equation i~∂t|ψ⟩ = H|ψ⟩ is diffi-
cult to handle even numerically due to the infi-
nite dimensionality of the Hilbert space. A typi-
cal practice is to use the Gutzwiller ansatz |ψ⟩ =∏

r

∑
n c

(r)
n |n⟩, and solve for c(r)n keeping a finite

number of states n around the Mott occupation
number n = n̄. is yields the standard mean-
field results with c(r)n = cn for homogeneous
phases of the model.

To build in fluctuations over such mean-field
theory, we use a projection operator technique.24
e key idea behind this approach is to introduce
a projection operator Pℓ = |n̄⟩⟨n̄|r × |n̄⟩⟨n̄|r′
which lives on the link ℓ between the two neigh-
boring sites r and r′. e hopping term of H
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Figure 1: (Color online) Phase diagram of the Bose-Hubbard model in 2D (a) and 3D (b). The blue dots
and blue solid lines (black dashed line) indicate the phase diagram obtained by the projection operator
(mean-field) method. The red squares indicate QMC data.

can then be written as T =
∑

⟨rr′⟩ −Jb†rbr′ =∑
ℓ Tℓ =

∑
ℓ[(PℓTℓ + TℓPℓ) + P⊥ℓ TℓP⊥ℓ ], where

P⊥ℓ = ( − Pℓ). Note that in the strong-coupling
regime, the term T

ℓ[J] = (PℓTℓ + TℓPℓ) repre-
sents hopping processes which takes the system

out of the low-energy manifold.24 We now devise
a canonical transformation via an operator S ≡
S[J] =

∑
ℓ i[Pℓ,Tℓ]/U which eliminates T

ℓ[J] up
to first order in zJ/U, where z = d is the coor-
dination number of the lattice, and leads to the
effective Hamiltonian H∗ = exp(iS)Hexp(−iS) to
O(zJ/U)

H∗ = H +
∑
ℓ

P⊥ℓ TℓP⊥ℓ − 
U

∑
ℓ

×
[
PℓT

ℓ + T
ℓPℓ − PℓT

ℓPℓ − TℓPℓTℓ

]
− 

U

∑
⟨ℓℓ′⟩

[
PℓTℓTℓ′ − TℓPℓTℓ′

+



(
TℓPℓPℓ′Tℓ′ − PℓTℓTℓ′Pℓ′

)
+ h.c.

]
(7)

whereH denotes the on-site terms in Eq. 1. Using
H∗ one can now compute the ground state energy
E = ⟨ψ|H|ψ⟩ = ⟨ψ′|H∗|ψ′⟩+O(zJ/U), where
|ψ′⟩ = exp(iS)|ψ⟩, and we use a Gutzwiller ansatz
|ψ′⟩ =

∏
r

∑
f(r)n |n⟩, so that |ψ′⟩ = |ψ⟩ in the

Mott limit (S, J = ). is yields E ≡ E[{fn}; J] to
be

E =
∑
r,n

[−µn+ Un(n− )/]|f(r)n | − J
∑
⟨rr′⟩

{
φ∗
rφr′ − Reφ∗

r,n̄−φr′n̄ + Jn̄(n̄+ )/U

×
[
|f(r)n̄ ||f(r

′)
n̄ | − |f(r)n̄+||f

(r′)
n̄− | − f∗(r)n̄+ f

(r)
n̄−f

∗(r′)
n̄− f(r

′)
n̄+

]
+ J/UReΦ∗

r,n̄−Φr′n̄

}
− J/U

∑
⟨rr′r′′⟩

{
Re

[
φ∗
r,n̄−(n̄+ )|f(r

′)
n̄ | + φrn̄Φ

∗
r′,n̄− − φ∗

rn̄n̄|f
(r′)
n̄− | − φr,n̄−Φ

∗
r′,n̄−

]
φr′′

+ Re
[
φ∗
r,n̄−Φr′n̄ + φrn̄n̄|f(r

′)
n̄ | − φ∗

rn̄Φr′,n̄− − φr,n̄−(n̄+ )|f(r
′)

n̄+ |
]
φ∗
r′′

+ φ∗
rn̄n̄

[
|f(r

′)
n̄− | − |f(r

′)
n̄ |

]
φr′′n̄ + φr,n̄−(n̄+ )

