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Abstract | Magnetic Resonance Imaging (MRI) is a widely used non- 
invasive medical tool for detection and diagnosis of cancer. In recent 
years, MRI has witnessed significant contributions from nanotechnology 
to incorporate advanced features such as multimodality of nanoparticles, 
therapeutic delivery, specific targeting and the optical detectability for 
molecular imaging. Accurate composition, right scheme of surface 
chemistry and properly designed structure is essential for achieving 
desired properties of nanomaterials such as non-fouling surface, high 
imaging contrast, chemical stability, target specificity and/or multimodality. 
This review provides an overview of the recent progress in theranostic 
nanomaterials in imaging and the development of nanomaterial based 
magnetic resonance imaging of cancer. In particular, targeted theranostics 
is a promising approach along with its targeting strategy in cancer treat-
ment using MRI and multimodal imaging. We also discuss recent advances 
in integrin mediated targeted MRI of cancer.

1 Introduction
Among all diseases ‘Cancer’ is one of the world’s 
leading causes of death today, as is evident from 
the world cancer statistic as shown in Figure 1.1 
Cancer is defined as a class of diseases character-
ized by unregulated or uncontrolled cell growth 
(proliferation). So far, 100 different types of can-
cers have been classified on the basis of type of cell 
tissue that is initially involved.2–4 These overgrown 
cells harm the body by increasing the interstitial 
pressure; upon further division in an uncontrolled 
manner the formation of lumps or masses of tis-
sue called ‘tumor’ results (except in the case of 
leukemia where cancer prohibits normal blood 
function by abnormal cell division in the blood 
stream). Tumors grow and interfere with the diges-
tive, nervous, and circulatory systems and they can 
release hormones that alter body function.

Tumor with limited growth that stays in one 
spot is generally considered to be benign (non 
cancerous). Tumors which spread through the 
blood stream and are known to show pathological 
symptoms are called malignant tumors. The key 
processes of invasion5 (destruction of healthy 

tissue and penetration through lymph) and 
angiogenesis generate malignancy. The hallmarks 
of cancer6 constitute sustained proliferative sign-
aling, evading growth suppressors, resisting cell 
death, enabling replicative immortality, inducing 
angiogenesis, and activating invasion and metas-
tasis, tumor-promoting inflammation, genome 
instability and mutation etc. Understanding these 
became important for developing cancer therapeu-
tics. Fortunately, imaging diagnostics has emerged 
as a powerful tool for the assessment and detection 
of tumors. Particularly, integration of molecular 
biology and imaging techniques is increasingly 
being used to understand the complexity, diversity 
and in vivo behaviour of cancer.7 MRI (Magnetic 
Resonance Imaging), one of the most important 
techniques, is a noninvasive imaging modality 
that enables to provide anatomical, physiological 
and even molecular information of the body. MRI 
offers high contrast of soft tissues and enough 
penetration depth to visualize the entire human 
body. In recent years, significant advances have 
been made in designing biocompatible, noninva-
sive and sensitive molecular imaging probes and 



Asampille Gitanjali, Varsha P. Brahmkhatri and Hanudatta S. Atreya

Journal of the Indian Institute of Science  VOL 94:4  Oct.–Dec. 2014  journal.iisc.ernet.in424

to achieve target specificity various biomarkers 
are used. Among all the cancer bio-markers that 
are currently under investigation, integrins are the 
main focus. Upregulations of these cell adhesion 
molecules have been found to be tightly associ-
ated with a wide range of cancer types, making it 
a broad-spectrum tumor marker, and they serve 
as activators for pathological angiogenesis.8–10 
‘Arginine- glycine-aspartic acid’ (RGD) is one of 
the recognition site for few integrins such as α

v 
β

3,
 

thus it is used as a targeting agent in many imag-
ing probes to target angiogenesis via integrin.11 In 

this review, we discuss various imaging techniques, 
design of various nanomaterials for MRI imaging, 
and its application in theranostic and multimodal 
imaging approach. Towards the end, we will focus 
on the recent advances in MRI to target angiogen-
esis in cancer via integrins.2,12,13 Figure 2 summa-
rizes the same content of the review.

1.1 Imaging overview
Biomedical nanotechnology has made a major 
impact on the development of molecular imag-
ing probes for cancer clinical trials and medical 

Figure 1: Cancer statistics 2013: Data comparing more and less developed countries.

Figure 2: Schematic illustration of nanomaterial based MRI of cancer targeting angiogenesis.
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practices using various nano-platforms.14,15 In addi-
tion to the energy based classification, all current 
imaging techniques can be grouped on the basis of 
spatial information that is attained—macroscopic, 
mesoscopic or microscopic, or the type of infor-
mation that is obtained—Physiological, cellular, 
molecular or anatomical. Macroscopic imaging 
modalities that provide physiological and ana-
tomical information are now in widespread clini-
cal and preclinical use. It includes Single-Photon 
Emission-Computed Tomography (SPECT), 
Positron Emission Tomography (PET), fluores-
cence reflectance imaging, Fluorescence-Mediated 
Tomography (FMT), Fiber-optic microscopy, 
Optical frequency-domain imaging, biolumines-
cence imaging, ultrasound, optical imaging and 
Magnetic resonance imaging (MRI). All of them 
provide wealth of information that is highly com-
plementary, and hold much promise as they allow 
real time visualization of the cellular functions of 
living organisms and related molecular interac-
tion. Importantly they are noninvasive techniques. 
PET and SPECT are highly quantitative and sensi-
tive with no penetration limitation, but both make 
use of ionizing radiation, which is incompatible 
for frequent imaging, due to potential damage to 
the living subjects from the cumulative irradiation 
dose. On the other hand, optical imaging, which 
is less expensive and user friendly, has the limita-
tion of penetration depth and poor multiplexing, 
making it less effective for cancer detection and 
assessment (i.e. it is limited to surface imaging; 
for example, colon cancer with optical endoscopy, 
bladder cancer imaging with optical cystoscopy or 
skin cancer).16,17 Moreover, PET, SPECT and Opti-
cal imaging have low spatial resolution. A com-
pletely noninvasive and inexpensive ultrasound 
anatomical imaging technique is one of the prom-
ising tools for the evaluation of tumors. However, 
the limitations of ultrasound include the depend-
ence on the skill of an operator and limited depth 

penetration. A problematic issue in clinical set-
tings of ultrasound is to receive an adequate docu-
mentation for the comparison of examinations at 
different time points, and not all regions of the 
body are accessible to the ultrasound probe,18 e.g. 
lung, bone, and brain in adults. Similarly, Com-
puted Tomography19 has a drawback with respect 
to its sensitivity. The comparison between differ-
ent imaging techniques is summarized in Table 1.

An alternative noninvasive and highly sensi-
tive tool is MRI, which is widely used clinically 
among numerous anatomical techniques to assess 
tumor growth and for response evolution.20 MRI 
offers realistic chances for early detection of neo-
plastic lesions in vivo and it is able to acquire 
three dimensional topographical information in 
whole tissue samples, including human soft tissue, 
and whole animals, at high spatial and temporal 
resolution.7,21–27 High spatial resolution of 10–100 
µm can be acquired, and it dependent on mag-
netic field. Currently, US Food and Drug Admin-
istration (FDA) has approved 3-Tesla magnetic 
field strengths, as spatial resolution of human 
body imaging is restricted to approximately 
1 mm. Although tissue MRI is capable of reveal-
ing anatomical details in organs, difficulties are 
seen in differentiation between normal and tumor 
cells due to small native relaxation differences. To 
achieve enhanced imaging sensitivity exogenous 
MRI contrast agents (Gd+3, Iron oxides) have been 
applied.25,28

1.2 Principles of MRI
MRI works on the principle of NMR (Nuclear 
Magnetic Resonance), and it produces contrast 
in biological systems by measuring the relaxa-
tion processes of hydrogen atoms in different 
microenvironments. Radiofrequency (RF) waves 
have wavelengths of the order of 1 cm and can 
penetrate deep in to body, therefore MRI has no 
limitation for tissue penetration.29 In the presence 

Table 1: Comparison of different imaging techniques.

Modality Source Typical probes Resolution/Sensitivity/Time/Depth

SPECT g-ray 99mTc, 111In-labelled  
compounds

1–2 mm/ 10-10–10-11/minutes  
to hours/no limit

PET g-ray Radioisotopes  
(eg. 18F, 11C, 13N, 15O,  
64Cu,124I)

1–2 mm/10-11–10-12/minutes  
to hours/no limit

CT X-ray Iodine, Barium  
sulphate, Gold

50–200 µm/10-6/minutes/no limit

MRI Radio wave Paramagnetic (Gd3+),  
Supramagnetic (Fe

3
O

4
)

10–100 µm/10-9–10-6/minutes 
to hours/no limit

Optical  
Imaging

Light QDs, NIRF dyes 0.3 µm /10-12/sub seconds 
to minutes/<10 cm
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of an external magnetic field, protons (1H spins) 
align in one direction (z axis). Upon application 
of the RF pulse, aligned protons are perturbed 
and subsequently relax to their equilibrium (orig-
inal state). There are two independent relaxation 
processes: longitudinal (T

1
) and transverse (T

2
) 

relaxation, which are typically used to generate the 
MR images.28 T

1
 is the time constant of the expo-

nential recovery process of spin magnetization 
along the z-axis after an RF pulse. Rapidly relax-
ing protons (short T

1
) recover full magnetization 

along the z axis and produce high signal intensi-
ties. For protons with slow relaxation (long T

1
), 

full magnetization is not recovered before subse-
quent RF pulses, therefore they produce less sig-
nal and result in the so called ‘saturation effect’.30 
The time constant of the exponential decay of the 
transverse magnetization (Mxy) after an RF pulse 
is known as T

2
. It is related to the amount of time 

for precessing magnetic moments of the protons 
to become randomly aligned in the xy-plane after 
an RF pulse, eventually resulting in a net magnetic 
moment of zero in the xy-plane. A combination 
of local fluctuations in the magnetic field due to 
magnetic interactions of neighbouring molecules 
and macroscopic effects related to inhomogeneity 
in the external magnetic field causes this dephas-
ing process. When the dephasing time accounts 
for both intrinsic molecular interactions and 
extrinsic magnetic field inhomogeneities, it is 
termed ‘T

2
*’.

Signal contrasts can arise in MRI from differ-
ences in four basic physical parameters: i) Spin 
density of the various tissues/fluids being ana-
lyzed, ii) T

1
 iii) T

2
 iv) T

2
*;

Signal intensities of MRI are dependent on T
1
 

and T
2
 relaxation times that are sensitive to the 

microenvironment. There are few basic MRI pulse 
sequences as follow:

Spin-Echo: S = ρ (1 - exp (-TR/T
1
)) exp (-TE/T

2
),

Inversion Recovery: S = ρ (1 - 2exp (-TI/T
1
) + exp 

(-TR/T
1
))

Inversion Recovery with SE (180-90-180): S = ρ 
(1 – 2exp (-TI/T

1
) + exp (-TR/T

1
)) exp (-TE/T

2
)

Gradient Echo: S = ρ (1 - exp (-TR/T
1
)) sin θ exp 

(-TE/T
2
*)/(1 - cos θ exp (-TR/T

1
)),

where ρ = spin density, TR (The Repetition Time), 
TE (The Echo Time), TI = the Inversion Time, 
θ = the excitation angle.

The actual contrast C = |SA - SB| achieved 
between signals SA & SB, will depend on the 
intrinsic T

1
 & T

2
 of the two tissues, and on the TR 

(The Repetition Time) and TE (The Echo Time) 
parameters used.

