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Abstract | Zircon has been recognized as the unaltered part of the Earth’s 
history which preserves nearly 4 billion year record of earth’s evolution. 
Zircon preserves igneous and metamorphic processes during its formation 
and remains unaffected by sedimentary processes and crustal recycling. 
U-Pb and Lu-Hf in zircon work as geochronometer and geochemical 
tracer respectively. Zircon provide valuable information about the source 
composition of the rocks and the intrinsic details of an unseen crust-mantle 
processes. The world wide data of U-Pb and Lu-Hf isotope systems in 
zircon reveal crustal evolution through geological history. Moreover, the 
U-Pb age pattern of zircons show distinct peaks attributed to preservation 
of crustal rocks or mountain building during supercontinent assembly. The 
histogram of continental crust preservation shows that nearly one-third of 
continental crust was formed during the Archean, almost 20% was formed 
during Paleoproterozoic and 14% in last 400 Ma.

1 Introduction
The Lu-Hf isotope system in zircon has become 
an important tool for understanding crust-mantle 
differentiation processes (Patchett et al., 1981; 
Vervoort and Blichert-Toft, 1999; Vervoort and 
Patchett, 1996; Blichert-Toft and Albarede, 1997; 
Vervoort et al., 1999; Chauvel and Blichert-Toft, 
2001). Zircon is a host of a series of elements like 
REE and isotopes such as, U-Th-Pb, Lu-Hf and 
Oxygen. U-Th-Pb isotopic system is used as a 
geochronometer while Lu-Hf isotopic system is 
used as a geochemical tracer. 176Lu is an unstable 
radionuclide that produces stable 176Hf through the 
spontaneous emission of β- decay. The half life of 
the Lu-Hf system is approximately 35.7 billion years. 
176Lu comprises of 2.6% of the natural lutetium and 
the heaviest of the REEs. Lutetium (Lu) tends to stay 
mainly in heavy REE rich minerals such as, garnet, 
zircon and xenotime. Hafnium (Hf) is a high field 
strength element and geochemically identical to 
zirconium. This has enormous importance in the 
field of geoscience studies. 

Hf is more incompatible than Lu during 
melting of mantle, thus Hf becomes concentrated 
in the continental crust relative to Lu, resulting 
in non-radiogenic and radiogenic 176Hf/177Hf 

isotopic ratios in the crust and depleted 
mantle reservoir (Fig. 1) respectively (Patchett  
et al., 1981). Due to low Lu/Hf ratios (typically  
<0.002), zircon preserves 176Hf/177Hf ratios very 
close to the initial 176Hf/177Hf ratios inherited 
from the magma during the formation. The intra-
crystalline diffusion rate of Hf in zircon is very low 
(Cherniak et al., 1999), allowing the preservation of 
isotopic variations induced by interaction between 
various magmas (Griffin et al., 2002) or the presence 
of components from different ages during zircon 
crystallisation (Fig. 1). Therefore, Hf isotopes in 
zircon is an important tool for understanding the 
evolution of magma generation and differentiation 
processes, precisely silicic magma generation and 
evolution of continental crust.  

In this review we explore the application 
of Lu-Hf isotope system, mainly in zircon as a 
geochemical tracer with a special emphasis on 
the implication of generation of the crust and the 
growth rate of continental crust. 

2 Why We Use Zircon?
Zircon is a refractory, robust mineral and acquire 
growth zone during crustal melting events. 
Zircon crystallises from high silica melt and also 
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during high to medium grade of metamorphism, 
and is abundant in upper crustal rocks. Zircon 
preserves the isotopic signature through multiple 
episodes of sedimentary and magmatic recycling 
including sediment subduction (e.g. Gao et al., 
2004). Zircon sustains prolonged weathering 
and erosion, for example, detrital zircons in 
clastic sediments preserve more temporal record 
of igneous and crustal growth episodes than the 
exposed basement (Wilde et al., 2001). Recent 
advancement in analytical techniques using 
plasma source mass spectrometry and laser 
ablation micro sampling revolutionised the field of 
Lu-Hf isotope analysis. The chemical and isotopic 
history preserved in the complex growth structure 
of zircon can now be successfully extracted with 
high precision and spatial resolution (Fig. 2). 
Since zircon has high Hf content (~1 wt %), Hf 
isotope ratios are almost not prone to any changes 
due to weathering, deformation and/or alteration, 

which generally disturb the bulk rock or other 
mineral isotope systems. 

