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Abstract | Elastic Wave Sensing is a potent tool for Structural Health 
Monitoring (SHM) applications. In this paper, we review the use of fiber 
Bragg gratings (FBGs) as a viable alternative to conventional piezoelectric 
transducers. In particular, we present Fabry-Perot filters based on fiber 
Bragg gratings (FP-FBG) as a possible configuration for enhanced 
sensitivity elastic wave sensing. Finally we discuss the directional 
response of FBG-based sensors, and their role in the unique identification 
of different Lamb modes based on their dispersion characteristics.

1 Introduction
The primary goal of maintaining any capital-
intensive structures such as bridges, dams, ships, 
aerospace vehicles, and power transformers is to 
prolong their lifetime through early identification 
of defects. Such defect identification, preferably 
through non-destructive evaluation techniques is 
addressed under the broad umbrella of Structural 
Health Monitoring (SHM). Structural Health 
Monitoring is a process of implementing a diag-
nostic strategy for aerospace, mechanical, civil, or 
electrical structures through frequent monitoring 
of their strength and performance.1–3

A wide variety of techniques is employed for 
Structural Health Monitoring including the meas-
urement of mechanical impedance,4,5 vibrations,6 
and acoustic emissions.7–9 Impedance based 
methods rely on monitoring of variations in 
structural mechanical impedance caused due to 
any damage. The changes in mechanical imped-
ance are coupled to electrical variations using 
suitable piezoelectric materials.4,5 In vibration 
based approach, the vibration characteristics of a 
given structure—in time or frequency—are exam-
ined for abnormalities to determine defects in the 
structure.6 Another interesting measurand in SHM 
systems is acoustic emissions that are generally 
released due to damage in structures, such as those 
from the growth of cracks or disbonds.3

Of the above techniques, acoustic emission 
sensing is a powerful tool for the above applica-
tions as it is minimally invasive, and provides a 
rich variety of information.8 Acoustic emission 
sensing may be classified as (i) passive sensing 
and (ii) active sensing. In the former, acoustic 
waves may be generated as a result of an event, 
e.g. a tool drop in a machine or incipient dis-
charge inside a power transformer, and the same 
is captured using an appropriate sensor (Fig. 1). 
In such a technique, the sensor coupled with a 
suitable interrogator has to be vigilant at all 
times. For example, consider the case of incipient 
discharge monitoring in power transformers. 
The random electrical discharges generated as a 
result of partial discharge (PD) activity creates 
acoustic emissions in the transformer oil.10–13 
Conventionally, these acoustic waves are sensed 
by piezo-electric transducers (PZTs), which are 
mounted externally on the transformer. Recent 
trends involve the use of fiber optic based sensors 
for capturing such signals.14–16

Even though passive sensing is effective for cap-
turing the transients, one of the major disadvan-
tages is the fact that passive sensing does not give 
any indication of the actual damage corresponding 
to the event.17 A passive sensor system may miss 
the event due to insufficient sampling rate or the 
inability of the interrogator to maintain vigilance 
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at all times. Even if the event is captured, there is 
no guarantee that the event caused any significant 
defects in the structure.

On the other hand, active sensing consists of 
periodically exciting acoustic modes in a metallic 
substrate, typically using a piezo-electric trans-
ducer and monitoring them at different loca-
tions on the substrate as illustrated in Fig. 2.17,18 
In such a technique, also popularly known as elas-
tic wave sensing, any defect that develops in the 
path of the elastic waves will alter the modes cap-
tured by the receivers. By analyzing such received 
modes, the size and location of the defect may be 
identified.