[
|f(r

′)
n̄+ | − |f(r

′)
n̄ |

]
φ∗
r′′,n̄−

+ Reφ∗
rn̄Φr′,n̄−φ

∗
r′′,n̄−

}
, ()

where φr[Φr] = ⟨ψ′|br|ψ′⟩[⟨ψ′|b
r|ψ′⟩]

=
∑

n φrn[Φrn] =
∑

n
√
n+ f∗(r)n f(r)n+

[
∑

n

√
(n+ )(n+ )f∗(r)n f(r)n+]. Note that

the first three terms in the first line of Eq. 8
represent the mean-field energy functional,
while the rest are corrections due to quantum
fluctuations. e phase diagram obtained by
minimizing E[{fn}; J] with respect to {fn} (or by
solving i~∂t|ψ′⟩ = H∗[J]|ψ′⟩ in imaginary t25) for
2D(3D) and n̄ =  is shown in Fig. 1(a) and (b).
We note that the match with QMC data10 is nearly
perfect for 3D (Fig. 1(b)) where mean-field theory
provides an accurate starting point. While in 3D
the accuracy with QMC at the tip of the Mott lobe
is ∼ 0.05%, in 2D we find Jc/U = . compared
to the QMC value . (red line in Fig. 1(a)).
Here the match with QMC is not as accurate as in
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3D; however it compares favorably to other ana-
lytical methods.‡ For the rest of this work, we shall
restrict ourselves to d =  and n̄ =  for brevity.

We now apply this method to address the
dynamics of the model aer a sudden quench
from Ji (Mott phase) to Jf (superfluid phase)
through the tip of the Mott lobe where the
dynamical critical exponent z = . To solve the
Schrödinger equation i~∂t|ψ⟩ = H|ψ⟩, we make
the transformation |ψ′⟩ = exp(iS[Jf])|ψ⟩
leading to i~∂t|ψ′⟩ = H∗[Jf]|ψ′⟩. Here
|ψ′(t = )⟩ is the ground state of H∗[Ji] as
determined by minimization of E[{fn}; Ji]. From
this, we obtain the set of coupled equations
for f(r)n : i~∂tf(r)n (t) = δE[{fn(t)}; Jf]/δf∗(r)n .
e time evolution of the order parameter
∆r(t) = ⟨ψ(t)|br|ψ(t)⟩ = ⟨ψ′(t)|b′r|ψ′(t)⟩,
where b′r = exp(iS[Jf])br exp(−iS[Jf])|ψ′(t)⟩ can
then be expressed in terms of f(r)n as

∆r(t) = φr(t) + J/U
∑
⟨r′⟩r

n̄
[
|f(r)n̄ | − f(r)n̄−|

]
φr′n̄

+ (n̄+ )
[
|f(r)n̄ | − f(r)n̄+|

]
φr′,n̄−

+
[
Φr,n̄− − Φr,n̄−

]
φ∗
r′n̄

+
[
Φrn̄ − Φr,n̄−

]
φ∗
r′,n̄−. (9)