A large number of trace elements (~20–25) are 
increasingly reported in zircon by recent studies 
(Hoskin and Schaltegger, 2003). However, REE, P, 
U, Th are present in greatest abundance. Generally, 
the trace element composition of igneous zircon 
reflects the original magmatic composition and 
crystallisation environment from which they 
crystallised (Heaman et al., 1990; Maas et al., 
1992; Belousova et al., 2002). Therefore, certain 
trace element data  provide information about the 
protolith composition of detrital zircon and the 
origin of inherited zircon core, where, the original 
geological context is not preserved (Griffin et al., 
2002). Zircons are present in both low-grade and 
high-grade metamorphic rocks. In low-grade 
metamorphic rocks it is usually inherited from 
the protolith and may depict signs of resorption 
or metamorphic overgrowth. In high-grade rocks, 

Figure 1: Schematic diagram of Hf isotopic evolution modified after Patchett et al. (1981) and Kinny and 
Mass (2003). Different episodes of partial melting at time t1 and t2 result in divergent Hf isotope evolution 
paths. Partial melting of mantle at time t1 formed newly generated crust with low Lu/Hf and the residual mantle 
with high Lu/Hf. The zircon crystallising from the low Lu/Hf crustal melt will preserve its initial Hf ratio and 
diverge in composition with time during subsequent melting and crystallisation process. At time t2 different 
component with different Hf isotopic ratios may contribute in the formation of new crust. Extraction of melt 
from purely depleted mantle source will have positive εHf value and subsequent mixing with undepleted 
or enriched reservoir will result in low positive, zero or negative εHf value depending on the balance of 
components. Inherited zircon cores at t2 possibly have lower εHf than the newly crystallised host rock. 
The inset zircon images are from mafic and granitic rocks of Mt Daniel Complex, Fiordland, New-Zealand  
(S. Bhattacharya, unpublished thesis).
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zircon can form in various ways, such as; in solid 
state, by fluid precipitation, by recrystallisation 
of protolith zircon. Rubatto et al. (2003) shows 
that in case of high-grade metamorphism other 
minerals such as, garnet plays an important role 
in partitioning the HREE in zircon and garnet. 
Similarly, monazite affects the MREE and LREE 
distribution in zircon and monazite. 

Hf isotopes coupled with oxygen isotopes in 
zircon provides an important tool to understand 
the mixing process precisely and can determine the 
contribution of different source components. The 
oxygen isotope ratios (δ18O) is generally changed 
by low temperature, surface processes with 
elevated δ18O whereas, the δ18O of mantle derived 
magma shows contrasting signature (5.7 ± 0.3‰). 
Several studies show that the original igneous δ18O 
value remains unchanged in zircon even through 
high grade metamorphism and crustal fusion that 
occurs due to very slow oxygen diffusion rates 
through zircons (King et al., 1998; Peck et al., 
2003). However, instrumental mass fractionation 
of 16O/17O with zircon HfO

2
 content measured by 

ion microprobe needs great care while measuring 
oxygen isotopes in zircon. 

3 Techniques
Several methods such as Thermal-Ionisation 
Mass Spectrometry (TIMS), secondary ion mass 

spectrometry (SIMS) and inductively coupled 
plasma-mass spectrometry (ICP-MC-MS) 
are used for measuring Hf isotopes in zircon. 
SIMS precision level is less than TIMS bulk 
zircon analyses; therefore, the method is not 
widely adopted. However, recent advancement 
techniques are mainly concentrated on in-situ 
zircon analyses using LA-ICP-MC-MS. 

In LA-ICP-MC-MS technique, the laser is 
attached with the ICP-MC-MS. In this method, 
the material is ablated from a uniform zircon 
zoning by pulsed UV laser using spot size not less 
than 40–50 μm. Generally, helium is used as a 
carrier gas exciting the sample cell and combined 
with Ar and N

