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Abstract | Compressed Sensing (CS) based Magnetic Resonance Imag-
ing (MRI) reconstruction relies on data sparsity. Region of Interest Com-
pressed Sensing (ROICS) is based on the hypothesis that superior CS 
performance can be obtained by limiting the sparsity objective and data 
consistency in CS to a Region of Interest (ROI). This relaxation is justified 
in most applications where the anatomy of interest such as the heart, has 
surrounding structures, typically not used for further analyses. ROICS has 
been proposed as an extension of CS that is ROI weighted CS. Current 
work demonstrates the implementation of ROICS for the first time on MR 
cardiac and brain data. Reconstructed images and performance evalua-
tion metrics show that ROICS technique performs better than conventional 
CS technique. CS and Parallel Imaging (PI) are widely used to reduce 
MRI scan time and their combination yields better performance than used 
individually. The proposed method also implements the combination of 
ROICS and SENSitivity Encoding (SENSE), which applies weighted CS 
to a particular ROI, and the resulting output is then reconstructed using 
SENSE for arbitrary k-space. Proposed ROICS-PI performs better as com-
pared to PI and CS + PI.

1 Introduction
Magnetic Resonance Imaging (MRI) is a well-
established whole body imaging modality, which 
provides soft tissue contrast at high resolution. It 
has therefore been extensively used in the diag-
nosis and/or prognosis of various pathological 
conditions ranging from cancer to psychiatric 
diseases. However, the acquisition time required 
for MRI is longer as compared to other whole-
body imaging modalities such as Computed 
Tomography (CT) and Positron Emission Tom-
ography (PET). This limits the spatial and tem-
poral resolutions required for imaging of critical 
physiological processes that have to be imaged 
rapidly. Prolonged acquisition time results in 
patient discomfort and motion artefacts. Two 
examples of such cases are imaging of the heart 
and contrast enhanced MRI. A compromise on 
spatial resolution adversely affects morphology, 
while poor temporal resolution impacts clinical 

analyses of functions of the organ system. The 
current work aims to accelerate MRI scan time 
based on the framework of CS. CS1,2 and PI3 are 
two well-known approaches in MRI to reduce 
acquisition time. CS aims to reconstruct signals 
and images from significantly fewer measure-
ments than were traditionally thought neces-
sary. CS relies significantly on transform data to 
enable reconstruction of images with high fidel-
ity from highly undersampled k-space data. This 
implies that increased sparsity provides better 
CS reconstruction at increased accelerations.4 
The application of CS on diverse MR methods 
has been successfully demonstrated such as in 
dynamic MRI to accelerate the image recon-
struction through kt FOCUS.5 In this work, a 
novel technique called ‘Region of Interest Com-
pressed Sensing (ROICS)’ is proposed.6 ROICS 
is based on the hypothesis that superior CS per-
formance can be obtained by limiting the CS 
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framework to a ROI. This relaxation is justified 
in most applications where the anatomy of inter-
est such as the heart has surrounding structures, 
and the background is typically not important 
for further analyses. The images resulting from 
an MR acquisition are typically sparse in the 
wavelet representation and/or total variation 
norm, and hence lend themselves well to ROICS. 
The inclusion of such a region weighting mask 
for the sparsity objective and data consistency 
enhances sparsity in the reconstruction, which 
implies reduction in the number of data sam-
ples required for reconstruction. This would 
hence result in acceptable reconstructions even 
at higher accelerations. Combination of CS and 
PI results in increased performance than using 
either of them individually, and this combina-
tion has been demonstrated on MRI methods.7–15 
In this work, ROICS is combined with PI for an 
arbitrary k-space trajectory to provide superior 
performance as compared to CS-PI. PI is a robust 
method for accelerating the acquisition of MRI 
data, thereby reducing the scan time. PI achieves 
acceleration through undersampling of k-space 
while learning from the sensitivities of multiple 
receiver coils. These undersampled data can be 
acquired more quickly, but the undersampling 
leads to aliased images due to the violation of 
Nyquist criteria and has a direct impact on the 
Signal to Noise Ratio (SNR) of the Reconstructed 
images. One of several PI algorithms can be used 
to reconstruct artifact-free images from either 
the aliased images (SENSE-type reconstruction) 
or from the undersampled data (GRAPPA-type 
reconstruction). The advantages of PI include 
faster image acquisition, which can be used for 
instance, to shorten breath-hold times resulting 
in fewer motion-corrupted examinations. How-
ever, PI is also SNR dependent, and hence is lim-
ited in cases of low SNR acquisitions because the 
signal is divided amongst as many numbers of 
images as the receiver array, reducing the over-
all signal. ROICS reconstruction performed on 
each channel will exploit data sparsity that would 
result in increased SNR through Removal of 
Incoherent noise in the ROI, and hence provide 
for a better input for the subsequent PI based 
reconstruction.16

