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A.C. Conduction in Amorphous 
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Abstract | The recent developments in the theoretical and experimental study of frequency-

dependent conductivity in amorphous semiconductors are reviewed, emphasising particularly 

on chalcogenide glasses. The striking similarity of a.c. conduction in quite different disordered 

solids is compared and discussed in terms of experimental results, modelling, and computer 

simulations. After giving an overview of experimental results, an existing macroscopic and 

a microscopic model are reviewed. More specifically, the factors such as random and non-

random spatial distributions of electrically active centres responsible for the a.c. conductivity 

have been highlighted. Additionally, we have briefly discussed various aspects of a.c. loss 

behaviour on chalcogenide glasses such as effect of temperature, composition, doping, and 

other material properties. It is concluded that the a.c. conduction at intermediate to high 

temperatures is accounted for by the correlated barrier model, whereas at sufficiently low 

temperatures the behaviour is related to the atomic tunnelling.
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1. Introduction
In recent years, exciting advances have been made 
in understanding the problem of how the disorder 
in amorphous semiconductors influences the 
band structure and hence the electrical and 
optical properties.1–5 In crystalline solids one 
finds that the crystal structure plays a key to the 
various electronic conduction phenomenons 
in both metals and semiconductors. But, of 
course, not all the solids are crystalline and 
not all the conductors are electronic. There are 
many disordered solids such as polymers and 
glass wherein the conduction of mobile charges 
includes electron, hole and polaron hopping is 
of considerable interest. Today, an interest in the 
dynamics in disordered materials is driven by 
multitude of novel applications these materials 
find in such devices as electronic and optical 
memories. So profound is the interest in devices 
based upon charge transport in both ordered and 
disordered materials that this expanding field 

of research has come to be known as solid-state 
electronics.

In the context of electrical conduction 
phenomenon, a feature common to all amorphous 
semiconductors is a frequency-dependent 
conductivity that increases approximately linearly 
with frequency (see figure 1) at least in the 
frequency range below 10 MHz, i.e., 

 s σ ω σ ω( ) = +o
sA  (1)

where the pre factor A and the frequency exponent 
s are both weakly dependent on temperature 
and it is generally found that s ≤ 1, tending to 
the limiting value of unity at low temperatures. 
The first term σ

o
 is the low frequency (or d.c.) 

conductivity and found to be thermally activated 
with Arrhenius form. It has been observed that 
this type of behaviour in many other materials 
including polar polymers and ionic conductors. 
The only common feature of the numerous class 

Polaron: The quasiparticle 
formed by the electron and 
its self-induced distortion is 
called polaron
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solids exhibiting this ‘a.c. universality’ is their 
disorder in either lattice or sublattice. This has 
been an open question ever since the full scope 
of a.c. universality was recognized in the 1970.6–9 
The phenomenon has variously been ascribed 
to relaxation caused by the motion of electron, 
or atoms/ions, hopping or tunnelling between 
the equilibrium sites. The purpose of this article 
is therefore to review the available experimental 
evidence pertaining to a.c. conduction for a family 
of amorphous semiconductors, namely ‘chalcogens’ 
(elements from the Group VI) at the other, and 
‘chalcogenide’ alloys of chalcogen with pnictogen 
(or tetrahedrally bonded semiconductors, such 
as Si or Ge) in between. The reasons for choosing 
to concentrate primarily upon this family of 
amorphous semiconductors are twofold: a unified 
picture of the behaviour of these solids emerges 
that is qualitatively different from that exhibited 
by other types of amorphous semiconductors 
such as amorphous silicon or germanium. Thus, 
the aim of this paper, then, is to complement and 
supplement with the existing reviews in this field.