2
 from the MC-MS and mixed in 

a Y-shaped tube before transporting into the 
ICPMS chamber (S. Bhattacharya, unpublished 
thesis). The laser repetition rate, cycles, spot 
size varies mainly depending on zircon. The 
major problem for the accurate measurement 
of Hf isotopes in zircon concerns the isobaric 
interference of 176Lu and 176Yb on 176Hf. The 
isobaric interference correction of 176Lu and 176Yb 
on 176Hf has been discussed by number of authors 
(e.g. Thirwall and Walder, 1995; Griffin et al., 
2002; Woodhead et al., 2004; Hawksworth and 
Kemp, 2006). Different isotopes of Hf, Yb, Lu are 
set to be measured in faraday’s cup. Easy sample 
preparation, quick analyses, depth profiling are 

Figure 2: Zircon cathodoluminescence (CL) image is showing complicated multistage growth history from 
granitic rock (after Hawkesworth and Kemp, 2006). Inherited core formed at 2482 Ma followed by bright 
CL-core at 1132 Ma embedded by igneous zoning formed at 417 Ma. 
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the main advantages of laser ablation over other 
conventional methods. 

4  Hf Isotopic Signature in Different 
Zircon Forming Environment

Magmatic Zircon: The pioneering work done by 
Patchett et al. (1981) indicated extreme variability 
of Lu-Hf values in zircon, obtained from mantle 
derived igneous rocks from Finland. 2.7 Ga old 
magmatic rocks from Archean block, southern 
Greenland yielded εHf values upto +14, whereas 
present day oceanic basalts have εHf values upto +23. 
Another suit of rocks from southern Finland show a 
less depleted εHf values close to zero (Patchett et al., 
1981). This gives an excellent example of mantle 
heterogeneity. It was suggested that either two 
different mantle reservoirs coexisted together or the 
depleted magma is contaminated by older crustal 
material having an enriched Hf signature. The 
presence of such enriched reservoirs having highly 
negative εHf values of -12 and -10 in the lower crust 
was recognised from 1.8 Ga Natannen and Vainospää 
granites which intruded Archean rocks of Finland. 
These are interpreted as crustally derived melts. 
Oceanic crust return to the mantle by subduction 
process is another potential source of enriched Hf. 
Following the work of Patchett et al. (1981) several 
studies (e.g. Smith et al., 1987; Corfu and Stott, 1993) 
mainly in the contemporaneous suit of intrusions 
suggested that the zircon with low positive εHf values 
might indicate the crustal contamination and/or the 
presence of zircon xenocrysts. A wide variation in 
εHf from a single volcanic/plutonic suit may suggest 
an inherent heterogeneity in the magma source(s) 
(Smith et al., 1987).  

Detrital Zircon: Being robust in nature, the 
zircon is not prone to weathering, transportation 
and sedimentation processes which results 
in accumulation of detrital zircon in clastic 
sedimentary sequences along the continental 
margin. Therefore, unaltered non-metamict 
zircons provide an important information about 
sedimentary provenance which is recorded in U-Pb 
and Hf isotopic composition. Therefore, both 
chronological and geochemical information can 
be used to delineate the likely sources (Fedo et al., 
2003). Zircon being robust leads to fractionation 
of Hf from Lu as Hf is carried away by zircon 
during continental erosion and accumulates in the 
continental shelf (sands and turbidite deposits) 
deposits. On the other hand, deep marine sediments 
(such as, marine shale and clay) acquire a higher 
proportion of REE, i.e. high in Lu/Hf ratio. This 
goes up to 2.5 times the chondritic values for deep 
marine red clays and Mn nodules (Patchett et al., 
1984). Stevenson and Patchett (1990) studied zircon 

from low grade quartz rich meta-sediments from 
the Canadian Shield, North Atlantic, Wyoming 
and Kaapvaal craton to understand the continental 
growth in the Archean, based on the concept that, 
if the large volume of continental crust existed in 
the early Archean, there should be considerable 
fractions of early Archean zircon which would be 
preserved in the younger sedimentary sequences. 
They concluded that before 3.0 Ga only small 
volume of continental crust had existed due the 
lack of older age signatures from zircon. Further, 
they suggested that major continent formation 
happened during Neoarchean and the erosion 
of large volume of continental crust resulted in 
extensive inheritance of Neoarchean zircon in the 
Paleoproterozoic sequences. 