Key approaches to achieve the contrast 
include

T
2
-weighting: where a Spin Echo (SE) sequence 

with ‘longish’ TE (to magnify T
2
 decay differ-

ences) and long TR (to minimize T
1
 recovery 

differences) are used.
T

2
*-weighting: where a Gradient Echo (GRE) 

sequence, with not-so-long TE (to highlight 
T

2
* effects) and long TR (to minimize T

1
 differ-

ences) are used.
T

1
-weighting: makes use of a GRE or a SE sequence, 

but with short TE (to make differences in T
2
* 

irrelevant) and short TR (to make T
1
 recovery 

differences important).
ρ-weighting: using simple density weighting, with 

no contrast from T
2
*, T

2
 or T

1
.

Malignant and healthy tissues have minor dif-
ferences in their overall water content. But they 
exhibit substantial differences in their T

1
’s & T

2
’s, 

thus MR image contrast is important to differenti-
ate soft tissue from its surroundings. Often exog-
enous materials, i.e. contrast agents, are employed 
clinically to enhance the contrast between the tissue 
of interest and the surrounding tissue. T

1
-weighted 

images illustrate anatomy well and are preferred 
when a clear image of structure is required30 and 
T

2
-weighted images produce good pathological 

information since collections of abnormal fluid 
appear bright against the normal tissue back-
ground.31 Therefore, there are two classes of MRI 
contrast agents available, (1) T

1
-weighted contrast 

agents (e.g., gadolinium-(Gd3+) and manganese-
(Mn2+) chelates) are paramagnetic in nature, which 
increase the T

1
 relaxation time through coordina-

tion with water molecules providing increased 
contrast, hence also called positive contrast agents, 
and (2) T

2
-weighted contrast agents such as super 

paramagnetic magnetite (Fe
3
O

4
) nanoparticles 

are also called negative contrast agents because 
they reduce T

2
 relaxation times, thus decreasing 

the MRI signal intensities around them, showing 
dark images. The efficiency of a contrast agent to 
reduce the T

1
 or T

2
 of water protons is referred to 

as relaxivity. Bae et al. recently investigated dual 
contrast agent composed of a gadolinium chelate 
on the polymer coating of SPIONs. This excellent 
feature allows for the acquisition of both highly 
detailed T

1
 weighted anatomical images and path-

ologically relevant T
2
 weighted images with a single 

imaging nanoprobes.32 In addition, multiparamet-
ric imaging is possible in MRI wherein Diffusion 
Weighted Images (DWI) and T

1
, T

2
 are obtained 

in one session, each reflecting a different tissue sig-
nal.33 Multimodality imaging takes advantage of 
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unique strengths of two or more imaging modali-
ties, and compensates the limitations from a single 
imaging modality. This provides overall structural, 
functional, and molecular information, offering 
the prospect of improved diagnostic and thera-
peutic monitoring abilities.34

An excellent combination of nanoscience and 
nanotechnology has led a step further towards 
rapid development of novel nanomaterials as MRI 
contrast agents. Because of their significant role in 
MRI, excellent reviews on synthesis and applica-
tions of nanomaterial based contrast agents have 
been published.28,35–38 These nanomaterial based 
MRI contrast agents have several advantages over 
conventional MRI contrast agents such as: a) tuna-
ble bio distribution and biostability can be achieved 
by surface modification; b) different degrees of 
imaging properties and biocompatibility can be 
adjusted by their designing schemes that include 
variations in chemical composition, shapes and 
sizes; c) target specificity can be assigned to them 
by respective conjugation with biologically inter-
active molecules like antibodies, peptides, nucleic 
acids and peptide-mimetics, and these biomarkers 
help to locate the changes at tumor site over the 
time; d) most importantly, the ability to design 
multimodal imaging probes (Figure 3) using 
different combination of optical and magnetic 

properties of nanomaterials e.g. MRI/PET, MRI/
PET/NIRF, MRI/CT, PET/UCL/MRI etc.35,39–41

2 Nanomaterials in Therapeutics
Nanomaterials have been utilized as therapeutic 
drug delivery vehicles and for treatment of a vari-
ety of diseases and disorders.42 These nanomate-
rials have emerged as an excellent alternative for 
drug delivery. Nanostructured materials display 
three major unique properties not observed in 
their bulk counterparts. They possess: 1) ‘ultrahigh 
surface effect’ allowing for dramatic increase in 
the number of atoms in the surface,43 2) ‘ultrahigh 
volume effect’ allowing for light weight of small 
particles,44 3) ‘quantum size effect’ allowing for 
nanosize decrease and quasi-discrete energy of 
electron orbital around the Femi energy level.45 
This increases the band gap between the highest 
occupied molecular orbital and lowest unoccupied 
molecular orbital. Therefore, the electromagnetic 
quantum properties of solids are altered. When 
the nanometer size range is reached, the quan-
tum size effect becomes pronounced, resulting 
in unusual optical, acoustic, electronic, magnetic, 
thermal and dynamic properties. Furthermore the 
size, surface characteristics and shape of a nano-
particle also plays a key role in its bio distribution 
in vivo.46

Figure 3: Design of multimodal imaging probes using different combination of optical and magnetic 
nanomaterials.



Asampille Gitanjali, Varsha P. Brahmkhatri and Hanudatta S. Atreya

Journal of the Indian Institute of Science  VOL 94:4  Oct.–Dec. 2014  journal.iisc.ernet.in428

There are three main components to an effec-
tive drug delivery via nanoparticle:47 (i) the nano-
particle core material, (ii) the therapeutic agent or 
drug, and (iii) surface modifiers or functionaliza-
tion of nanoparticles. Nanomedicine carriers gen-
erally have the ability to load either hydrophobic 
or hydrophilic therapeutics. Thus, suitable car-
rier materials have to be thoughtfully selected for 
every therapeutic. However, some carrier materials 
have both hydrophobic and hydrophilic regions.48 
These materials could be effectively used to design 
nanocarriers for delivery of multiple drugs. In 
addition, the nanoparticle core material must be 
non-toxic and non-immunogenic, and should 
be easily eliminated from the body to avoid toxic 
accumulation and side effects.

The most important requirement of an ideal 
nanomaterials drug carrier is its ability to release 
the therapeutic drug molecule after the carrier has 
reached its destination. Surface modification or 
functionalization of the nanoparticle include both 
targeting moieties, which assist in accumulation 
of the carrier in a specific location, and biocom-
patibility modifiers, which are needed to increase 
circulation at a specific location.

2.1 Nanomaterials for cancer imaging
Many different types of nanomaterials have 
been developed to provide contrast in medical 
imaging.49–51 Some of these materials incorporate 
an imaging moiety into their design, while oth-
ers provide contrast as a result of their intrinsic 

material properties. Multiple imaging modalities 
can also be implemented into a single nanotheran-
ostic design by incorporating multiple moieties to 
provide a more complete picture of the disease.

Molecular imaging can identify tumour cell 
location within the body, and aims to provide 
information such as metabolism, expression pro-
file, and stage of the disease.52 Furthermore, molec-
ular imaging can reveal early tumour response to 
therapy that will aid in improving treatment regi-
mens.53 A wide range of nanoparticles have been 
designed to reach tumours. An overview of the 
different types of nanoparticles51,54–60 is provided 
in Figure 4.

Here NPs are broadly classified by the mate-
rials they are made of, which include liposomes 
and micelles, polymers and dendrimers, quan-
tum dots, noble metals, semiconductors, carbon 
nanotubes and fullerenes, transition metal oxides, 
metal-organic frameworks, zeolites, mesoporous 
silica materials and lanthanide series. Although all 
of these types of nanoparticles have been studied 
for cancer diagnosis and drug delivery and release, 
each type of nanoparticle can exhibit different and 
sometimes unique properties, which make them 
useful for different applications. Diagnostics may 
be performed in vivo or ex vivo, and offer informa-
tion about a disease’s metabolic/biochemical state, 
genotype, size, location(s), morphology, chemi-
cal composition, rate of change, and so forth. A 
therapeutic improves the outcome of a disease 
state. Although in the current review, we focus on 

Figure 4: Types of materials used for MRI in cancer diagnosis and treatment.
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application of theranostic nanomaterials in can-
cer biology and in vivo, they also have relevance in 
diabetes and in regenerative medicine.61

A brief overview of progress in applications 
theranostic nanoparticles and nanomedicine in 
MRI is summarized in Figure 5.

The significant reports are discussed below. 
Therapeutic nanostructures and imaging nano-
particles have a long history; they have only recently 
begun to coalesce into the theranostic nano- 
 particles. In early 1990s, Josephson et al. reported 
surface functionalized superpara-magnetic iron 
oxide colloid as MRI contrast agent.62 They found 
this colloid as hepatic selective (HS) MR con-
trast agent. At 20 µmol Fe/kg, the HS MR agent 
darkened MR images of liver. The HS MR agent 
exhibited no acute toxicity when injected into 
rats at 1800 µmol Fe/kg. Originally nanopartciles 
were used either as therapeutic (delivery) or as 
diagnostic (imaging) agents. Later nano systems 
capable of simultaneous therapy and molecular 

imaging (theranostic) were realized. Subsequently, 
during the mid 1990s first FDA approved nano-
drug came in the market. Doxil,® the first FDA 
approved nano-drug (1995), was developed in 
Israel and the USA ∼14 years ago when it became 
evident in a “first in man” (FIM) clinical trial by 
Gabizon and Barenholz.63

There are currently more than 35 FDA- 
approved nanoparticles (Table 2), with a larger 
number in preclinical studies for both imaging 
and therapy.64–67 Most FDA-approved NPs are 
used as mechanisms of drug delivery with the 
exception of MRI contrast agents. The concept 
of ‘theranostic’ appeared first time in literature in 
2002,68 although the diagnostic and therapeutic 
applications of nanomaterials were already stud-
ied independently.

Gao et al. in 2004 described development of 
multifunctional nanoparticle probes based on 
semiconductor Quantum Dots (QDs) for cancer 
targeting and imaging in vivo.69 The structural 

Figure 5: Progress in the field of nanomaterials and simultaneous evolution of theranostics.
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design involves encapsulating luminescent QDs 
with an ABC triblock copolymer and linking this 
amphiphilic polymer to tumor-targeting ligands 
and drug-delivery functionalities. In vivo target-
ing studies of human prostate cancer were carried 
out in nude mice. They found that the QD probes 
accumulate at tumors both by the enhanced per-
meability and retention at tumor sites and by 
antibody binding to cancer-specific cell surface 
biomarkers. They achieved sensitive and multi-
color fluorescence imaging of cancer cells under 
in vivo conditions using this multifunctional 
nanoparticle probes. They integrated a whole-
body macro-illumination system with wavelength 
resolved spectral imaging for efficient background 
removal and precise delineation of weak spectral 
signatures. Based on their findings they proposed 
new possibilities for ultrasensitive and multiplexed 
imaging of molecular targets in vivo.