An important two additional features make the 
study of the a.c. properties of chalcogenide glasses 
worthwhile: the first is that these materials appear to 
contain a certain type of structural defects,10,11 which 
controls many of the opto-electronic properties, 

may also be responsible for the a.c. conduction. In 
addition they also contain a spectrum of low-energy 
states (two-level systems), which is responsible 
for the thermal and dielectric properties at low 
temperatures. The second feature characteristic 
of chalcogenide materials, and one that makes the 
interpretation of experimental data less ambiguous, 
is the fact that the d.c. conductivity of such 
materials is generally thermally activated, indicative 
of conduction by carriers in extended states beyond 
the mobility edge,12 rather than exhibiting the 
temperature dependence, σ ∝ exp(–T-¼) indicative 
of variable-range hopping (tunnelling) of electrons 
between states at the Fermi level.13 This is of 
importance since, either in the case where a.c. and 
d.c. conduction arise from completely separate and 
different process, or where the same basic processes 
is responsible for both types of conductivity. Thus, 
in general, most of the chalcogenide glasses are 
expected to obey eqn. 1, since d.c. component (σ

dc
) 

is due to band conduction and the a.c. component 
(σ(ω)) is due to relaxation processes. If the same 
processes (e.g. hopping conduction) is responsible 
for both d.c. and a.c. conduction, σ

dc
 is simply the 

ω  →  0 limit of σ(ω), and the validity of eqn. 1 
is more doubtful, but is nevertheless still often 
used in the literature.14 However, since σ(ω) for 
amorphous semiconductors almost invariably 
increases monotonically with increasing frequency, 
and moreover is usually only weakly dependent on 
temperature. Therefore, the pure a.c. component 
of the conductivity will try to dominate at high 
frequencies and/or low temperatures because the 
temperature dependence of σ

dc
 is always much 

greater than that of σ
ac

, and therefore the assumption 
of independent conduction mechanism within 
eqn. 1 becomes justified.

The layout of this review article is as follows: 
first we discuss in general the important terms of 
dielectric relaxation in solids and how a frequency-
dependent conductivity can arise in amorphous 
materials, and follow this with a survey of the 
available theoretical models for a.c. conduction 
in amorphous semiconductors. The validity 
of these models will be discussed in the light of 
experimental data, allowing certain conclusions 
to be drawn as to those mechanisms of a.c. 
conduction in chalcogenide glasses.

2. Fundamental Concepts
In the presence of an externally applied electric 
field a material’s response is often characterized in 
two generic ways within the literature. A conductive 
response is associated with a current comprised of 
mobile charge carriers which in the case of electronic 
conductors are electrons, and in the case of an 

Figure 1: Schematic diagram showing the frequency dependence of real part 
of the conductivity at three different temperatures. When the temperature is 
lowered the d.c. conductivity decreases rapidly and correspondingly in the time 
scale the crossover frequency ω* in the entire spectrum is displaced towards 
lower frequencies.
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a.c. universality: It is 
almost always possible to 
scale measurements of 
the frequency-dependent 
conductivity at different 
temperatures into one 
single "master" curve. 
Different solids have quite 
similar master curves and 
are the only common 
feature of the numerous 
different solids exhibiting 
this a.c. universality is their 
disorder

Mobility edge: 
The mobility edge is the 
critical point at which a 
transition from localized to 
extended character of the 
eigenfunctions occurs in the 
random lattice

Variable range hopping: 
It is a model describing 
low temperature electronic 
conductivity in a strongly 
disordered systems with 
localized states with 
characteristic temperature 
dependence of T1/4
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ionic conductor are ions. If a material’s response is 
limited to the local displacement of bound charges, 
often characterized by a change in a local dipole 
moment, then the response is commonly termed 
dielectric.15 In the present investigation, since 
the interest lies in understanding the response 
of charged species to the presence of an applied 
electric field, the response will simply be referred to 
as the conductivity to avoid trying to continuously 
define the length scale over which displacements of 
a given response mechanism occur. The response 
of a given material often changes drastically 
depending on the measurement environment, thus 
making conductivity spectroscopy particularly 
well suited to the task of exploring the dynamic 
behaviour of materials. By the application of an 
harmonically varying electric field to a dielectric 
sample produces a time-dependent polarization 
P(t). In the frequency domain, the spectral 
dependence of the polarization is related to the 
electric field variation15 by