Bodet and Schaärer (2000) studied detrital 
zircon and baddeleyite grains from four major 
rivers draining present-day Indochina in order to 
understand the crustal formation of the sediment-
covered Southeast Asian continent. The two 
different age groups, Proterozoic and ≤0.5 Ga were 
determined have different εHf range. Proterozoic 
age group >2.0 Ga have positive εHf values whereas 
2.0–0.8 ages have variable εHf +8 to -8 mostly they 
derived from Phanerozoic cover sequence through 
a series of sedimentary cycles. On the other hand, 
zircons ≤0.5 Ga directly matched from the known 
orogenic events like Mesozoic Indosinian and 
Cenozoic Himalayan events and were considered to 
be derived from the plutons during those events. 

Metamorphic Zircon: The presence of zircon 
overgrowth is problematic while studying the Hf 
isotopic composition of original magmatic or 
detrital zircons in ancient metamorphic rocks. 
Metamorphic zircons in high grade rocks have either 
similar (Hoskin and Black, 2000; Rubatto, 2002) 
or depleted (Hanchar and Rudnick, 1995) Hf and 
HREE abundance relative to igneous cores of the 
zircon. Therefore, in case of metamorphic zircon, 
Lu/Hf ratio is comparable or lower than typical 
igneous zircon and initial 176Hf/177Hf ratio should 
remain unchanged, thus, reliable in metamorphic 
zircon. In general, the ratio is highly variable 
depending on the source(s) of the Hf and the 
compositions of pre-existing and co-existing phases. 
In case of similar initial 176Hf/177Hf composition of 
zircon core and rim possibly indicate that they have 
formed in a closed system processes, either by solid 
state crystallisation of core or by dissolution of core 
(Fig. 3) during crustal melting event (Flowerdew 
et al., 2006; S. Bhattacharya, unplublished thesis). 
In case of slight difference in initial 176Hf/177Hf 
composition (not purely identical composition but 
having similar range) between the core and rim of 
zircon indicates the Hf isotopic heterogeneity in 
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the melt. This can be induced from the isotopic 
heterogeneity of the cores during their partial 
dissolution. If the Hf budget of the melt is mainly 
controlled by the dissolved cores and if mixing and 
homogenization does not occur, then Hf isotopic 
heterogeneity will be present in the rims, which is 
forming from this melt in a closed system process 
(Flowerdew et al., 2006). The presence of limited 
dissolution structures in zircon cores and the wide 
range of initial 176Hf/177Hf composition of the rims 
may suggest the formation of the rims in an open 
system process (Flowerdew et al., 2006). According 
to Gerdes and Zeh (2009), once initial 176Hf/177Hf 
ratio is incorporated into the zircon lattice during 
growth, it remains almost unaffected during later 
alteration processes which result in Pb-loss. Zircon 
overgrowth incorporates additional radiogenic 
176Hf formed by the decay of 176Lu in the rock’s 
matrix between successive zircon growth events. 
Therefore, zircon overgrowths generally have higher 
initial 176Hf/177Hf than previously grown domains. 

5  Implication to Continental Crust 
Generation and Crustal Growth Rate

The continental crust constitutes 70% of the 
total volume of the Earth’s crust. Keith O’Nions 
represented pioneering work to understand the 

age of the continents and the time scale of their 
evolution (O’Nions et al., 1983; O’Nions, 1984), 
which in turn helps to understand the formation 
of the continents and evolution of the Earth 
(Jacobsen and Wasserburg, 1979; O’Nions et al., 
1979) by using Nd isotopes. However, the balance 
between the distributions of long lived radiogenic 
isotopic systems (particularly Sm-Nd) and the 
presence of actual volume of continental crust at 
any particular time remain ambiguous. The rate of 
differentiated upper continental crust formation 
relative to the new crustal material generated also 
remains unresolved. The challenge to understand 
the age and growth history of the continental crustal 
formation lies with the better understanding of the 
timing of major crust forming events. Basically there 
were two difficulties: i) the crust formation event 
was recorded upto 4.4–4.6 Ga (Wilde et al., 2001) 
whereas the record of early continent formation is 
fragmentary. This is especially problematic while 
dealing with the Archean cratons which covers only 
7.5% of the earth surfaces. This cannot asses the real 
major pulses of crust forming event at that time from 
the surface rocks. ii) Assessing the balance between 
juvenile and recycled material at any point of time 
of crust formation has became highly ambiguous 
while interpreting with the whole rock data. 