Note that the first term in Eq. 9 represents the
mean-field result. e role of quantum fluctua-
tions in the evolution of ∆r(t) becomes evident
in computing the equal-time order parameter cor-
relation function Cr(t) = ⟨ψ′(t)|b′rb′r|ψ′(t)⟩ −
∆

r(t). To compute ∆r and Cr, we consider
a spatially homogeneous system and solve the
Schrödinger equation for f(r)n ≡ fn (as guaran-
teed by translational invariance) keeping all states
for  ≤ n ≤  with n̄ = . e resultant plot
of ∆r(t) ≡ ∆(t) is shown in Fig. 2(a)[(d)] for
Ji =  and Jf/Jc = .(Jf/Jc = .). We find
that near the critical point, ∆(t) displays oscilla-
tions with a single characteristic frequency20 while
away from the critical point (Jf/Jc = .), multiple
frequencies are involved in its dynamics. e time
period T (Fig. 2(c)) of these oscillations near Jc is
found, as a consequence of critical slowing down,
to have a divergence T ∼ (δJ)−.±. leading to
zν = . ± . for d = .12 Finally, we plot
Cr(t) ≡ C(t) as a function of t for Jf = .Jc in
Fig. 2(b). We find that |C(t)/∆(t)|may be as large
as . at the tip of the peaks of ∆(t), which shows
strong quantum fluctuations near the QCP.

‡See for example, M. Lewenstein, A. Sanpera, V. Ahufinger, B.
Damskic, A. Sen(De) and U. Sen Adv. Phys. 56,243 (2007).

Next, we compute the wavefunction overlap
F = |⟨ψf|ψc⟩| = |⟨ψ′

f |eiS[Jf]e−iS[Jc]|ψ′
c⟩| for

sudden quench starting at the QCP. Here ψf(ψc)
denotes the ground state wavefunction for J =
Jf(Jc). e residual energy Q = ⟨ψc|H[Jf]|ψc⟩ −
EG[Jf], where EG[Jf] denotes the ground state
energy at J = Jf as obtained by minimizing E in
Eq. 8, can also be computed in a similar manner.
Using the fact that for |ψ′

c⟩ = eiS[Jc]|ψc⟩, φr =

Φr = , we find, in terms of the coefficients f(r)n ,

Q = EG[Jc]− EG[Jf]− JδJn̄(n̄+ )

×
∑
⟨rr′⟩

[
|f(r)n̄ ||f(r

′)
n̄ | − |f(r)n̄+||f

(r′)
n̄− |

− f∗(r)n̄+ f
(r)
n̄−f

∗(r′)
n̄− f(r

′)
n̄+

]
/U.

A plot of  − F and Q for the homogeneous
case, as a function of δJ for δJ/Jc . . is shown
in Fig. 3. A numerical fit of these curves yields
 − F ∼ δJ. and Q ∼ δJ. which disagrees
with the universal scaling exponents (− F ∼ δJdν
and Q ∼ δJ(d+z)ν) expected from sudden dynam-
ics across a QCP with z = .28

To understand the reason for this non-
universality, and to address the dynamics of the
system during a ramp with finite rate τ−, we con-
sider ramp process under which J evolves from Ji at
ti =  to Jf at tf = τ :J(t) = Ji+(Jf−Ji)t/τ . To solve
the Schrödinger equation i~∂t|ψ⟩ = H[J(t)]|ψ⟩,
we make a time-dependent transformation
|ψ′⟩ = exp(iS[J(t)])|ψ⟩, which eliminates T

ℓ[J(t)]
up to first order from H[J(t)] at each instant, and
leads to the effective Hamiltonian H∗[J(t)] =
exp(iS[J(t)])H[J(t)] exp(−iS[J(t)]). is yields
the equation (i~∂t + ∂S/∂t)|ψ′⟩ = H∗[J(t)]|ψ′⟩.
e additional term ∂S/∂t takes into account
the possibility of creation of excitations during
the time evolution with a finite ramp rate τ−.
e above equation yields an accurate description
of the ramp with H∗[J(t)] given by Eq. 7 for
J(t)/U ≪ . Note that this does not impose a
constraint on magnitude of τ ; it only restricts Jf/U
and Ji/U to be small. us the method can treat
both “slow” and “fast” ramps at equal footing.
Substituting |ψ′⟩ =

∏
r

∑
f(r)n |n⟩, we obtain

a set of coupled equations for the coefficients
{fn}

i~∂tf(r)n = δE[{fn(t)}; J(t)]/δf∗(r)n + i~
(Jf − Ji)
Uτ

×
∑
⟨r′⟩r

√
nf(r)n−

[
δnn̄φr′n̄ − δn,n̄+φr′,n̄−

]
+
√
n+  f(r)n+

[
δnn̄φ

∗
r′,n̄− − δn,n̄−φ

∗
r′n̄

]
.