Banerjee et al. in 2008 described targeted 
anticancer drug delivery over pH-sensitive mag-
netic nanoparticles for simultaneous imaging 
and sensing.70 A pH responsive nanocarrier was 
synthesized by coupling doxorubicin (DOX) to 
Adipic Dihydrazide-grafted gum Arabic Modified 
Magnetic Nanoparticles (ADH-GAMNP) via the 
hydrolytically degradable pH-sensitive hydrazone 
bond. The resultant nanocarrier, DOX-ADH-
GAMNP, was 13.8 nm in diameter and the amount 
of DOX coupled was about 6.52 mg g-1. They dem-
onstrated that when excited in the near-infrared 
region, because of two-photon absorption mecha-
nism, both GAMNP and DOX exhibited fluores-
cence properties. Their results illustrate coupling 
of DOX to GAMNP in a reversible self-quenching 
of fluorescence through the Fluorescence Resonant 
Energy Transfer (FRET), where in GAMNP acts as 
donor and DOX as acceptor. They confirmed the 
pH sensitivity of the nanocarrier by zeta potential 
and plasmon absorbance in different pH condi-
tions. Their finding of multifunctional nanocarrier 

was a significant breakthrough in development of a 
drug delivery vehicle that combines drug targeting 
as well as sensing and therapy at the same time.

Agasti et al. in 2009 reported photo regulated 
release of anticancer drugs from gold nanoparti-
cles.71 They conjugated anticancer drug 5-fluorou-
racil to the surface of gold nanoparticles through 
a photocleavable o-nitrobenzyl linkage. The gold 
nanoparticles serve as both cage and carrier for 
the therapeutic, providing a nontoxic conjugate 
that effectively releases the payload upon UV irra-
diation of long wavelength.

In 2010 Xie et al. reported triple functional 
iron oxide nanoparticles (IONP) for PET/NIRF/
MRI.41 They used dopamine to modify the sur-
face of IONPs, yielding nanoconjugates that can 
be easily encapsulated into Human Serum Albu-
min (HSA) matrices. This novel nanosystem, the 
HSA coated IONPs (HSA-IONPs) were dually 
labelled with 64Cu-DOTA and Cy5.5, and tested in 
a subcutaneous U87MG xenograft mouse model. 
This nanosystem was investigated for in vivo PET/
NIRF/MRI tri-modality imaging and ex vivo anal-
yses, and histological to test for in vivo behaviour 
of the nanostructures. They found that the parti-
cles have a good retention rate and a high extrava-
sations’ rate at the tumor sites from imaging and 
histological investigations.

Chen et al. (2012) reported pH-responsive MRI, 
ultrasonography and circumvention of Multidrug 
Resistance (MDR) in cancer cells using manganese 
oxide-based multifunctionalized mesoporous silica 
nanoparticles.72 They demonstrated a new strategy 
for highly efficient pH-activatable MRI combined 
with dual-modality biological imaging and intra-
cellular anticancer drug delivery by constructing 
PEGylated (the process of covalent attachment 
of polyethylene glycol (PEG) polymer chains to 
another molecule) versatile mesoporous nano-
theranostics for simultaneous non-invasive cancer 
diagnosis and efficient chemotherapy. Specifically, 

Table 2: FDA approved Nanomedicine products.

Product Type of material Company Indication

Doxil75 PEGylated liposome OrthoBiotech Metastatic  
ovarian cancer

Abraxane75 Albumin-bound paclitaxel 
particles

Abraxis Oncology Lung cancer,  
breast cancer,  
others

NanoTherm76 Iron Oxide NPs MagForce Solid Tumor

Feridex IV,  
GastromarkCombidex  
(Ferumoxtran-10)77,78

Iron Oxide NPs Advanced Magnetics Enhanced MRI  
Contrast

CellSearch®  
EpithelialCell Kit78

Iron Oxide NPs Veridex, LLC  
(Johnson & Johnson)

Magnetic  
Separation
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manganese oxide NPs with pH-sensitive dissolving 
behaviour has been introduced into the mesopores 
of hollow silica nanocapsules by the in-situ redox 
reaction. The release of MnII in acidic condition 
from MnOx NPs-dispersed mesostructure sig-
nificantly enhances MRI-T

1
 performance of Mn-

based contrast agents (almost 11-fold magnitude 
increase), which is very sensitive to the detection of 
the acidic tumor microenvironment upon arrival 
on the tumor sites. The designed multifunctional 
hybrid NPs have been demonstrated as the efficient 
contrast agents for ultrasound imaging for the first 
time. Importantly, the drug released from encapsu-
lated nanocapsules could circumvent the multidrug 
resistance of cancer cells to restore the anti-prolif-
erative efficacy, and enhance the chemotherapeutic 
efficiency of anticancer agents due to the unique 
biological characteristics of NPs such as NPs-me-
diated endocytosis, intracellular drug release, and 
P-gp inhibition/ATP depletion in cancer cells. This 
engineered theranostic agent would greatly contrib-
ute to the progress of protocols for efficient cancer 
diagnosis and therapy.

Gomes et al. reported (2013) an efficient 
pro-survival/angiogenic miRNA delivery by an 
MRI-detectable nanomaterial.73 They used bio-
degradable nanoparticles (NPs) containing per-
fluoro-1,5-crown ether (PFCE), a fluorine based 
compound (NP170-PFCE) with the capacity to 
track cells in vivo by Magnetic Resonance Imag-
ing (MRI) and efficiently release miRNA. NP170-
PFCE complexed with miRNAs accumulate within 
the cell’s endolysosomal compartment and inter-
act with higher frequency argonaute2 (Ago2) and 
GW182 proteins, which are involved in the bio-
logical action of miRNAs. The theranostic aspect 
of their formulation makes it very promising for 
cardiovascular applications. They demonstrated 
that the release of miR132 from the NPs increased 
by 3-fold the survival of endothelial cells (ECs) 
transplanted in vivo and 3.5-fold the blood per-
fusion in ischemic limbs relative to control (cells 
transfected with empty NPs). The formulation 
reported the uses of FDA-approved components, 
which should facilitate its biomedical translation; 
the formulation can be prepared with controlled 
size, can incorporate multiple ligands, and can be 
monitored by 19F MRI. 19FMRI is the ideal tool for 
non-invasive assessment of cell fate after trans-
plantation, providing positive, quantitative, and 
background-free contrast.

Tian et al. (2014) reported engineered design 
of theranostic up-conversion nanoparticles for 
tri-modal luminescence/magnetic resonance/X-ray 
computed tomography imaging and targeted 
delivery of combined anticancer drugs.74 They 

developed multifunctional nanoparticles based 
on NaGdF4:Yb/Er@NaGdF4 core–shell UCNPs, 
which are not only endowed with up-conversion 
luminescence (UCL), Magnetic Resonance (MR) 
and X-ray Computed Tomography (CT) imaging 
ability, but can also be applied as nanocarriers for 
targeted drug delivery. They systematically investi-
gated their up-conversion luminescent, magnetic 
and X-ray attenuation properties. Importantly, for 
the first time, they reported the controlled load-
ing and delivery of a mixture of chemotherapeutic 
anticancer drugs, camptothecin (CPT) and doxo-
rubicin (DOX), through UCNPs-based nanocarri-
ers. This is significant given that the combined use 
of two or more drugs usually exhibits much bet-
ter therapeutic efficacy than that of a single drug. 
By conjugating nanoparticles with folic acid (FA) 
which target folate receptors over expressed on vari-
ous types of cancer cells, they further demonstrated 
targeted tri-modal UCL/MR/CT cell imaging and 
drug delivery with UCNPs. Their results suggest 
that these nanocomposites are highly versatile and 
could potentially be used for simultaneous imaging 
and therapeutic applications.

2.2 Theranostic nanomaterials
Theranostics is a newly emerging concept 
that involves simultaneous implementation of 
diagnosis as well targeted therapy.13,79 Theranos-
tic nano particles (NPs) contain diagnostic and 
therapeutic functions in one integrated system, 
enabling diagnosis, therapy, and monitoring of 
therapeutic response at the same time. Theran-
ostic nanomedicine is an emerging field that uses 
nanomaterials to pull together diagnostic insight 
for well-informed treatment. The fundamental 
advantage of theranostic nanomedicine is the use 
of patient-specific test results to tailor a treatment 
regimen producing improved outcomes, reduced 
costs, and fewer side effects. A diagnostic improves 
the knowledge of a disease state.

2.2.1 Liposomes: Liposomes are spherical vesi-
cles that consist of one or more phospholipid 
bilayers encapsulating water in their interior.80,81 
The phospholipids are arranged so as to form a 
closed sphere, shielding their hydrophobic tails 
from the water, thus leaving water in the liposome 
interior. Drugs can be encapsulated within the 
liposomes, not only in the aqueous volume but also 
within the bilayer, which allows drugs of different 
hydrophilicities to be carried.82,83

2.2.1.1 Theranostic applications of liposomes: 
Several liposomal formulations have met with suc-
cess over the years in a number of animal tumour 
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models. The usual lipid prodrug-based liposomes 
have shown promise in drug and gene delivery. 
Currently several liposomal formulation are in the 
clinical practice containing different chemothera-
peutics such as doxorubicin (Doxil1/Caelyx1), 
doxorubicin (Myocet1), daunorubicin (DaunoX-
ome1) and cytarabine (DepoCyte1) for treating 
ovarian cancer, AIDS-related Kaposi’s sarcoma, 
multiple myeloma, and lymphomas or leukaemia 
with meningeal spread.84 Several other liposomal 
chemotherapeutic drugs containing doxorubicin, 
annamycin, mitoxantrone, cisplatin, oxaliplatin, 
camptothecine, 9-nitro-20 (S)-camptothecin, iri-
notecan, lurtotecan, topotecan, paclitaxel, vincris-
tine, vinorelbine and floxuridine are at the various 
stages of clinical trials.84 Moreover, advances with 
cationic liposomes have led to the successful deliv-
ery of small interfering RNA (siRNA).85 Targeted 
liposomal delivery has been explored through the 
use of Low Density Lipoprotein (LDL) particles as 
well as haloperidol associated ‘stealth’ liposomes 
for genetic therapy of breast cancer cells.3 Drug 
delivery and imaging has been combined in some 
studies of murine tumour model. Thermally 
sensitive liposomes contained doxorubicin and 
MnSO

4
, and the paramagnetic properties of man-

ganese, similar to those of gadolinium, were used 
as a probe for in-vivo monitoring of the drug by 
MRI.86 The temperature-responsive particles enter 
the tumour, shatter, and release the MnSO

4
. This 

can be observed through the relaxivity of manga-
nese nuclei under the applied magnetic field.