Figure 3: Zircon (at the centre) is showing igneous core and metamorphic rim from granitic rock of Mt 
Daniel Complex, Fiordland, New-Zealand (S. Bhattacharya, unpublished thesis).
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Granitic rocks are abundant in major 
crustal components throughout the earth’s 
history. They incorporate multiple end member 
components including recycled crust (Gray 
1984; Keay et al., 1987; Collins 1998). Therefore, 
a systematic mineralogical and chemical record 
of different components in granitic magmas 
and their sources is required to understand the 
crustal evolution process. With the development 
of in-situ analyses of U-Pb, Lu-Hf and oxygen 
isotopes in zircon revolutionised the models and 
concept on crustal evolution and petrogenesis of 
granite (Hawkesworth and Kemp, 2006) as being 
one of the major crustal components. Detrital 
zircons are good in recognising the hidden 
earth’s history, providing the most representative 
samples in eroded source terranes. Data 
compilation by Belousova et al. (2010) shows 
U-Pb and Hf isotopic data of 13,800 zircons 
largely derived from detrital sources around 
the world to understand the crustal evolution 
process in geological history. Fig. 4 shows the 
broad range of ages from various continents 
worldwide. Other than Hadean population 
(Australia, Jack Hill quartzite) most continents 
are represented by wide range of ages and zircon 
with low εHf values are not restricted to any 
particular continent (Fig. 5). The negative εHf 
values are wide spread indicating the older crustal 
recycling which suggest a universal signature 

of producing continental crust. They suggested 
that about 60–70% of existing continental 
crust separated from the mantle before 2.5 Ga 
which is also mentioned by Condie and Aster, 
2010 (Fig. 6). Therefore, at the end of Archean, 
crustal recycling was a more dominating process 
over the addition of net juvenile material to 
the continental crust formation. The presence 
of large volume of continental crust before the 
end of Archean and the thickness of felsic and 
mafic crust mainly rely on thermal models for 
the progressively cooling Earth (Hawkesworth 
et al., 2010 and references therein). Belousova 
et al. (2010) have quantitatively estimated the 
addition of net juvenile material over earth’s 
history. The model suggested that the addition of 
juvenile material through time decreases stepwise 
and periodicity in the formation of new crust 
is less than it was supposed to be, in contrast 
to the peaks of magmatic ages. The estimated 
decrease of juvenile crustal material is as follows: 
70% in the 4.0–2.2 Ga time interval, about 50% 
in the 1.8–0.6 Ga and possibly less than 50% 
after 0.6 Ga (Belousova et al., 2010). They have 
suggested that these changes may be linked to the 
supercontinents formation. On the other hand, 
the episodes of crust generation might be linked 
with the magmatism associated with the deep-
seated mantle plumes (Hawkesworth et al., 2010 
and references therein). The estimation of the 

Figure 4: Worldwide data for age vs. εHf plot from zircons showing continental growth through geological 
history with accumulated data indicating supercontinent assembly. Data adopted and modified after 
Belousova et al., 2010).
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rates of crust generation verses destruction along 
modern subduction zone is quite similar (Fig. 7) 
(Hawkesworth et al., 2010). That in turn implies 
that the present volume of continental crust was 
established 2–3 Ga ago. 

6 Concluding Remarks
The Lu-Hf system in zircon is an important 
geochemical tracer and a key tool to understand 
the silicate magma generation and differentiation 

processes. A combined study of both U-Pb and 
Lu-Hf systematic is a robust tool to understand 
the petrogenetic processes and crustal growth 
history. Precise and accurate U-Pb age data 
(concordant results) is an important parameter to 
estimate Lu-Hf isotopic system in zircon in order 
to understand the petrogenetic record preserved 
in initial Hf ratios. Nowadays, in-situ analytical 
techniques, like CL and BSE imaging coupled 
with single grain ablation methods improved the 

Figure 5: Plots of age vs. εHf from zircons for the continents- Asia, Africa, Australia, and Europe showing 
wide range of distribution of εHf values with ages. Data adopted and modified after Belousova et al. 2010.

Figure 6: Distribution of U/Pb zircon ages from juvenile continental crust in 50-Ma bins based on a total 
volume of continental crust (modified after Condie, 1998; 2010).
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quality of data for complexly zoned zircon having 
multiple ages. The basic advantage of using Hf 
isotopes in zircon is to understand crust-mantle 
differentiation process through time which 
provides a window to Earth’s early differentiation 
history. 

Received 5 April 2015.
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