2 Theory
ROICS: The formulation for ROICS can be 
derived from the unconstrained convex optimiza-
tion functional for conventional CS represented 
by Eq. [1]

min (|| ( ) || || ( )|| )m uF m y m− +2 1λ ψ  (1)

where, m is the current estimate of the image to 
be obtained, F

u
 is the undersampled orthonormal 

Fourier operator: F(.)* Undersampling mask, y is 
the undersampled k-space measured by the acqui-
sition process, λ is the regularization factor, deter-
mined by methods like Tikhonov regularization or 
L-curve optimization,17 Ψ is the sparsifying trans-
form operator and ||.||

k
 is the k-norm operator. The 

unconstrained CS problem in Eq. [1] can be solved 
with the data consistency evaluation performed in 
the image domain. Eq. [1] can be re-written as:

min (|| ( ( ) )|| || ( )|| )m uF F m y m− − +1
2 1λ ψ  (2)

where, F-1 is the inverse Fourier transform. The 
data consistency term is evaluated in the spatial 
domain as opposed to the k-space and is equiva-
lent to Eq. [1] (Parseval’s theorem as applied for 
the orthonormal Fourier transform). ROICS can 
be derived from Eq. [2] by weighting the spatial 
data consistency term over a ROI, described by a 
diagonal matrix W of size (Ns*Ns), where Ns is 
the product of the number of rows and columns 
of the image. The use of spatial weighting has also 
been used elsewhere.18 This results in Eq. [3],

min (|| ( ( ) ) || || ( )|| )m uF F m y W m W− − +1
2 1* *λ ψ  

  (3)

The ROI relaxed functional now takes the form 
of Eq. [3], where W is the Ns*Ns diagonal matrix con-
taining a spatial weighting that one can use to specify 
and evaluate a ROI, of the dimensions of the image. 
The inclusion of such a ROI mask enhances spar-
sity in the reconstruction, which implies reduction 
in the number of data samples required for recon-
struction. This is achieved by relaxing the constraint 
on the data consistency term, and hence would allow 
for a sparser solution, as the optimization problem 
is more tolerant towards error from the data con-
sistency term. This would hence result in better 
reconstructions at higher accelerations compared to 
conventional CS reconstructions with identical reg-
ularization factors and sparsity transforms. CS and 
ROICS reconstruction algorithms for retrospective 
reconstruction are detailed in  Algorithm 1.

ROICS-PI: The ROICS formulation could 
be extended to integrate PI. Data acquired using 
 multi-channel receiver coils simultaneously could 
be ROICS reconstructed per channel followed by PI 
reconstruction using methods such as SENSE19 or 
GRAPPA20 to yield the final image. We can rewrite 
Eq. [3] for each channel ‘c’ with k-space acquired 
with an arbitrary trajectory to perform ROICS-PI. 
ROICS precedes PI as CS based reconstructions 
like ROICS are inherently designed for denoising, 
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while PI works well once the SNR of the signal has 
improved due to the ROICS reconstruction

min (|| ( ( ) ) ||

|| ( )|| )
m u c c

c

F F m y W

m W
1

1
1 2

1

− −
+

*

*λ ψ  (4)

where, F
1u

 is Non Uniform Fast Fourier Transform 
(NUFFT)21 for arbitrary k-space trajectory applied 
on image estimate m

c
 and y

c
 is the k-space of the 

cth channel. These channel images could be then 
reconstructed using Eq. [26] in,22 reproduced here:

( )IE DEI b aH =   (5)

where, a is the intermediate image, b is an approx-
imation solution, I is intensity correction, E is 
the NUFFT of the coil sensitivity weighted image 
resulting in k-space, EH is complex conjugate 
transpose of E and D is the density compensation 
factor. CS-PI and ROICS-PI reconstruction algo-
rithms are detailed in Algorithm 2.

The advantage of using ROICS method is 
shown in Figure 1. It can observed that by limiting 

the support in the image space (Figure 1(c)) that 
the extent of significant k-space values (indicated 
in terms of intensity in red and blue) has been 
also limited as seen in Figure 1(e). In other words, 
samples required to reconstruct the image from 
k-space are reduced. It is evident from the Figure 1 
that the extent of k-space reduces with limiting 
the support of ROI.

3 Methods
ROICS was applied on cardiac and brain MRI. 
In all cases of reconstruction, the Nonlinear 
conjugate gradient (NCG)23 method was used to 
solve the unconstrained optimization problem in 
Eqs. [1], [3] and [4].