2.2.2 Polymeric nanoparticles: A wide range of 
natural and synthetic polymers constitute a platform 
for synthesis of a variety of nanoparticles. Natural 
polymers such as chitosan, albumin, heparin, 
dextran, gelatin, alginate, and collagen as well as 
synthetic polymers, such as PEG, polyglutamic acid 
(PGA), polylactic acid (PLA), polycarprolactone 
(PCL), poly-d,l-lactide-co-glycolide (PLGA) and 
N-(2-hydroxypropyl)-methacrylamide copolymer 
(HPMA) have been widely used to prepare NPs 
and encapsulate drugs for cancer therapy.55,87–89 In 
many cases the polymeric NPs comprised a hydro-
phobic core containing the anticancer agent and 
a hydrophilic surface layer for the stabilization of 
the NPs in aqueous environment.88

2.2.2.1 Polymer based theranostic agents:  
Polymeric NPs have been loaded with gadolinium 
complexes or magnetic NPs in order to image 
cancer by MRI.90 Traditionally, magnetic NPs have 
been encapsulated in the core of polymeric micelles. 
For example, Gao et al. encapsulated magnetic 
NPs together with doxorubicin in micelles formed 

from amphiphilic block copolymers of maleimide-
terminated poly(ethyleneglycol)-block-poly(D, L- 
lactide) and methoxyterminated poly-(ethylene 
glycol)-block-poly(D, L-lactide) copolymers.91,92 
These micelles were functionalized with agents 
such as cRGD or a lung-cancer targeting peptide 
(LCP) for active targeting. Sohn et al. designed 
magneto-fluorescent polymeric NPs based on 
glycol chitosan conjugated to N–acetyl histidine 
and bombesin, for targeting GRPRs overexpressed 
in prostate cancer cells.93 Magnetic NPs coated with 
oleic acid were incorporated into the polymeric 
matrix, and the NPs labelled with the near infrared 
fluorophore, Cy5.5. Gadolinium, a positive MRI 
agent, was recently incorporated into polymeric 
NPs as Gd metal organic frameworks (MOFs), 
constructed from Gd3+ ions and organic bridging 
ligands, such as 1,4-benzenedicarboxylic acid. This 
offers exceptional MRI capabilities over traditional 
methods for incorporating gadolinium into NPs 
using Gd

2
O

3
, GdPO

4
, GdF

3
, etc. The surface of 

MOFs is modified by covalent attachment of poly-
mer chains to obtain the polymeric carriers.94,95

Liu et al. described multifunctional pH-
sensitive polymeric nanoparticles for theranostic 
in cancer96 for simultaneous tumor Magnetic 
Resonance Imaging (MRI) and therapy. The nano-
particles were self-assembled using the multi-block 
polymer poly (lactic acid)-poly (ethylene glycol)-
poly (L-lysine)-diethylene triamine penta acetic 
acid (PLA-PEG-PLL-DTPA) and the pH-sensitive 
material poly (Lhistidine)-poly (ethylene glycol)-
biotin (PLH-PEG-biotin). The anti-hepatocellular 
carcinoma (HCC) drug sorafenib was encapsulated 
inside the nanoparticles. Gd ions were chelated 
to the DTPA groups, which were distributed on 
the nanoparticle surface. Biotinylated vascular 
endothelial growth factor receptor (VEGFR) anti-
bodies were linked to the surface biotin groups of 
nanoparticles through the avidin linker to form 
the target pH-sensitive theranostic nanoparticles 
(TPTN). TPTN exhibited spherical or ellipsoidal 
shapes, uniform particle size distribution 
(181.4 ± 3.4 nm), positive zeta potential (14.95 ± 
0.60 mV), high encapsulation efficiency (95.02 ± 
1.47%) and drug loading (2.38 ± 0.04%). The 
pH-sensitive sorafenib release from TPTN was 
observed under different pH values (47.81% at 
pH = 7.4 and 99.32% at pH = 5.0, respectively). 
In cell cytotoxicity studies, TPTN showed similar 
antitumor effect against HepG2 cells compared to 
solubilized sorafenib solution after pre-incubation 
in acid PBS (pH = 5.0) for 1 h in vitro (P > 0.05). 
In in vivo anti-tumor studies, TPTN showed sig-
nificantly higher antitumor effect in H22 tumor 
(VEGFR overexpressed cell line) bearing mice 
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compared to the solubilized sorafenib solution 
(oral or i.v. administration) group (P < 0.05). 
In the MRI test, the T

1
 relaxivity value of TPTN 

was 17.300 mM-1 s-1, which was 3.6 times higher 
than Magnevist® (r1 = 4.8 mM-1 s-1). As a positive 
contrast agent, TPTN exhibited higher resolution 
and longer imaging time (more than 90 min) in 
the MRI diagnosis of tumor-bearing mice com-
pared to Magnevist® (more than 60 min). All these 
results indicated that TPTN was a promising poly-
mer based theranostic carrier, which could be a 
platform for the development of novel multifunc-
tional theranostic agents.

2.2.3 Dendrimers: Dendrimers are a class of 
polymeric macromolecules that consist of repeat-
ing branching units emanating from a central 
core.97,98 The unique properties of these almost 
monodisperse polymers reflect their compact, 
treelike molecular structure, providing an arrange-
ment of inner and outer molecular functionalities 
that is influenced by the solvent environment.99 
Dendrimers can be considered to comprise three 
structural components: i) the core, which in larger 
dendrimers is almost completely shielded from 
the outside by the dendritic branch, ii) the outer 
shell, which possesses a well-defined microenvi-
ronment and is protected by (iii) the multivalent 
surface, which usually bears a high number of 
reactive sites. Depending on the generation, the 
type of branching unit, and the moieties grafted 
onto their periphery, dendrimers can be prepared 
with sizes ranging from 1 to 10 nm. Lower gen-
eration dendrimers have a flat star fish like shape. 
As the generation number increases, dendrimers 
become more spherical in shape. Importantly, in 
a physiological environment, higher generation 
dendrimers are stabilized as compact balls. Sixth 
generation polyamidoamine (PAMAM) dendrim-
ers resemble proteins in size and shape.100 Due to 
the many variations possible in the basic frame-
work and the peripheral substituents, dendrimers 
can be tailor-made for numerous applications, 
including diagnosis and therapeutic agents.101–105

Lim et al. reported MRI contrast agents based 
on triazine dendrimers with gadolinium.106 They 
prepared four gadolinium (Gd)-based macro-
molecular contrast agents, G3-(Gd-DOTA)(24), 
G5-(Gd-DOTA)(96), G3-(Gd-DTPA)(24), and 
G5-(Gd-DTPA)(96), that varied in the size of 
dendrimer (generation three and five), the type of 
chelate group (DTPA or DOTA), and the theoreti-
cal number of metalated chelates (24 and 96). They 
also investigated paramagnetic characteristics and 
in vivo pharmacokinetics of all four contrast agents. 
The DOTA-containing agents, G3-(Gd-DOTA) 

(24) and G5-(Gd-DOTA) (96), demonstrated 
exceptionally high r1 relaxivity values at off-peak 
magnetic fields. Additionally, G5-(Gd-DOTA) (96) 
showed increased r1 relaxivity in serum compared 
to that in PBS, which was consistent with in vivo 
images. While G3-(Gd-DOTA) (24) and G3-(Gd-
DTPA) (24) were rapidly excreted into the urine, 
G5-(Gd-DOTA)(96) and G5-(Gd-DTPA)(96) did 
not clear as quickly through the kidneys. They 
proposed triazine dendrimer-based MRI contrast 
agent exhibits high in vivo r1 relaxivity, desirable 
pharmacokinetics, and well-defined structure.

2.2.3.1 Theranostic applications of dendri­
mers: Dendrimers have also found applications 
in the diagnostic imaging of cancer cells, such as 
MRI. Gadolinium (153Gd3+) is generally considered 
as the best magnetic resonance contrast agent, but 
attempts to conjugate gadolinium to conventional 
polymers as well as proteins have met with limited 
success. However, gadolinium-conjugated den-
drimers have allowed the selective comprehensive 
targeting and imaging of tumours.107 Boron neu-
tron capture therapy (BNCT) has also attracted 
attention for the effective removal of cancer cells. 
BNCT employs alpha-particles produced from 
the stable boron isotope 10B. When activated with 
low energy (0.025 eV) or thermal neutrons, 10B 
produces lithium (7 Li) nuclei and alpha-particles, 
leading to impressive degradation of tumour cells 
within their membranes.108 Boronated antibody-
targeted dendrimers have been designed for the 
effective BNCT of gliomas in the rat.108

Recently Nwe et al. reported panitumumab 
monoclonal antibody–dendrimer (mAb-Den) 
conjugates as intravascular contrast agents for site 
specific imaging, and they chose smaller F(ab0)2 
fragment vehicle for targeting of the antigen.109 
They reported that antibody based MRI contrast 
agents are useful as blood pool agents. They com-
pared their results with macromolecular MRI con-
trast agents composed of multiple Gd (III) chelates 
assembled on a dendrimer platform, and their stud-
ies revealed that they are much more efficient and 
effective in modulating and relaxing water protons 
as compared to a single chelate unit analogue.

2.2.4 Quantum Dots: Quantum Dots (QDs) are 
light-emitting nanocrystals made from semicon-
ductor materials; QDs are becoming an impor-
tant class of biomaterials, because they possess 
unique optical properties that are unavailable in 
organic dyes or fluorescent proteins, such as being 
brighter, more photo- and chemical stable and 
possessing a narrow emission spectrum. QDs are 
highly fluorescent semiconductor nanocrystals, 
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which typically range from 1 to 10 nm in size.110,111 
They are usually composed of semiconductor 
elements from group II–VI, such as CdSe, CdS, 
and CdTe, group IV–VI, such as PbS, PbSe, PbTe 
and SnTe, or group III–V, such as InAs and InP.112 
QDs possess broad absorption and narrow emis-
sion spectra, and their emission maxima can be 
tuned between 450 to 850 nm by changing their 
size. They are extremely bright due to their high 
extinction coefficient in the visible spectrum 
(ε up to 106M-1 cm-1; 10–100 times greater than 
for organic fluorophore)113,114 and high quantum 
yields (typically > 50%).115 They are resistant to 
photobleaching and chemical degradation, and 
more stable than conventional organic fluoro-
phores and fluorescent proteins.

2.2.4.1 Quantum dots as theranostic agents: 
QDs have been used to develop multimodal 
imaging probes for detection of tumors via 
fluorescence-MRI, by conjugating a ligand for 
Gd3+ complexation116 or directly doping the 
QD with Mn2+ (as CdSe/Zn

1-x
 Mn

x 
S),117 or via 

fluorescence-PET imaging by conjugation of 
ligands for complexation of 64Cu118,119 and other 
radioactive elements. Manganese (Mn)-doped 
NIRQDs were recently used to image pancreatic 
tumors in mice by fluorescence imaging and 
MRI.120 Mn-doped CdTeSe/CdS nanoparticles 
with a fluorescence emission around 822 nm were 
prepared in a one-pot synthesis from manganese 
acetylacetonate (Mn(acac)

3
), and were covered 

with lysine to enhance water solubility. The QDs 
were further functionalized with the antibodies 
anti-claudin 4, anti-mesothelin, or anti-PSCA, 
which are overexpressed in primary and meta-
static pancreatic cancers and used for Panc-1 
and MiaPaCa pancreatic cancer cell staining and 
in vivo fluorescence imaging. In addition, QDs  
radiolabeled with 125 m Te (as Cd 125 m Te/ZnS) 
have been produced and used to assess biodistribu-
tion of the QDs with specific targeting agents.121

With all the advances already made in Quan-
tum dot nanotechnology with respect to biocom-
patibility, distribution, metabolism/excretion, 
safety issues still remain a major concern. New 
approaches such as the addition of a silica coating 
or a biocompatible polymer coating have increased 
the biocompatibility and minimized the toxicity of 
these ultra-small particles, resulting in more water-
soluble and safer formulations.122 Similarly, several 
reports have proposed the highly luminescent, 
cadmium free QD for a better biocompatibility 
and lesser toxicity in cellular environment.123 Nev-
ertheless, the safe breakdown and elimination of 
nanodevices require more comprehensive study.