Among the active schemes, guided-wave test-
ing and specifically the use of Lamb waves has 
emerged as a very promising option to examine 
relatively large sections of a structure for damage.19 
Lamb waves exist in thin plates with parallel free 
boundaries and are found to travel over a long 
distance (in the order of meters), even in mate-
rials with high attenuation. Different modes of 
Lamb waves can be excited and their propagation 

characteristics vary with entry angle, excitation 
and surface geometry. The location, severity and 
extent of the damage can be easily predicted using 
this scheme. A sensor-actuator network built on 
the structure can detect the faults in a relatively 
short span of time. This is particularly advanta-
geous over the passive sensing scheme, which 
requires a large number of sensors distributed 
over the structure under test.19

Sensors conventionally used for sensing acous-
tic waves are based on piezoelectric effect. This 
effect is characterized by the generation of an 
electric voltage in a material in response to stress 
or strain. An attractive feature of these sensors is 
that the mechanical measurand can be converted 
directly into an output electrical signal.18 How-
ever, these sensors are characterized by a resonant 
frequency response. Also, deployment of large 
number of sensors for simultaneous measure-
ments make the PZT sensor system bulky and 
prone to electro-magnetic interference.20

Fiber optic sensors offer plenty of advantages 
over the conventional PZT sensors. The prime 

Figure 1: Schematic diagram of a passive acoustic emission monitoring system. The sensor system is 
vigilant and is triggered by an event that produces acoustic emissions.

Figure 2: Schematic diagram of an active acoustic emission monitoring system. The measurement is 
periodically triggered by the actuator that produces acoustic emissions, which are picked up by sensors 
placed at strategic locations.
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feature being that they are immune to Electromag-
netic Interference (EMI) due to their dielectric 
construction. Also, they are small, light-weight, 
respond over a wide temperature range and are eas-
ily integrated into complex structures.21–23 Besides, 
fiber sensors offer access to areas with harsh envi-
ronment and capability of easy multiplexing.3 As 
such they are excellent candidates for sensing in 
SHM platforms.24 Specifically, Fiber Bragg Grat-
ings (FBGs) are attractive in this scenario as they 
respond to the linear strain generated by Lamb 
waves in the material.25 In this paper, we review 
the use of FBGs for elastic wave sensing, which 
is of relevance to SHM applications as discussed 
above.

2  Background on Fiber Bragg Grating-
Based Acoustic Emission Sensors

As mentioned above, a mature class of fiber 
optic sensors that has emerged in the last cou-
ple of decades is the fiber Bragg grating (FBG) 
technology. A fiber Bragg grating (FBG) is a 
periodic perturbation of the refractive index of 
the core of the fiber extending over a limited 
length. The grating is characterized by its period, 
relative refractive index change and length. The 
FBG acts like a narrowband optical filter, which 
reflects a narrow band of wavelengths around a 
center wavelength from the incident broadband 
signal.26

One of the excellent features of FBG is that it 
encodes the sensing information in wavelength. 
A multitude of sensor configurations using FBG 
have been reported in literature.3,21,24,25,27–30 A sche-
matic diagram for using FBG as a sensor is shown 
in Fig. 3. A broadband light is used to illumi-
nate the FBG sensor connected to the port 2 of 
the circulator. A conventional FBG interrogation 

system uses a spectrometer connected to port 3 of 
the circulator to track the wavelength of the light 
reflected back from the FBG. When the FBG is 
subjected to an external perturbation like strain 
or temperature, Bragg wavelength changes. The 
shift in Bragg wavelength is typically 1.3 pm/µε 
and 12 pm/°C for strain and temperature respec-
tively, in germano-silicate optical fibers.26 The 
spectrometer tracks the wavelength shift, which 
may be correlated to the amount of strain or tem-
perature experienced by the FBG. By calibrating 
the change in the wavelength to the change in 
temperature or strain, the FBG can be used as a 
sensor. In this scheme, the resolution of the sensor 
is dependent on the spectrometer used for track-
ing the wavelength.