ROICS on cardiac data: ROICS technique 
was applied to 10 cardiac frames selected from 
10 different datasets of similar anatomy. MRI was 
performed on 10 human volunteers as part of an 
Institutional Review Board (IRB) approved MRI 
study. The acquisition consisted of a 2D multi-slab 
cardiac datasets acquired on 1.5T scanner with TR/
TE = 5.09/1.42 ms, matrix size = 256 × 256 with slice 
thickness of 8 mm using contrast agent Magnevist. 
The selected frames were then reconstructed retro-
spectively by undersampling k-space at factors of 
0.5, 0.33, 0.25, 0.2, 0.125, 0.1 equivalent to 2×, 3×, 
4×, 5×, 8×, 10× respectively, using conventional CS, 
Eq. [1] and ROICS, Eq. [3]. ROI was selected in 
image by considering only the heart region, since 
surrounding structure was not required for further 
analyses as shown in Figure 1(b). ROI mask with 
binary values, ones (1’s) within the ROI and zeros 
(0’s) outside the ROI. This mask was used to imple-
ment the ROICS. The error of reconstruction was 
quantified by the Normalized Root Mean Square 
Error (NRMSE) metric using the formula

RMSE
x x

N

p ri

n

=
−

=∑ ( )
,

2
1  (6)

Figure 1: Selecting the ROI on cardiac frame 
and k-space comparison (a) Selected cardiac 
frame, (b) Selecting the ROI in the cardiac frame, 
(c) ROI selected, (d) k-space of the selected 
cardiac frame and, (e) k-space of the ROI selected 
at same window level.

Table 1: ROICS and ROICS-PI reconstruction 
algorithms (Retrospective).

Algorithm 1 Pseudo code of CS and ROICS 
reconstruction (retrospective)

Require: Raw MRIk-space data (without applying CS\PI)
1: Read full k-space data
2: Select the reference image to draw ROI
3: Choose the undersampling factor (acceleration factor)
4: Choose the reconstruction technique (CS or ROICS)
5: if reconstruction technique is CS
6: for all frames CS reconstruction using equation (1)
7: end for
8: end for if
9: else (Reconstruction technique is ROICS)
10: for all frames ROICS reconstruction using equation (3)
11: end for
12: end for else

Algorithm 2 Pseudo code of CS-PI and ROICS-PI 
reconstruction (retrospective)

1: Read full k-space data in matlab
2:  Select the reference image to draw ROI to select 

common ROI for all channels
3: Chose the reconstruction technique (CS or ROICS)
4: if reconstruction technique is CS
5: for all  the channel data apply CS 

reconstruction using equation (1)
6: end for
7: end for if
8: else (Reconstruction technique is ROICS)
9: for  all the channel data apply ROICS 

reconstruction using equation (4)
10: end for
11: end for else
12:  CS-PI and ROICS-PI reconstruction using previous 

CS and ROICS reconstructed data respectively 
using PI technique such as SENSE or GRAPPA using 
equation (5)
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where x
p
, x

r
 are the CS/ROICS reconstructed and 

full k-space reconstructed image respectively, and 
N is number of elements in x

p
 or x

r
.

NRMSE was obtained by normalizing the RMSE 
to the range of the observed data. Average NRMSE 
values for 10 frames at different accelerations were 
calculated for both conventional CS and ROICS for 
only ROI chosen area in both cases.

ROICS-PI: The technique was applied on 6 
human brain datasets acquired using a 1.5T scanner, 
as part of an ERB approved protocol, in coronal ori-
entation and a spin echo sequence using 6 receiver 
coils (TR/TE = 410/8.7 ms, matrix size = 512 × 256) 
with no CS or PI turned on during acquisition. 
ROICS was applied to each channel data by select-
ing a common ROI across all channels (marked in 
red in Figure 3(a)) after retrospectively undersam-
pling k-space data with a variable density spiral tra-
jectory consisting of 64, 48, 32 and 16 interleaves. 
Images were reconstructed at these values of inter-
leaves corresponding to acceleration factors of 7.5, 
7.9, 8.3 and 8.8, using PI, CS + PI and ROICS + PI 
methods on six channel data to compare proposed 
method with these conventional methods. The 
reconstruction error for the proposed method and 
the existing methods were quantified by Peak Signal 
to Noise Ratio (PSNR) using the formula

PSNR y sum x y N= −20 10
2log (max( )/ ( ) )/  (7)

where, x and y are ROICS-PI reconstructed and 
full k-space reconstructed image respectively and 
N is number of elements in x or y.

4 Results
ROICS on cardiac data: Figure 1(b) depicts a 
representative cardiac frame and the red outline 
depicts the chosen ROI. Difference between the 

conventional CS technique and novel ROICS can 
be observed in Figure 2. The noise in the recon-
structed image using conventional CS increases 
with acceleration whereas ROICS technique is 
able to retain the details even at 10X. The resulting 

Figure 2: Comparison of conventional CS and proposed ROICS technique at different acceleration on 
cardiac data.