 P = Eo( ) ( ) ( )ω ε χ ω ω  (2)

where ε
o
 is the permittivity of free space, and 

the dielectric susceptibility χ(ω) is, in general, a 
complex quantity i.e.,

 χ χ′( ) − χ″( )∗ =( )ω ω ωi  (3)

the imaginary part χ ω″( ) is termed the ‘dielectric 
loss’ (and the resulting current due to this is in 
phase with the driving field). The dielectric loss 
in disordered solids usually exhibits a peak, much 
like that characterizing dielectric relaxation in 
dipolar liquids. The components of the dielectric 
susceptibility are related to those of the complex 
relative permittivity

 ε ω ε ω ε ω∗ = −( ) ′( ) ″( )i  (4)

 ε ω χ ω′( ′( )) = +1  (4a)

 ε ω χ ω″( ) ″( )=  (4b)

Furthermore, the frequency-dependent relative 
dielectric constant ε*(ω) can be expressed in terms 
of conductivity. By

 σ ω σ ω σ ω
ωε ε ω
ωε ε ω ε ω

∗ = +
=
= −

( ) )
( )

[ ( ) ( )]

′( ) ″(

′ ″

∗
i

i
i i

o

o

 

(5)

The real part of σ*(ω) is usually denoted by 
σ ω′( ) and is given by 

 σ ω ε ωε ω′( ) ″= o ( )  (6)

to which should be added any d.c. conductivity 
component, and, equivalently, the imaginary part 
of the a.c. conductivity is given by 

 σ ω ε ωε ω″( ) ′= o ( )  (7)

Clearly, σ ω″( ) ≠ 0 reflects a phase difference 
between field and free charge carrier. Below 
phonon frequencies, whenever the conductivity 
is frequency dependent the charge carrier 
displacement always lags behind the electric field.

The “loss tangent” is defined by

 
tanδ =

ε″
ε′

 
(8)

And although it is a useful quantity since it is 
independent of sample geometry. However, it is of 
only limited to general utility since its behaviour 
with frequency and temperature does not in 
general reflect those of ε

1
 and ε

2
 independently.

In order to calculate the a.c. conductivity, 
we first consider the Debye16 model for the 
dielectric response to an alternating electric field 
of either an isolated charge that can occupy one 
of two localized sites or equivalently an inertialess 
dipole that can assume one of only two spatial 
configurations.15 The Debye response is defined by 
the relaxation of the polarization obeying a first-
order rate equation characterized by a single, fixed 
time constant τ, namely

 dP t

dt

P( )
= -

τ
 (9)

which has the solution

 
P t P

t
o ( ) exp= -



τ

 
(10)

The dielectric susceptibility is obtained from 
the Laplace transform of the polarization decay 
function - dP t

dt
( ), given by the Debye response:

 
χ ω

χ
ωτ

χ
ωτ

ω τ

( )
( )

( )
( )

=
+

=
-

+










0

1

0
1

1 2 2

i

 
  i

 

(11)

The dielectric loss χ ω″( ) is thus predicted to 
exhibit a peak, since the function 

ωτ
ω τ( )1 2 2+  has a peak 

at ωτ = 1, if the relaxation time τ has a fixed value. 
However, in disordered systems, and amorphous 

Permittivity: Permittivity, 
also called electric 
permittivity, is a constant 
of proportionality that 
exists between electric 
displacement and electric 
field intensity

Susceptibility: 
Susceptibility of dielectric 
material is a measure of 
how easily it polarizes in 
response to an external 
electric field

Loss tangent: It is a 
parameter of a dielectric 
material that quantifies 
its inherent dissipation 
of electric energy in the 
material
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materials in particular, it is more reasonable to 
assume that a broad distribution of relaxation 
times, n(τ) should exist if relaxation occurs by 
processes involving either with respect to distances 
or activation energies intimately related to the 
disordered structure of the material. Thus a peak 
exhibited by a given solid is not necessarily Debye 
like, it can be exhibited by the dielectric loss. The 
distribution of relaxation time indicates that each 
individual microscopic process giving rise to a 
relaxation time τ is independent of all others. 
Therefore, the overall conductivity is given by a 
summation over all contributions each acting in 
parallel. For a continuous spectrum of n(τ), the 
real part of the a.c. conductivity can be written as