2.2.5 Superparamagnetic iron oxide nano­
particles: Iron oxide NPs are the most commonly 
explored members of a broader class of NPs referred 
to as magnetic NPs, which have attracted great inter-
est because of their potential use in a broad range of 
applications, including catalysis, data storage, biosep-
arations, and MRI. Magnetite (Fe

3
O

4
, ferrimagnetic, 

superparamagnetic when the size is smaller than 
15 nm) and maghemite (g-Fe

2
O

3
, ferrimagnetic) 

proven to be particularly popular for biomedical 
applications because of their great biocompatibility. 
Notwithstanding this, there have been recent reports 
that naked iron oxide NPs could be toxic for neuro-
nal cells, and that they may potentially induce oxida-
tive stress processes in the body.124,125

2.2.5.1 Theranostic applications of SPIONS: 
Iron oxide NPs are popular materials for the prep-
aration of multimodal tumor imaging/therapeutic 
agents. For diagnosis, radionuclides such as 18F or 
64Cu, are loaded on magnetic NPs by complexation 
to surface-bound organic ligands (DOTA in the 
case of 64 Cu(II).126 Iridium complexes are loaded 
into magnetic NPs for dual-modal luminescent 
and magnetic resonance imaging, as well as pho-
todynamic therapy. Lai et al. used silane chemistry 
to coat magnetite NPs with an iridium complex;127 
the complex was reacted with IECTS (silane), 
mixed with TEOS, and the mixture hydrolyzed 
over the surface of the NPs. The resulting water-
dispersable, multimodal system was used for 
phosphorescent labelling and to simultaneously 
induce apoptosis of cancer cells by production of 
reactive oxygen species, i.e. singlet oxygen (1O

2
). 

MRI is one of the most important applications of 
SPIONs. The large magnetic moment of SPIONs 
distorts the local magnetic moment of water mol-
ecules in tissues, resulting in enhanced contrast 
between tumour and normal tissues. SPIONs are 
readily taken up by the reticulo endothelial sys-
tem (RES), resulting in the successful detection 
of smaller tumours.128 Similarly, the macrophage 
mediated uptake of SPIONs leads to their accu-
mulation in the lymphatic system and the subse-
quent detection of lymph node metastasis.129

Chen et al. reported multifunctional iron oxide 
based nanocarriers for drug delivery and dual 
modal imaging of MRI and Two-Photon Fluo-
rescence (TPF).130 This nanocarrier consists of 
silver (Ag) nanoparticles coating onto the surface 
of Fe

3
O

4
@C nanospheres in dimethyl formamide 

(DMF) solution. These nanoparticles were loaded 
with 997 mg/g of DOX via hydrogen bonding and 
physical absorption relying on carbon shell through 
the formation of chemical bonds between carboxyl 
of Fe

3
O

4
@C@Ag nanoparticles and hydroxy of 



Nanomaterial based Magnetic Resonance Imaging of Cancer

Journal of the Indian Institute of Science  VOL 94:4  Oct.–Dec. 2014  journal.iisc.ernet.in 435

DOX under NIR radiation. Photo-regulated drug, 
DOX release was realized due to the photother-
mal effect in localized surface plasmon resonance 
of Ag nanoparticles to break the chemical bonds. 
And cells that uptake the DOX loaded nanocar-
riers are almost normal when incubated in dark, 
but tend to be apoptotic when cultured under NIR 
radiation. The Fe

3
O

4
@C@Ag nanoparticles enable 

dual-modal imaging of TPF imaging and MRI due 
to the magnetism of Fe

3
O

4
 nanoparticles and sur-

face plasmon resonance of Ag nanoparticles, this 
multifunctional can find applications in magnetic 
manipulation and thermal therapy. These multi-
functional Fe

3
O

4
@C@Ag nanoparticles exhibit the 

potential for simultaneous diagnosis and therapy 
in biomedical-related areas.

2.2.6 Gold nanoparticles: Among the many 
nanomaterials being developed for applications 
in medicine, this review will focus on gold nano-
particles (AuNPs) and their potential as tumor 
sensors, drug delivery agents and enhancers in 
plasmonic photothermal therapy for the treatment 
of cancers. The use of AuNPs is gaining popularity 
in these areas of research for several reasons. Firstly, 
AuNPs are considered to be relatively biologically 
non-reactive, and therefore suitable for in vivo 
applications compared to the very toxic cadmium 
and silver NPs,129 although various groups are 
contesting this view. Other advantageous qualities 
include the strong optical properties of AuNPs due 
to localized surface plasmon resonance (LSPR),131 
easily controllable surface chemistry that enables 
versatility in adding surface functional groups,132 
and lastly, the ease in control over particle size and 
shape during synthesis.133 AuNPs may be consid-
ered to be fully multifunctional, with the possibil-
ity of combining different desired functionalities 
in one molecular-sized package. All these factors 
contribute to the strong interest and preference 
for the use of AuNPs over other NPs.134 Examples 
of other nanomaterials for biomedical applica-
tions that expound on the utilization of quantum 
dots can be found in literature,135,136 functional-
ized fullerene-based nanomaterials137 and mag-
netic NPs138,139 for the diagnosis and treatment of 
human diseases.

2.2.6.1 Application of gold nanoparticles in 
imaging and theranostics: While MRI generally 
makes use of gadolinium complexes as contrast 
agents, AuNPs have also found applications. These 
gadolinium chelates, such as gadolinium diethyl 
triamine penta acetic acid (Gd-DTPA), produce 
low magnetic fields and have shown to exhibit 
kidney toxicity.140 DNA-templated Au-NP chains 

on the other hand, have shown an increased 
phagocytosis capability by the 3D cancer cell scaf-
folds.141 Although the layer by layer encapsulated 
AuNP experienced comparatively weaker local 
magnetic fields, the greater cell uptake of DNA-
AuNP was able to produce statistically equivalent 
image, contrast in T

2
-weighted MRI images.141

Interestingly, AuNPs have also been reported 
to possess antiangiogenic property.142 The exact 
mechanism of action is not yet clearly understood, 
but it has been observed that AuNPs bind prefer-
entially to vascular permeability factor/vascular 
endothelial growth factor (VPF/VEGF)-165, and 
basic fibroblast growth factor (bFGF) primarily 
through the heparin-binding domain. This has 
led researchers to suggest that AuNPs are able 
to inhibit angiogenesis by preventing the down-
stream signaling effects of these mitogens on ang-
iogenesis in cancer cells.143

Topete et al. reported targeted multimodal 
chemo- and photothermal therapy combined 
with optical and magnetic resonance imaging in 
cancer using polymeric-gold nanohybrids. The 
multimodal nano probe design involved folic 
acid (FA)-functionalized, doxorubicin (DOXO)/
superparamagnetic iron oxide nanoparticles 
(SPION)-loaded poly(lactic-coglycolic acid) 
(PLGA)-gold(Au) porous shell nanoparticles (NPs) 
as potential nanoplatforms.144 These polymeric-
gold nanohybrids were prepared by a seeded-
growth method using chitosan as an electrostatic 
‘glue’ to attach gold seeds to DOXO/SPION-PLGA 
nanoparticles. They studied their physicochemi-
cal properties, cellular uptake, and photothermal 
and chemotherapeutic efficiencies in vitro using a 
human cervical cancer (HeLa) cell line.

2.2.7 Upconverting nanophosphors: Upcon-
verting nanophosphors (UCNPs) are an 
exciting new class of fluorescent probes for bio-
medical imaging that are essentially lanthanide 
(rare earth)-doped ceramic materials. In contrast 
to organic fluorophores and semiconductor QDs 
(so called ‘down-converters’), UCNPs convert 
longer wavelength radiation (typically NIR) into 
shorter wavelength luminescence, i.e., they exhibit 
anti-Stokes emission.145 Presently, the two major 
types of inorganic host matrices used to prepare 
UCNPs are rare earth fluorides (e.g. NaYF

4
 and 

LaF
3
) and oxides (e.g. Y

2
O

3
 and Y

2
O

2
S).146 The 

major appeal of UCNPs for tumor imaging is that 
these relatively inexpensive low-power NIR diode 
lasers may be used as the excitation source, which 
allows for deeper tissue penetration compared to 
traditional fluorescence imaging as well as higher 
contrast optical imaging due to an absence of auto 
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fluorescence and decreased light scattering.147 
Unlike many organic fluorophores, UCNPs are 
extremely resistant to photo bleaching, and their 
rare earth components are approximately one-
thousand fold less toxic than the heavy metals 
within QDs.148 Moreover, the NIR wavelengths 
the UCNPs are excited at are less cytotoxic than 
the radiation used for exciting most other fluoro-
phores.147 UCNPs functionalized with the cyclic 
RGD peptide have been successfully used for imag-
ing of integrin α

v 
β

3
-positive tumor cells.149 Zako 

et al. prepared silica-coated Er3+ doped Y
2
O

3 
NPs 

and modified their surface by treatment with 
a hetero bifunctional PEG derivative, followed 
by the RGD peptide.149 Upconversion emission 
was observed from the NPs for U87MG cancer 
cells (high integrin α

v 
β

3
 expression), but not for 

MCF-7 cancer cells (low integrin α
v 
β

3
 expression), 

confirming integrin α
v 
β

3
-specific binding/uptake.

2.2.7.1 Application of upconverting nanophos­
phors in theranostics: Xing et al. reported mul-
tifunctional nanoprobes (NaY/GdF

4
: Yb, Er, Tm 

@SiO
2
eAu), which show narrow size distribution, 

excellent dispersity in PBS buffer with low cytotox-
icity.150 This multimodal nanoprobe that combines 
fluorescence, X-ray Computed Tomography (CT) 
and Magnetic Resonance (MR) imaging, to give 
three dimensional (3D) details of tissues and cells of 
high resolution and sensitivity. They report a trimo-
dal imaging probe with uniform size nanoparticles 
of less than 50 nm of PEGylated NaY/GdF

4
:Yb, Er, 

and Tm @ SiO
2
-Au@PEG5000. These nanoparticles 

demonstrated strong emissions ranging from the 
visible (Vis) to near infrared (NIR) for fluorescent 
imaging, T

1
-weighted MRI by shorting T

1
 relaxation 

time and enhanced Hounsfield units (HU) value 
as a CT contrast agent. They optimized the struc-
ture based on influence of the distance between the 
NaY/GdF4:Yb, Er, Tm core and Au nanoparticles 
(NPs) at the surface. Further, they demonstrated its 
potential in trimodal imaging for cancerous cells 
and lesions both in vitro and in vivo.

2.2.8 Carbon nanotubes and fullerenes: 
Carbon nanotubes and fullerenes (CNTs) have 
been extensively investigated for cancer imag-
ing applications.151–153 Both single-walled and 
multi-walled CNTs have a high surface area and 
internal volume for loading of drugs and imaging 
agents, but alone, CNTs are not soluble in most 
organic or aqueous solutions. Therefore, surface 
modification of CNTs is critical for their use in 
theranostic applications.154 Polyhydroxy fuller-
ene can be detected using photoacoustic imaging, 
and used for photothermal ablation therapy after 

intratumoral injection.155 Furthermore, multi-
walled CNTs can be used for photothermal abla-
tion therapy owing to their release of vibrational 
energy upon near-infrared light exposure.156 How-
ever, potential toxicity associated with CNTs must 
be addressed prior to clinical translation.157–159

Recently Wu et al. reported preparation of 
multiwalled carbon nanotube with cobalt ferrite 
(CoFe

2
O

4
) magnetic hybrids using solvothermal 

method.160 The hybrids materials prepared at 
180°C were further investigated for biomedi-
cal applications based on the superparamag-
netic property at room temperature and high 
hydrophilicity. They observed a high T

2
 relaxivity 

of 152.8 FemM-1S-1 in aqueous solutions, a signifi-
cant negative contrast enhancement effect on can-
cer cells, and more importantly, low cytotoxicity 
and negligible hemolytic activity. Doxorubicin, an 
anticancer drug was loaded onto the hybrids, which 
was released in a sustained and pH-responsive 
way. The DOX-loaded hybrids exhibited notable 
cytotoxicity to HeLa cancer cells due to the intra-
cellular release of DOX. Their results revealed that 
carbon nanotube and cobalt ferrite hybrids may 
as effective magnetic resonance imaging contrast 
agents and anticancer drug delivery systems for 
simultaneous cancer diagnosis and chemotherapy.