A key challenge in using FBG based sensors 
for sensing acoustic waves of frequency greater 
than 10 kHz is the interrogation of the wave-
length encoded signals to efficiently extract the 
sensing information. The conventional CCD-
based spectrometers are not capable of sensing 
these high frequency signals. Earlier work on 
interrogation of FBGs include the use of tun-
able narrow band laser,31,32 arrayed waveguide 
grating33,34 or interferometric methods based 
on Mach-Zehnder,35,36 Michelson,37 Sagnac38 
and Fabry Perot interferometers.39 Among these 
techniques, the edge filter is more attractive 
because of its simple structure, rapid response, 
cost-effectiveness and ease of usage. Edge fil-
ters provide a wavelength dependent loss as the 
FBG reflection spectrum scans over the slope of 
the filter offering a linear relationship between 
the wavelength shifts and the output intensity 
changes of the filter.40,41

One of the simplest and cost-effective tech-
niques for the dynamic interrogation using edge 

Figure 3: Schematic diagram of a typical FBG-based sensor system.
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filter method is to employ matched FBGs as 
both a sensor and an interrogator40 as shown in 
Fig. 4. As mentioned earlier, the key advantage 
of the FBG sensor is that the sensing informa-
tion is normally wavelength encoded, and hence 
is quite impervious to noise. To exploit such an 
advantage, one can use a broadband light source 
to illuminate the FBG and use another matched 
FBG at the receiver to convert wavelength modu-
lation (due to vibrations) into amplitude modu-
lation, which can be captured by a high speed 
photodetector and associated receiver circuitry. 
However, to achieve high sensitivity one has to 
use FBGs with extremely sharp roll-off charac-
teristics as the interrogator. Such characteristics 
may be achieved using Fabry-Perot filters based 
on fiber Bragg gratings.42 As shown in Fig. 5b, 
the Fabry-Perot resonances are much sharper 
compared to the slope of a typical FBG resonance 
(Fig. 5a).

An alternative approach has been devised 
wherein the Fabry-Perot filters based on FBGs 
(FP) are used not only as the sensor element, but 

also the interrogating element as illustrated in 
Fig. 5c. Such a configuration is attractive, since it is 
a transmission-type interrogator42 and is capable 
of providing much higher sensitivity compared to 
the conventional matched FBG sensor/interroga-
tor system.

3  Elastic Wave Sensing Using 
FBG-Based Dynamic Interrogator

A complete sensor/interrogator system consisting 
of the above FBG-based configurations is pre-
sented in Fig. 6. The acoustic emissions which are 
generated in the aluminum plate are picked up by 
the sensor pasted on the plate. The interrogator 
is provided with a DC bias to fine tune its Bragg 
wavelength to that of the sensor, while compensat-
ing for any temperature change.

In order to compare performance of the dif-
ferent configurations, one FBG and FP sensor was 
pasted at equal distance from the point of excita-
tion and the response to an elastic wave was cap-
tured using a matched interrogator and optical 
receiver. The experimental comparison between 

Figure 4: Schematic diagram illustrating the matched filter sensing technique.

Figure 5: Different sensor-interrogator configurations for elastic wave sensing using FBGs and FP filters 
viz. a) FBG-FBG, b) FBG-FP, and c) FP-FP.
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them is made by plotting the SNR at an excitation 
of 133 kHz for various elastic wave amplitudes. As 
shown in the Fig. 7, the experimentally measured 
values are consistent with simulation results and 
they both clearly show that the FP-FP configuration 
provides 10 dB more sensitive detection compared 
to the conventional FBG-FBG configuration.

Further improvements in SNR are made pos-
sible by incorporating suitable signal processing 
techniques.43,44 One such technique is the Adap-
tive Line Enhancement (ALE) technique, which 
has been widely adopted in several applications.45 
The principle of ALE is based on processing the 
delayed input signal with a transversal filter and 
then subtracting it from the input signal to pro-
duce a prediction error. The weights of the trans-
versal filter are adaptively adjusted to minimize 
the prediction error, as shown in Fig. 8. When a 
sinusoid passes through the filter, the time delay 
∆ forces its delayed version to become uncor-
related with the noise in the input, while intro-
ducing a simple phase difference. The adaptive 

filter responds firstly by compensating for the 
phase shift so that the sinusoidal components 
cancel each other at the output, and secondly 
by removing as much noise as possible to mini-
mize the output error. The output error is then 
recursively fed back to adjust the filter weights 
according to the principle of a stochastic gradi-
ent search.