 
σ ω α τ

ω τ
ω τ

τ′( ) ( )=
+

∞

∫
0

2

2 21
n d

 
(12)

where α is the polarizability of a pair of sites, 
for the moment assumed to be independent 
of τ. The linear frequency dependence that is 
observed in chalcogenides and other amorphous 
semiconductors can be obtained from eqn. 12 for
n( )τ τ∝ 1 , where

 σ ω
ω
ω τ

ωτ ω′( ) ( )∝
+

∝∫1 2 2
d  

(13)

The form of n(τ) required implies that the 
relaxation time τ itself must be an exponential 
function of a random variable ξ, i.e.,

 τ = τ
o
 exp(ξ) (14)

where τ
o
 is a characteristic relaxation time, and 

where ξ has a flat distribution, n(ξ) = constant. 
In practice, n and α may each be function of 
ξ, giving rise to a slightly sub linear frequency 
dependence. Remarkably, two microscopic 
relaxation mechanisms that can give rise to the 
functional form for τ given in eqn. 14 are:

 (i) classical hopping of a carrier over the potential 
barrier separating two energetically favourable 
sites, i.e., in a double-well potential, in which 

 ξ =
W

Tk
 (14a)

 (ii) phonon-assisted quantum-mechanical 
tunnelling through the barrier separating 
two equilibrium positions, in which the 
case

 ξ = 2αR (14b)

where W is the barrier height and R is the 
equilibrium distance between the two states. 
It can be assumed that the wave function of a 
carrier localized at a given site is proportional to 
exp(–αR). Both cases (i) and (ii), and variants, will 
be considered in interpreting the experimental 
data for amorphous chalcogenide materials. 
However, it should be stressed here in the light 
of the discussion above that information on the 
physical mechanism responsible for the a.c. loss 
resides primarily in the departure from unity to 
the exponent of the frequency dependence of 
the real part of the a.c. conductivity and in the 
temperature dependence of σ(ω).

3.  A.C. Conduction in Disordered 
Solids: Facts

Most commonly, the solids are classified into 
metals and non-metals. A metallic solid has large 
weakly temperature-dependent d.c. conductivity, 
a non-metallic solids has a much smaller d.c. 
conductivity which, however, increases strongly 
with increasing temperature.17 Only for disordered 
non-metallic solids the origin of a.c. conduction 
is different from the d.c. observed far below 
the phonon frequencies. As mentioned earlier, 
these solids have quite similar a.c. conductivity 
behaviour, ‘universality’. Among the non-metallic 
solids, there is sub-class of solids exhibits the 
universal a.c. properties includes ion conducting 
crystal and glasses, polycrystalline and amorphous 
semiconductors, semiconductors, mixed (ion/
electron) conducting polymers, transition metal 
oxides and organic/inorganic composites.18–28

Figure 2 shows the frequency dependent 
conductivity data for four different disordered 
solids including ion, electron and polaron 
conducting solids at different temperatures. 
Clearly, the observed a.c. conductivities are quite 
similar in all the solids. While ion conduction is 
a classical barrier crossing processes, an electron 
conduction in amorphous materials usually 
proceeds via quantum mechanical tunnelling 
between the localized states. Now the question 
arises that why do these conduction mechanisms 
have in common in disordered solids? One reason 
is the ubiquities disorder in the material which 
causes energy barrier between the sites to vary 
randomly or the variations in inter site separations. 
As a result, a very broad distribution of jump rates/
tunnelling rates/local mobilities.