(10)
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Figure 2: (Color online) Plot of ∆(t) (a), and C(t) (b) as a function of tU, for J f = 1.02Jc . (c) The time
period T of the oscillations of ∆(t). (d) Same as in (a) for J f = 3.51Jc . We have set ~ = 1 for all plots.

..

Figure 3: (Color online) Plot of F and Q as a
function of the δJ for δJ/Jc ≪ 1. The lines
correspond to fits yielding a power 1 − F (Q) ∼
(δJ)

r
1(r2 ) with r1 ≃ 0.89 and r2 ≃ 1.9.

Using Eq. 10, we solve for f(r)n ≡ fn for
translationally invariant systems and compute the
defect density P =  − |⟨ψG|ψ(tf)|, where |ψG⟩
(|ψ(tf)⟩) denotes the final ground state (state aer
the ramp), for a ramp from Ji/U = . (super-
fluid phase) to Jf/U = . (Mott phase) as a

function of τ . We find that P exhibits a plateau
like behavior at large τ , and do not display uni-
versal scaling as expected from generic theories
of slow dynamics of quantum systems near criti-
cal point.12 is seems to be in qualitative agree-
ment with the recent experiments presented in
Ref.2, where ramp dynamics of ultracold bosons
from superfluid to theMott region has been exper-
imentally studied. Indeed, it was found, via direct
measurement of n̄ per site, that P displays a plateau
like behavior similar to Fig. 4(a) [the inset displays
the saturation for longer τ ]. In Fig. 4(b), we show
the analogous saturation of Q as a function of τ .
e inset of Fig. 4(b) shows Q and − F as a func-
tion of δJ for τ = ~/U with Ji = Jc. ese plots
yields exponents nearly identical to those obtained
from Fig. 3 reflecting reproduction of the sudden
quench limit.

Such a lack of universality in the dynamics can
be qualitatively understood from absence of con-
tribution of the critical (k = ) modes. In the
strong-coupling regime (zJ/U ≪ ), the system
can access thek = modes aer timeT which can
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..

Figure 4: (Color online) (a) Plot of P as a function τU (in units of ~ = 1) for J i /U = 0.05 (SF phase) and
J f /U = 0.005 (Mott phase) showing the plateau-like behavior at large τ , and the corresponding saturation
of Q (b). The inset in (b) shows Q and 1− F as a function of δJ/Jc for τU = 1.

be roughly estimated as the time taken by a boson
to cover the linear system dimension L. For typi-
cal small J (U = ) in the Mott phase and near the
QCP, T ∼ O(L~/J) can be very large. us for
t ≤ T , the dynamics, governed by local physics
which is well captured by our method, do not dis-
play critical scaling behavior. We note that in real-
istic experimental setups in the deep Mott limit,2
T may easily exceed the system lifetime making
observation of universal scaling behavior impos-
sible in such setups.

In conclusion, we have provided a brief intro-
duction to the dynamics of ultracold bosons
near the superfluid-insulator quantum critical
point using a semi-analytical projection operator
method which is the only available method for
studying such dynamics beyond mean-field the-
ory for d > . e qualitative predictions of
this method matches with what is seen in recent
experiments.2 A possible extension of these stud-
ies would be to use this method for studying
dynamics multi-species bosons, and for bosons in
a trap or in the presence of disorder.

Received 8 May 2014.
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