Figure 3: Reconstructed image: (a) ROI drawn 
on original/SoS image, (b) PI reconstruction, (c) 
CS + PI reconstruction, (d) ROICS + PI recon-
struction, (e) ROI magnified image at 7.5x accel-
eration to compare proposed method with existing 
methods.
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ROICS reconstruction with 10% of the data shown 
in Figure 2 (lower panel) demonstrates the utility 
of the proposed approach in an efficient manner. 
The graph in Figure 4 shows significant increase in 
the NRMSE value after 5x using conventional CS, 
whereas the increase in NRMSE value for ROICS 
is relatively insignificant.

ROICS-PI: The Sum of Squares (SoS) of 
the channels image with the ROI chosen for 
reconstruction is shown in Figure 3(a) for a 
repre sentative data set. The results for the three 
methods over the 4 acceleration factors are 
shown in Figure 3(b): PI only; (c): CS + PI; and 
(d): ROICS + PI. It can be observed from these 
figures that ROICS + PI perform qualitatively 

better than the other two methods. Figure 3(e) 
depicts the magnified ROI at 7.5x depicting 
aliasing artefacts that can be observed in the 
other two methods arising due to the spiral tra-
jectory, while ROICS+PI is able to reconstruct 
the image with significantly reduced aliasing 
artefacts. At acceleration values above 7.5x, it 
can also be observed that ROICS + PI has the 
least artefacts in the chosen ROI. The graph in 
Figure 5 shows the PSNR for ROICS and con-
ventional reconstruction techniques for six data 
sets, and it can be noted that PSNR value for the 
ROICS method is higher compared to the other 
two techniques in case of each data for the speci-
fied ROI.

Figure 4: NRMSE comparison for cardiac data.

Figure 5: PSNR comparison (dataset 1 to data set 5) for 3 methods.
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5 Discussion
ROICS performs better than conventional CS by 
limiting the reconstruction region, where sur-
rounding or background regions are not important 
for further analyses. This sparse representation of 
data resulted in better reconstruction at higher 
acceleration factors compared to conventional 
CS. ROICS and conventional CS techniques were 
applied on cardiac and brain data, and as the accel-
eration increased, ROICS performed better in both 
the cases. ROICS on cardiac data was able to retain 
the details in the ROI selected region compared 
to CS, noticeably from 5x acceleration onwards. 
NRMSE value was calculated only in the ROI 
selected region for both ROICS and CS, as one is 
interested in the ROI region rather than the back-
ground, which is not required for further analysis. 
PI and CS are well-known methods used in MRI 
to reduce MRI acquisition time, and a combina-
tion of CS and PI was recently used to achieve bet-
ter acceleration, instead of using PI or CS alone. 
Current method replaces the CS with ROICS to 
achieve better acceleration with PI. ROICS recon-
struction technique has been applied by selecting 
common ROI on multiple channel data to make 
data sparse in each channel. It can be observed 
from Figure 3 that ROICS-PI performs better 
than PI alone or CS-PI. It can be observed that 
aliasing artifacts are present in the reconstructed 
images using PI alone and CS-PI due to highly 
undersampled spiral trajectories, while these arti-
facts are significantly reduced in the reconstructed 
image using ROICS-PI. An extension of ROICS 
could be performed either by using patch wise 
reconstruction by using a sliding window or patch 
wise reconstruction, although this would require a 
detailed understanding of the significant values in 
k-space for the relevant patches. Another impor-
tant extension to the ROICS framework would 
be the optimizing of the k-space trajectories to 
acquire significant data by including it as part of 
the ROICS functional in Eq. [3]. ROICS technique 
can also be extended to other modalities such as 
CT and PET, where CS has been used.24,25

6 Conclusion
The development and application of ROICS has 
been performed here for the first time. ROICS 
allows for increasing the sparsity required for 
CS reconstructions by decreasing the number of 
non-zero coefficients to be estimated. It has been 
demonstrated qualitatively and quantitatively that 
ROICS outperforms CS at higher acceleration fac-
tors. ROICS technique was applied on cardiac and 
brain data to demonstrate its utility; ROICS on car-
diac and brain data delivered better performance 

than the conventional CS and was quantified by 
evaluating the RMSE and PSNR respectively. A 
combination of ROICS and PI also has been dem-
onstrated for the first time, and it was shown that it 
performs better than the other two methods such 
as PI alone and CS-PI qualitatively and quantita-
tively. The technique has been implemented for 
arbitrary k-space trajectories, and hence provides 
a general framework. Current and future work 
involves prospective application of ROICS through 
optimization of k-space trajectories for ROICS for 
diverse MR methods and integrating it with the 
reconstruction framework.
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