Shi et al. designed fullerenes and iron oxide 
composites by draping iron oxide nanoparticles 
(IONPs) onto the surface of fullerene (C60), fol-
lowed by PEGylation to improve the solubility 
and biocompatibility of C60-IONP, and obtained 
a multifunctional C60-IONP-PEG nanocompos-
ite with strong superparamagnetism and pow-
erful photodynamic therapy capacity.161 They 
conjugated a new photodynamic anti-cancer drug, 
Hematoporphyrin monomethyl ether (HMME), 
to C60-IONP-PEG, forming a C60-IONP-PEG/
HMME drug delivery system, which demonstrated 
an excellent magnetic targeting ability in cancer 
therapy. They observed a remarkably enhanced 
photodynamic cancer cell killing effect using C60-
IONP-PEG/HMME as compared with free HMME. 
They demonstrated C60-IONP-PEG as T

2
-contrast 

agent for in vivo magnetic resonance imaging. 
Their work showed C60-IONP-PEG/HMME had a 
great potential for cancer theranostic applications.

2.2.9 Metal­Organic Frameworks: Metal-Organic 
Frameworks (MOFs) are nanosized structures com-
prising metal cations and electron donors such as 
carboxylates or amines that form coordination bonds 
and are self-assembled into highly porous materi-
als.162 They contain organic molecules that impart 
synthetic flexibility so that the crystalline structure, 
size, and porosity can be engineered depending on the 
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combination of organic linker and the metal cation 
used in synthesis. Furthermore, the metal cation cho-
sen can impart magnetic properties for detection in 
MRI. For example, gadolinium (Gd) and manganese 
(Mn) based MOFs have been synthesized for MR and 
potential multi-modal imaging.163–165 Iron (Fe) based 
MOFs are detectible in MRI after intravenous injec-
tion into rats, indicating their utility in vivo.166 Their 
ease in synthesis makes MOFs a promising theran-
ostic agent, but scale-up for mass production and 
reduction of synthesis times have been difficult.167 
Horcajada et al. reported non-toxic porous iron (III)-
based metal-organic frameworks with engineered 
cores and surfaces, as well as imaging properties, func-
tion as superior nanocarriers for efficient controlled 
delivery of challenging antitumoural and retroviral 
drugs, that is, busulfan, azidothymidine triphosphate, 
doxorubicin or cidofovir against cancer and AIDS. In 
addition to their high loadings, they also potentially 
associate therapeutics and diagnostics, thus opening 
the way for theranostic approach.166

2.2.10 Zeolites and silica based materials: 
Nanocontainers based on zeolite L represent a 
novel class of nanomaterials that could be of 
potential use in cancer diagnosis and therapy, 
because they can be heavily loaded with lumi-
nescent molecules, photosensitizer and/or radio 

metals without leakage after locking with stopper 
moieties.168 Efficient functionalization of the zeo-
lite surface can be achieved by direct coupling of 
appropriate molecules via silanol groups or, for 
example, using click chemistry, allowing for selec-
tive targeting of desired systems. The potential 
use of zeolite L nanomaterials for scintigraphic 
imaging (loaded with 111 In) and PDT (grafted 
with phthalocyanines) has been demonstrated.169,170 
Preliminary results suggest the possibility of 
developing zeolite L nanocontainers suitable for 
detecting and curing neoplastic tissue. Lo and co-
workers very recently described mesoporous silica 
nanoparticles (MSNPs) for the controlled release 
of anticancer chemotherapeutics, which feature 
doxorubicin (Dox) conjugated to the MSNPs 
channels via acid-labile hydrazone linkages. Upon 
exposure to the acidic environment of endosomes/
lysosomes, Dox is released intracellularly, resulting 
in inefficient apoptotic cell death.171 Csajbok et al. 
reported Gd3+ loaded zeolites for potential appli-
cation as magnetic resonance imaging (MRI) con-
trast agents.172 They explained the role of diffusion 
for the relaxivity by a comparison of the relaxivity 
of Gd3+ loaded zeolite NaY and NaA samples. They 
suggest that these materials have a potential as T

1
 

MRI contrast agents at low field, and as T
2
 agents 

at higher fields.

Table 3: Representative theranostic nanoparticles and their biomedical applications.

Nanomaterial Drug/imaging probe Madality Application References

Liposomes Doxorubicin/Mn2+ MRI Murine tumour  
model

86

Polymeric  
nanoparticle

Sorafenib/Gd3+ MRI Antitumor effect  
against HepG2 cells

96

Dendrimers Triazine Dendrimers/Gd3+ MRI MRI Contrast Agents 106

Quantum dots Anti-claudin 4,  
anti-mesothelin,  
or anti-PSCA/Mn2+

Fluorescence  
imaging and  
MRI

Pancreatic tumors 120

SPIONS DOX/Fe
3
O

4
@C@Ag MRI, NIRF Cytotoxicity to HeLa  

cancer cells
130

Gold nanoparticles Folic acid (FA)-functionalized,  
(DOXO)/(SPION)-loaded  
(PLGA)-Au

Optical and magnetic  
resonance imaging

Human cervical  
cancer (HeLa) cell line

144

Upconverting 
nanophosphors

PEGylated NaY/GdF
4
:  

Yb, Er, Tm @SiO
2
-Au@PEG

5000

Fluorescenc,  
CT and MR

Trimodal imaging  
for cancerous cells

150

Carbon nano  
tubes

DOX/Carbon nanotube  
(MWCNT)/cobalt ferrite  
(CoFe

2
O

4
)

MRI Cytotoxicity to HeLa  
cancer cells

160

Fullerenes HMME/C60-IONP-PEG MRI/Photo-dynamic  
therapy

Murine tumor model 161

MOFs Doxorubicin/Fe(III)  
based MOFs

MRI Controlled drug delivery  
and antitumoural activity

166

Zeolites Gd3+-doped zeolites MRI Contrast agents 172

Silica based 
nanomaterials

DOX/peptide-modified  
magnetic graphene-based  
mesoporous silica

MRI/Confocal  
microscopy

Glioma therapy 179
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Silica NPs (1–10 nm) hold great potential in 
emerging applications of diagnostic imaging due 
to their unique properties, such as tunable light 
emission, high brightness, stability against photo-
bleaching and low toxicity.173–177 Surface function-
alization with amino groups for instance, opens 
the way for grafting specific biomolecules, and 
consequently, to achieve active targeting. Initial 
bioimaging results have shown that these NPs 
are readily taken up by murine cells, allowing for 
efficient staining.178 Wang et al. reported peptide-
modified Magnetic Graphene-based Mesoporous 
Silica (MGMSPI) as a multifunctional theranostic 
platform.179 These theranostic agents are advan-
tageous because of excellent biocompatibility, 
high near-infrared photothermal heating, facile 
magnetic separation, large T

2
 relaxation rates (r2) 

and a high doxorubicin (DOX) loading capacity. 
Applications of various theranostic agents in 
targeted cancer therapy and imaging have been 
summarized in the Table 3.

3 MRI Based Targeted Theranostic
Targeted theranostic approach offers an excellent 
efficacy to perform by clustering the nanoparti-
cles at target of cancer imaging. To serve the same 
purpose many MRI imaging probes are function-
alized with required target, and most of the tar-
gets are biomarkers like receptors, cell adhesion 
molecules, nucleotide etc. Patra et al. recently 
designed the smart cancer theranostic nanomedi-
cine that is highly promising for non-invasive real 
time diagnosis, targeted therapy and monitoring 
of the course and response of the action before, 
during, and after treatment regimen.180 Potential 
of these smart biocompatible theranostic micel-
lar nanostructures as a nontoxic, tumour-target 
specific, tumour-microenvironment sensitive, 
pH-responsive drug delivery system with provi-
sion for early stage tumour sensing, tracking and 
therapy for cells over-expressed with folate recep-
tors. This development of MRI-visual order–
disorder structures for cancer nanomedicine 
explores a pH-triggered mechanism for theragno-
sis of tumor hallmark functions (Figure 6). Super 
Paramagnetic Iron Oxide Nanoparticles (SPIONs) 
stabilized with amphiphilic poly(styrene)-b-
poly(acrylic acid)-doxorubicin with folic acid 
(FA, a target for folate receptor) surfacing are 
employed as a targeted theranostic approach to 
specifically target, diagnose, and deliver drugs via 
a single nanoscopic platform for cancer therapy. 
In vitro investigation was carried out for the func-
tional aspects of the micellar nanocomposite using 
human breast SkBr3 and colon cancer HCT116 
cell lines for the delivery, release, localization, and 

anticancer activity of the drug. For the first time, 
pH tunable order-disorder transition of the core-
shell structure induced, concentration-dependent 
T

2
-weighted MRI contrast for a monolayer of 

clustered cancer cells is shown.

3.1  Angiogenesis: A key process 
in tumour growth

The term ‘angiogenesis’ was first used by the 
founder of ‘scientific surgery’ John hunter, 
(a British surgeon) in 1787.181 Pathological ang-
iogenesis is an early hallmark of cancer and it is 
a fundamental requirement for tumour prolifera-
tion. Ten decades ago, the observation that ang-
iogenesis occurs around tumours was made.182–184 
The hypothetical concept of production of dif-
fusible ‘angiogenic’ substances was put forward in 
1968.185,186 In 1971, Judah Folkman the ‘father of 
angiogenesis’ proposed that metastasis and growth 
of tumour are dependent on angiogenesis, and 
hence blocking angiogenesis could be a strategy to 
arrest tumour growth.187 This finding stimulated 
an intensive search for angiogenic activators and 
inhibitors. Gullino showed that cells acquire ang-
iogenic capacity on their way to becoming neo-
plastic from pre-neoplastic.188 Now there is a wide 
acceptance for the concept of ‘angiogenic switch’, 
it is ‘off ’ when the action of angiogenic activators 
(pro angiogenic factors) is balanced by that of ang-
iogenic inhibitors (anti angiogenic factors), and is 
on when net balance is tipped in favor of angiogen-
esis. Few of them are summarized in Table 4. Reg-
ulations of angiogenesis is balanced by secretion 
of pro- and anti-angiogenic factors from stromal 
cells, endothelial cells, and cancer cells (Fukumura 
et al., 1998), the relative contributions of which are 
likely to change with tumor type and site, as well as 
with tumor growth, regression and relapse.189

‘Angiogenesis’ is commonly used for the proc-
ess of vessel growth, but in strictest sense, it denotes 

Figure 6: Design of smart cancer theranostic 
probe.



Nanomaterial based Magnetic Resonance Imaging of Cancer

Journal of the Indian Institute of Science  VOL 94:4  Oct.–Dec. 2014  journal.iisc.ernet.in 439

vessel sprouting from pre-existing ones. Physio-
logically, angiogenesis switch is on in adults during 
wound healing, corpus leuteum and ovarian follicle 
development, and in endometrial proliferation.190 
Pathological angiogenesis is a component of many 
diverse diseases (includes diabetes,191 atheroscle-
rosis and cancer) that cannot progress without 
the formation of new blood vessels.192 Tumour 
proliferation mainly involves this sprouting of 

pre-existing blood vessels. Hence ‘angiogenesis’ is 
a key stage of cancer and diagnosis of angiogenic 
events is a potential way to understand and extract 
strategies for tumour therapy along with the early 
diagnosis of primary tumour and emerging neo-
plastic lesions. A brief summary of the role of ang-
iogenesis in cancer and recent advances to develop 
targeted MRI of tumour angiogenesis (Figure 7) is 
discussed below. In absence of angiogenesis, solid 

Figure 7: Schematic illustration of recent advances of nanomaterial based integrin targeted MR imaging 
of angiogenesis.