One of the key requirements for any signal 
processing algorithm is to ensure that it does not 
corrupt the acoustic signals. In order to verify 
this, we compared the frequency content of the 
acoustic signals before and after applying ALE. 
Figure 8 illustrates the time domain and the cor-
responding frequency domain data respectively, 
for a 2 mm drop ball test before and after pass-
ing the data through ALE. It can be seen clearly 
that the frequency content of the two plots are 
similar, indicating that the ALE does not sig-
nificantly alter the frequency components of 
the original signal while discriminating against 
noise.

Figure 6: Detailed schematic of the FBG based dynamic interrogator.

Figure 7: Comparison of the experimental data and simulation results obtained for different sensor- 
interrogator configurations as a function of vibration amplitude in µε.42
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4  Directional Response of FBG 
to Elastic Waves

As discussed in the previous section, a FBG based 
sensor/interrogator system provides a viable 
alternative to conventional piezo-based sensors. 
A desirable property in elastic wave sensing is 
the ability to detect the direction of the waves. 
FBGs provide such an opportunity since the opti-
cal fiber possesses a cylindrical geometry of high 
aspect ratio. Moreover the FBG is highly sensi-
tive to strain in the longitudinal direction com-
pared to the transverse direction. Exploiting such 
a property, the elastic waves can be captured using 
the FBGs and the direction of the wave picked can 
be deduced.47 Figure 9 illustrates the directional 
response of the conventional PZT sensors and 
FBG sensors. Even though the conventional PZT 
sensors are able to pick up in-plane elastic waves 
with high sensitivity, they are independent of the 
direction of the acoustic wave. In this case, locat-
ing the defects becomes difficult and alternative 
expensive methods are required.

Lamb waves like surface waves propagate par-
allel to the surface in solid plates.48,49 They are elas-
tic waves whose particle motion lies in the plane 
that contains the direction of wave propagation 
and the plate normal (the direction perpendicular 
to the plate surface). They are produced in plates 
where the thickness of the plate is comparable to 
the wavelength of excitation. The FBGs can detect 
the Lamb waves in the plate and can be captured 
using appropriate electronics.50–52 Furthermore, it 
is observed that FBG due to its directional property 

selectively responds to different modes of propa-
gating Lamb waves in the structure depending on 
their orientations.

A test bed consisting of FBG sensors in radial 
and transverse direction to the source is shown in 
the Fig. 10. The elastic waves are induced in the 
plate using an elastic wave generator (buzzer), 
which will prominently produce out-of-plane 
vibrations in the plate. Such vibrations are picked 
up by the FBGs pasted on the plate as in-plane 
strain due to the Poisson effect.

Figure 11 shows the plots of time domain 
response of the radial and transverse FBGs for 
100 kHz and 300 kHz. The transverse FBG exhib-
its lower and delayed response compared to the 
radial FBG. The elastic waves which are captured 
by the FBGs following different paths as the delay 
in time for the radial and transverse FBG is dif-
ferent. Such directional detection of the elastic 
wave is very desirable, since it is useful for efficient 
detection of the defects in the structures for moni-
toring their health.

5  Elastic Mode Identification Using 
Dispersion Measurement

In the previous section, we discussed the pos-
sibility of identifying the direction of an elastic 
wave using appropriate orientation of the FBG. A 
more useful feature would be to identify the spe-
cific Lamb mode itself. In aluminum plates whose 
thickness is comparable to the wavelength of the 
elastic waves, several modes are excited. Promi-
nent among these modes are the fundamental 

Figure 8: Time and frequency domain plots of the 2 mm drop ball tests showing the frequency content of 
the signal captured before and after ALE.46
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Figure 9: A schematic illustration of the directional response of FBG compared to conventional PZT.