Table 4: Angiogenesis activators and inhibitors.

Pro angiogenic factors Function Anti angiogenic factors Function

PDGF-BB197  
and receptor

Recruit smooth  
muscle cells

Meth-1;198 Meth-2 Inhibitors containing  
MMP, TSP and  
disintegrin

FGF,199 HGF,200  
MCP-1201

Stimulate  
angio/arteriogenesis

Platelet factor-4202 Inhibits binding  
of bFGF and VEGF

Integrins α 
v 
β

3
,α 

v 
β

5
  

and α 
5
β

1
203

Receptors for matrix  
macromolecules and  
proteinases

Angiostatin204 and related 
plasminogen kringles205

Suppress tumour  
angiogenesis

Plasminogen activators,  
MMPs206

Remodel matrix, release  
and activate growth  
factors

IFN-α-β-g;207 IP-10,  
IL-4, IL-12, IL-1

Inhibit endothelial  
migration;  
downregulate bFGF

VE-cadherin;208  
PECAM (CD31)209

Endothelial junction  
molecules

Prothrombin kringle-2;210  
antithrombin III fragment

Suppress endothelial  
growth

NOS;211 COX-2212 Stimulate angiogenesis  
and vasodilation

Prolactin213 (Mr, 16K) Inhibits bFGF/VEGF

VEGFR,214 NRP-1215 Integrate angiogenic  
and survival signal

VEGFR-1;216 soluble VEGFR-1;  
soluble NRP-1

Sink for VEGF,  
VEGF-B, PlGF

Abbreviations: VEGFR—Vascular Endothelial Growth Factor (VEGF) Receptors; MMPs—matrix metalloproteinases; NRP-1—neuropilin-1; 
TIMPs—tissue inhibitors of MMP; IP-10—inducible protein-10; PDGF-BB—Platelet-Derived Growth Factor; NOS—nitric acid synthase; 
COX—cyclooxygenase-2; FGF—Fibroblast Growth Factors; HGF—Hepatocyte Growth Factor.
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tumours generally grow larger than 2–3 mm in 
diameter.187 Metabolic signals in tumour microen-
vironment triggers to switch on angiogenic switch, 
thus tumours start growing in size. It increases the 
interstitial pressure within tumour, and causes the 
inhibition of the diffusion of metabolites and nutri-
ents essential for the tumour growth, and a state of 
hypoxia begins in the cells. Hypoxia increases the 
transcription of cellular hypoxia inducible factor. 
Vascular Endothelial Growth Factors (VEGF), a 
key player of angiogenic process start expressing 
due to the binding of hypoxia-inducible factors 
to the hypoxia response elements. Same cellular 
stimuli trigger expression of a variety of regulating 
factors (e.g., transforming growth factors-β, acidic 
fibroblast growth factors, basic fibroblast growth 
factors and platelet-derived growth factors). These 
are locally secreted by numerous cells, such as 
stromal, endothelial and cancer cells.193,194 Upon 
endothelial cells activation, proteolytic enzymes 
such as MMPs (Matrix Metallo Proteinases) and 
serine proteases are excreted, allowing degradation 
of basement membrane and extracellular matrix 
surrounding the vessels.195 After this degradation, 
endothelial cells mediated by cell adhesion recep-
tors and they proliferate, migrate until they form 
unstable micro vessels. To extend, mesenchymal 
cells release angiopoietin-1, which interact with 
Tie-2 receptor tyrosine kinase mediating capil-
lary organization and stabilization.196 The detailed 
mechanism of angiogenesis is described in many 
reports.12,190,192,194

Thus, the actual proliferation and migration 
of tumour begin with the expression of various 
classes of cell adhesion receptors or molecules. 
Members of the selectine, cadherin, integrin and 
immunoglobulin families extensively contribute 
to the tumour vascularisation, not only by par-
ticipating in those signaling events that regulate 
the extension and the maturation of neoforming 
blood vessels, but also by mediating cell-cell and 
cell-matrix interactions.217,218

All these molecules are potential targets for 
molecular imaging to assessment and diagnosis of 
various tumours, and have been exploited in differ-
ent imaging techniques to characterize neoplastic 
lesions219–227 Among these, integrin cell receptors 
are extensively studied. These are heterodimeric 
transmembrane glycoproteins, which consist of 
two non-covalently bound transmembrane subu-
nits with large extracellular segments that bind to 
create heterodimers with distinct adhesive capa-
bilities.228 As of date, eight beta and 18 alpha, that 
assemble into 24 different integrins (receptors) 
such as α

1
β

1
, α

2
β

1
, α

4
β

1
, α

5
β

1
, α

6
β

1
, α

6
β

4
, α

9
β

1
, α

v 
β

3
 

and α
v 
β

5
229 are known. These integrins recognize 

certain exposed peptide sequences. They act as 
bidirectional transducer molecules by compro-
mising signals either from the outside to the inside 
(outside-in) of the cell or vice versa (inside-out), 
thereby regulating cell adhesion, cell spreading 
and cell motility.230 Notably, integrins are known 
to exist in different conformations:231

a. A bent integrin conformation is associated 
with the low ligand-binding affinity state,

b. An extended conformation is associated with 
the exposed ligand binding site.

A report from Shattil et al. provides insight 
into the structure of integrin transmembrane 
domains, and reveals how the final steps of integrin 
activation are mediated by integrin binding pro-
teins such as talins and kindlins.232 They transmit 
signals through a variety of intracellular protein 
kinases and adaptor molecules by serving as a site 
for docking of various kinases and related adap-
tor proteins; here the β tail serves as a primary site 
in the formation of focal adhesions. For example, 
integrins are known to associate physically with

•	 SFK233

•	 Protein	tyrosine	phosphatases234

•	 Serine	and	threonine	phosphatases235

•	 C-Src	kinase	(CSK)
•	 IRS-1236 and
•	 Growth	factor	receptors,203 such as FGF recep-

tor (FGFR).237

Among 24 integrins, α
v 
β

3
 is one of the well-

studied receptors, which is significantly upregu-
lated on activated angiogenic endothelial cell, but 
not on quiescent endothelial cells.8 Many scien-
tific reports showed that integrin expression is 
correlated with tumour grade,238,239 and they are 
a major contributor for the formation of vascu-
lature by supporting migration and survival of 
endothelial cells.238 Their activation can be trig-
gered by cytokines of a malignant tumour, and 
blocking α

v 
β

3 
integrins inhibits tumour angio-

genesis as well as blood vessel formation in in vivo 
models.240,241 Subsequently, α

v 
β

3 
might represent 

a potential target in anti-angiogenic therapy. 
Hence, α

v 
β

3
 is counted as a significant biomarker 

for tumour malignancy. RGD (Arginine- Glycine- 
Aspartic acid) motif is part of integrin ligands and 
is recognized by α

v 
β

3
 and α

5
β

1 
integrins, present in 

many ECM and some secreted proteins (ligands) 
such as vibronectin, fibronectin, fibrinogen, lam-
inin, collagen, Von willebrand factor, osteoponin, 
plasminogen, thrombospondin, prothrombin, 
MMP-2, laminin, osteopontin, etc.242 In the early 
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1970s, E. Ruoslahti discovered RGD as a cell attach-
ment site in fibronectin.243 The steric conforma-
tion of the peptide containing RGD may affect the 
affinity for their ligands.244 Besides modulation 
can be done in the conformational features of the 
RGD motif and the direct interaction between 
additional flanking residues of peptide and recep-
tor.245 RGD recognition is known in bacteria and 
viruses as well.246

By binding to specific integrins and subse-
quent endocytosis they do enter the host cells.247 
RGD motifs are found to be present in snake ven-
oms, enabling them to affect, for instance, blood 
coagulation.248,249 RGD motifs or RGD conjugated 
many systems have been designed to exploit its 
affinity as well as the pharmacokinetic properties 
of the same such as RGD-mediated delivery of 
small molecule drugs,250 RGD-targeting of thera-
peutic peptides and proteins,251 RGD-peptide 
mediated delivery of therapeutic nucleic acids,252 
and RGD-equipped imaging agents.253

3.2  Targeting tumour angiogenesis 
via integrins

3.2.1 Four­modal imaging probe: Sun et al. 
developed a lanthanide-based core-shell nano-
composite (NaLuF

4
:Yb,Tm@NaGdF

4
(153Sm)) as 

an optimized four-modal imaging probe with 
enhanced imaging ability using NaLuF

4
:Yb, Tm as 

the core, and 4 nm of 153Sm3+- doped NaGdF
4
 (half-

life of 153Sm = 46.3 h) as the shell.254 It was con-
firmed to be effective and applicable in CT, MRI, 
SPECT and UCL imaging in vivo. Interestingly, the 
lifetime of upconversion luminescence (UCL) at 
800 nm and relaxation rate (1/T

1
) were at 1044 µs 

and 18.15 s-1 mM-1 respectively; however, no sig-
nificant decrease in the attenuation coefficient 
was observed, which preserved the excellent X-ray 
imaging ability. Furthermore, these nanoparticles 
were applied in tumor angiogenesis analysis by 
combining multimodality imaging of CT, SPECT, 
and confocal UCL imaging, which shows its value 
of multifunctional nanoparticles NaLuF

4
: Yb, Tm@

NaGdF
4
 (153Sm) in tumor angiogenesis imaging.

3.2.2 Aptamer for targeted cancer therapy: 
Lim et al. developed aptamer α

v 
β

3
-conjugated 

magnetic nanoparticles (Aptαvβ3
-MNPs) to enable 

the assessment of physicochemical properties and 
cyto compatibility nanoparticles and utilizing 
them for precise detection of integrin expressing 
cancer cells using magnetic resonance imaging.255 
The term aptamer is derived from Latin root 
‘aptus’, means ‘to fit’. The single stranded DNA or 
RNA oligo nucleotides (typically 20–100 in length) 
that fold into specific 3D structures bind to target 

molecules with high affinity. These highly specific, 
stable with nuclease resistant serve as an attrac-
tive tool for use in a wide array of applications 
for targeted cancer therapy and diagnosis. For this 
report, magnetic nanoparticles (Aptαvβ3

-MNPs) 
were prepared by modifying integrin α

v 
β

3
-target-

ing aptamer (Aptαvβ3
) to produce a particle with 

high ability to detect integrin α
v 
β

3
 expression in 

cancer cells during angiogenesis using T
2
-weighted 

MR imaging. Aptαvβ3
-MNPs exhibited an efficient 

targeting ability with high magnetic sensitivity 
with no cytotoxicity in vitro/in vivo studies, thus 
demonstrating the superb performance of Aptαvβ3

 
as a targeting vector having potential for accurate 
tumour diagnosis and therapy.