Figure 10: Schematic diagram of a test bed in which FBG is pasted in different orientations.

Figure 11: Lamb waves captured from the radial and transverse FBG at 100 kHz and 300 kHz.53
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asymmetric (A
0
) mode and the fundamental sym-

metric (S
0
) mode. Exciting the A

0
 and S

0 
modes 

require a PZT which induces both in-plane and 
out-of-plane displacements in the plate (Fig. 12). 
There is also another mode which can be excited 
in such a plate called the Shear Horizontal (SH

0
) 

mode. Normally, in conventional PZT sensors, it 
is not possible for us to distinguish between the 
different modes of propagation.

A significant opportunity to identify the elas-
tic Lamb mode would be to observe the disper-
sion experienced by the different modes through 
a time-frequency analysis.54 We have implemented 
this technique using our above FBG-based con-
figuration. We simulated the dispersion charac-
teristics of the A

0
, S

0
, and SH

0 
modes using the 

commercial software—Disperse. This was then 
compared with the dispersion measured experi-
mentally by observing the arrival time of differ-
ent wave packets picked up using radial as well as 
transverse oriented FBGs.

The dispersion measurement is carried out as 
follows: a PZT element is excited using different fre-
quencies ranging from 50 kHz to 500 kHz, and the 
response of the above two FBGs were recorded as a 

function of time. Based on the arrival time of differ-
ent wave packets with respect to the time of excita-
tion, the group velocity experienced by each wave 
packet may be deduced. For example, Fig. 13 shows 
the plots detected by the radial and transverse FBGs 
for a PZT excitation frequency of 300 kHz. It may 
be clearly seen that two different wave packets are 
received by the radial FBG at 30 µs and 55 µs respec-
tively, which is quite different from the wave packet 
detected at 45 µs by the transverse FBG. This alludes 
to the possibility that these wave packets correspond 
to different Lamb modes. By plotting the dispersion 
curves for the packets observed, the modes can be 
easily identified since each mode has its own unique 
dispersion characteristics as deduced through sim-
ulations. In this case, we have identified the two 
wave packets picked up the radial FBG as the S

0
 and 

A
0 
modes and the wave packet picked by the trans-

verse FBG as the SH
0 
mode.55

The detection of the SH
0
 mode quite clearly by 

the transverse oriented FBG is very exciting from 
the NDE perspective, as it holds much promise 
for detection and dimensioning of planar defects 
and cracks in butt weldments.56 Such modes are 
not picked up easily using conventional PZT 

Figure 12: Fundamental Lamb wave modes excited in an aluminum plate.

Figure 13: Plot of the acoustic signals picked up by the radially placed FBG (left) and the FBG placed 
along the transverse direction (right) on a 1 mm thick aluminum plate.
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sensors. As such, there is a lot of scope for pushing 
the envelope of NDE and specifically SHM, using 
FBG-based sensors and interrogators described 
above.

6 Summary
In this paper, we have attempted to highlight elas-
tic wave sensing using fiber Bragg gratings as a 
promising technique for Structural Health Moni-
toring (SHM) applications. We have demonstrated 
enhancement in the elastic wave detection sensi-
tivity using Fabry Perot filters based on fiber Bragg 
gratings (FP-FBGs) as sensors as well as interroga-
tors. Such results have been facilitated by the devel-
opment of a compact interrogator incorporating 
Adaptive Line Enhancement (ALE) technique to 
improve the SNR. Finally, we discuss some unique 
characteristics of FBG sensors including direc-
tional response and elastic mode identification, 
which hold much promise for precise defect identi-
fication and possible replacement of conventional 
PZT sensors for certain niche applications.
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