3.2.3 Pre­targeting approach: Yan et al. evalu-
ated the tumor angiogenesis targeting efficacy of 
the anti-α

v 
β

3
 antibody guided three-step pretarget-

ing approach with magnetoliposomes.90 The pre-
targeting approach is based on the avidin-biotin 
system, and the authors have exploited the high 
specificity and strong affinity (Ka = 10-15 mol/L) of 
avidin (or streptavidin [SA]) for biotin to improve 
the sensitivity and specificity of MR imaging. 
‘Three-step pre-targeting’ approached is approved 
by Paganelli G, Magnani P, Zito F et al. (1991 and 
1994), and in Yan et al. report (2013) MR imaging 
was performed on MDA-MB-435S breast cancer-
bearing mice by intravenous administration of 
biotinylated anti-α

v 
β

3
 monoclonal antibodies 

(first step), followed by avidin and streptavidin 
(second step), and by biotinylated magnetolipo-
somes or magnetoliposomes in the targeted or 
nontargeted group, respectively (third step). The 
modification of polyethylene glycol and liposomal 
bilayer protected Fe

3
O

4
 cores from uptake by 

macrophage cells, hence achieved a greater signal 
enhancement along the tumor periphery, occupy-
ing 7.0% of the tumor area, compared with 2.0% 
enhancement of the nontargeted group (P < 0.05). 
The specificity of α

v 
β

3
 targeting was assessed by 

histologic examinations, showed that the targeted 
magnetoliposomes colocalized with neovascula-
ture. Thus, the strategy of an anti α

v 
β

3
 antibody-

guided three-step pretargeting approach using 
superparamagnetic, less cytotoxic and biocom-
patibility SPION-based biotinylated magnetolipo-
some is an effective means for sensitive detection 
of tumor angiogenesis, and may provide a targeta-
ble nanodelivery system for anticancer drug.

3.3 RGD based advances
In RGD based targeted imaging and delivery 
of therapy, nanocarriers like liposomes, nano-
particles, micelles, etc. can be grafted at their 
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surface with a targeting ligand such as an RGD-
based sequence to provide the following advan-
tages: i) Passive targeting—nanocarriers of size 
20–400 nm perform passive targeting of tumours 
via the so-called enhanced permeability and reten-
tion (EPR) effect;256 ii) Longer accessibility of the 
ligand to target—renal filtration is avoided due to 
size of these nanocarriers, leading to prolonged 
blood circulation times and longer accessibility of 
the ligand to target receptors within the tissue;257 
iii) Active targeting—RGD-based nanocarriers 
may specifically guide drug payloads to tumour 
angiogenic endothelial cells by the binding of the 
RGD peptide to α

v 
β

3
 overexpressed by these cells, 

allowing ‘active targeting’ of the tumors;11 and 
iv) Internalization—These can be internalized via 
receptor-mediated endocytosis, which is not pos-
sible with single peptide constructs or with non-
targeted nanocarriers, helping in intracellular 
delivery of drugs to cancer cells.244 There are two 
types of RGD peptides i.e. Linear RGD and Cyclic 
RGD that are in practice to study the conjugation 
with nanostructures and its application in cancer 
treatment. Among them, linear RGD peptide is 
known to be highly susceptible to chemical deg-
radation, whereas cyclic peptides are more stable, 
more potent, and more specific, because of rigid-
ity that is conferred by cyclization that improves 
the binding properties of RGD peptides.245 Recep-
tor selectivity, receptor affinity and other biologi-
cal properties could be influenced by the nature 
of residues flanking the RGD sequence, and the 
binding specificity is altered by fourth amino acid 
in the linear RGD peptides. In case of cyclic pep-
tides, few more flanky amino acids are added to 
RGD the sequence to build a ring system, thus it 
offers the possibility to present the RGD sequence 
in a specific conformation for a selected integrin.245 
In particular, since past couple of decades, there is 
much of advancement by many research group in 
exploiting the peculiar features of nanomaterials. 
However, interesting advances like 3D map con-
structions give the real picture of development 
of neoplastic cells,258 and an excellent report of 
time resolved MRI gives quantification of target-
ing kinetics and effect of drug payload at tumour 
site.259 A lot of attention has been paid to RGD 
based integrin targeted imaging approach due to 
its potential therapeutic ability. Thus, nanosystems 
with RGD motif are of great interest, and by further 
conjugation with required functionality can gain 
an excellent design of targeted multimodal probe.

In the same context, our group has reported 
reversible, spontaneously self-assembled nano-
tubular structure of fragment of IGFBP-2

(249–289)
 

(Figure 8), which contains RGD motif in the 

sequence.260 Three Cysteine residues are mainly 
responsible for this reversible self-assembly and 
the same cysteines can also be used to ligate the 
gold Nps in different fashion, further conjugation 
with MRI contrast agent will provide a nice plat-
form for dual modality probe for integrin targeted 
imaging of cancer angiogenesis.

Consideration of IGFBP-2
(249–289)

 nanotubes as 
a targeting agent gains support from many reports 
on concept of multimeric RGD.245,261,262 These mul-
timeric RGD nanosystems provide locally enriched 
concentration of RGD, thus showing higher bind-
ing affinity towards integrins and more cellular 
uptake of respective RGD conjugated nanosystem. 
Though the binding between RGD peptides to its 
receptor is also gets affected by the spatial align-
ments of the peptides.263

3.3.1 Quantitative measurements of integrin 
targeting kinetics: Kessinger et al. demonstrated 
the feasibility to quantitatively measure the tar-
geting kinetics of cancer-specific superparamag-
netic nanoprobes to their biological targets in 
vivo.259 In particular, kinetics of cRGD-SPPM 
targeting to α

v 
β

3
 integrins on the tumor endothe-

lium was evaluated in tumor-bearing mice using 
T

2
*-weighted time resolved (TR-MRI) sequence. 

α
v 
β

3
-specific accumulation of cRGD-SPPM 

nanoprobes in tumor vasculature was observed 

Figure 8: TEM of IGFBP-2(249–289) nanotubes.
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at early times with similar kinetic constants in 
three distinctive tumor xenograft models (A549, 
MDA-MB-231, and U87). This data indicates that 
broadened tumor specificity can be achieved in 
targeting angiogenic vasculature of tumors where 
vascular-targeted nanoprobes are less dependent 
on the specific tumor types, and for the first time 
that specific vascular targeting can be observed in 
as early as the first 10 minutes post-injection of 
nanoprobes (although not surprisingly due to the 
direct blood-endothelium contact). These results 
provide useful mechanistic insights for the devel-
opment of future vascular-targeted nanoprobes 
to capture the early events of receptor targeting 
kinetics (e.g. activatable nanoprobes)

3.3.2 Construction of 3D map for assessment 
of tumour angiogenesis: Schmieder et al. devel-
oped an approach to construct a three-dimen-
sional (3-D) map of tumor-induced angiogenesis 
to quantify and characterize spacial distribution of 
angiogenesis, and to monitor the effects of drug 
therapies on angiogenesis in the MDA-MB-435 
xenograft mouse model.258 They designed a per-
fluorinated nanoparticle loaded with gadolinium 
ions, which boost magnetic resonance imaging 
(MRI) signals, and then coating this nanoparticle 
with a peptide that targets angiogenesis, i.e. RGD 
containing peptide. For the sake of comparison, the 
authors also prepared an identical nanoparticle but 
coated it with a related peptide RGS that does not 
bind to α

5
β

1 
integrin. They also prepared a third 

nanoparticle coated with a small organic molecule 
that binds to both α

5
β

1 
integrin and α

v 
β

3 
integrin 

α
5
β

1
 (α

v 
β

3
)-targeted fumagillin to monitor the 

antiangiogenic response. Tumor-bearing mice 
were imaged with MR before and after administra-
tion of either α

5
β

1
 (RGD) or irrelevant RGS-para-

magnetic nanoparticles and 3D reconstructions of 
α

5
β

1
 (RGD)-signal enhancement revealed a sparse, 

asymmetrical pattern of angiogenesis along the 
tumor periphery, which occupied <2.0% tumor 
surface area. α

5
β

1
 (α

v 
β

3
)-targeted fumagillin 

nanoparticles were less effective (P > 0.05). 3D 
reconstructed map of angiogenesis is useful for 
characterizing tumors with sparse neo-vasculature 
that are unlikely to have a reduced growth response 
to targeted antiangiogenic therapy.

3.3.3 Integrin targeted multimodal MRI of 
tumour: Chen et al. reported a novel RGD-
IONP conjugate with excellent tumor integrin 
targeting efficiency and specificity as well as lim-
ited RES (reticuloendothelial system) uptake for 
molecular MRI.264 Coating of ion oxide nano-
particles (IONPs) with a PEGylated amphiphilic 

triblock copolymer, makes them water soluble and 
function-extendable. It was further conjugated 
with integrin α

v 
β

3
 targeting cyclic RGD peptide, 

c(RGDyK), along with a NIRF dye IRDye800, were 
covalently coupled onto the triblock copolymer 
coated IONPs (TPIONPs) to enhance the tumor-
targeting capability. The pharmacokinetics and 
targeting specificity of this nano conjugate were 
evaluated both in vitro and in vivo. Gianella et al. 
(2012) discovered a flexible and unique multimo-
dal theranostic nanoparticle platform of 50 nm, 
based on oil-in-water nanoemulsions and carry-
ing iron oxide nanocrystals for MRI, the fluores-
cent dye Cy5.5 and Cy7 for NIRF imaging and the 
hydrophobic glucocorticoid Prednisolone Acetate 
Valerate (PAV) for therapeutic purposes.265 Target 
specificity was obtained by functionalizing these 
nanoemulsions with α

v 
β

3
-specific RGD peptides, 

revealing the elevated uptake of by endothelial 
cells. Simultaneous detection using MRI and 
NIRF imaging showed significant nanoparti-
cle accumulation in the tumors, while tumour 
growth profiles revealed a potent inhibitory effect 
in all of the PAV nanoemulsion-treated animals as 
compared to the ones treated with control nano-
emulsions, the free drug, or saline. Lee et al. syn-
thesized evaluated highly qualified NaGdF

4
:Yb3+/

Er3+ UCNPs as a trimodal upconversion probe 
PET/MR/luminescence with specific tumor ang-
iogenesis-targeting properties.11 A dimeric cyclic 
RGDyk ((cRGDyk)

2
) peptide was conjugated to 

NaGdF4:Yb3+/Er3+ UCNP along with optimized 
polyethylene glycol (PEG) molecules, and was 
consecutively radiolabeled with 124I using a tyro-
sine residue of ((cRGDyk)

2
) peptide. Evaluation 

of this multimodal UCNPs was done in cell cul-
tures and in living mice bearing U87MG human 
glioblastoma tumors to investigate the feasibility 
of multimodal imaging using cancer targeting to 
α

v 
β

3 
integrin.

4 Future Perceptions
The review explains distinguished sites of nano-
material designs and excellent features of MRI, 
which provides for integrating MRI with other 
imaging techniques to generate efficient multi-
modal probes, hence acquire maximum data for 
study, diagnose and treat one of the life threaten-
ing disease, i.e. cancer. Development in the field 
of nanomaterials contributes to a great degree. 
Targeted theranostic nanomaterials prepend this 
tremendously with the provision of an effective 
assessment of tumour and its response to the 
therapy. Researchers across the globe have been 
successfully exploiting the peculiar features of 
nanomaterials adding up to the advancements, 
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particularly in the last couple of decades. RGD 
based targeting theranostics are very promising 
in cancer diagnosis and treatment. Researchers 
should exploit the multimodal approach, and 
incorporation of recognition sites like RGD, to 
develop many more reliable targeted theranostics.

Received 24 July 2014.
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