Different strategies were made in the past 
to characterize the quite similar a.c. responses 
observed for different types of solids in the 
frequency regimes not exceeding 10 MHz. The 
simplest description is power-law frequency 

Relaxation time: 
In dielectrics, the time 
required for an exponential 
variable (polarization) to 
decrease to 1/e of its initial 
value

Polarizability: It is defined 
as the ratio of the induced 
dipole moment of an 
atom to the electric field 
that produces this dipole 
moment
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Figure 2a: Experimental frequency-dependent conductivity 
spectra of 0.2Na

2
O.0.8SiO

2
 glass at various temperatures.
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dependence as proposed by Jonscher.8 However, 
the power-law description is slightly inaccurate, 
because the exponent must generally increase 
somewhat with frequency in order to fit with 
experimental data. A more general approach is 
to consider the scaling formalism associated with 
time-temperature superposition (TTS) principle. 
The scaling ansatz reads as:

 σ ω
σ

ω
ω

( , )

( ) ( )

T

T
F

To o

=






 (15)

defining u = ω
ωo T( )

, where F(u) is the scaling 
function which is independent of temperature 
and ω

o
 is the angular frequency making onset of 

a.c. conduction and has been defined in a variety 
of ways over time. Any solid that obeys TTS 
is, equivalently, referred to as obeying scaling 
law. Barton, Nakijama and Namikawa long ago 
proposed independently7,29,30 and verified that 
for many ion and electron conducting disordered 
solids the scaling parameter ω

o
 as

 

 ω
σ
ε εo

dc

op
=

∆
 (16)

where p is a constant of order of unity and ∆ε 
is the dielectric relaxation strength, i.e., the 
difference between the static and high-frequency 
dielectric constants. Eqn. 16 is also known as the 
BNN relation.

A.c. universality was first discovered for ion 
conducting oxide glasses. Taylor has been shown that 
the dielectric loss for different ion conducting glasses 
fell on a single plot against scaled frequency.31–33 
Additionally, he found from the same analysis 
that the activation energy of the d.c. conductivity 
was the same as that of the onset frequency of a.c. 
conduction. Subsequently, Israd modified Taylor’s 
scaling parameter by plotting dielectric loss against 
the log of frequency and d.c. resistivity, equivalent 
to the following representation: 

 σ ω
σ

ω
σ

( )

o o

F
T

=






 
(17)

Since then the above equation, which we shall 
refer to as “Taylor-Isard scaling”,34 has been used by 
several authors. For instance, Taylor-Isard scaling 
was used by Scher and Lax for the continuous 
time random-walk approximation,35 by Balkan 
et al., for amorphous semiconductors,36 and by 
Summerfield for hopping models solved in a 
certain approximation in tetrahedrally bonded 
amorphous semiconductors.37 For ion conducting 

Time-temperature 
superposition 
principle: The 
validity of the TTSP 
suggests that the 
basic microscopic 
mechanisms of the 
dynamic processes 
do not depend 
on temperature, 
although the time 
window of these 
processes exhibits 
generally strong 
temperature 
dependence
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glasses Taylor-Isard scaling approach was used 
recently by various authors. In summary, we now 
list the most important characteristic features of 
a.c. conductivity spectra of the vast majority of 
disordered solids.

 i. The real part of the a.c. conductivity increases 
with frequency, the imaginary part is non-
negative.

 ii. At high frequencies σ′(ω) follows an 
apparent power law, i.e., σ' (ω) ∝ ωs. The 
deviations from this power law corresponds 
to s increasing weakly with frequency and 
as temperatures decreases, i.e. s →  1 for 
T → 0. At low frequencies, the conductivity 
is independent of frequency and is attributed 
to the d.c. conductivity.

 iii. The real part of a.c. conductivity σ′(ω) 
is generally only weakly dependent on 
temperature as compared to d.c. conductivity. 
In the case of low energy gap materials the 
temperature dependence of σ′(ω) is stronger 
at intermediate temperatures than at low 
temperatures.

 iv. The a.c. conductivity obeys time-temperature 
superposition principle, i.e. the shape of σ′(ω) 
in a double logarithmic plot is temperature 
independent and is roughly the same for all 
disordered solids (universality).

 v. When the cross-over frequency ω
o
 satisfies 

the BNN relation then the activation energy 
for ω

o
 and σ

dc
 would be identical.

4.  Macroscopic Models 
for A.C. Conduction

In essence, three quantities are required in order 
to calculate the a.c. conductivity. As can be seen 
from eqn. 12, these are the polarizability α, the 
distribution function n(τ) for relaxation times, 
and the relaxation time expressed in terms of 
a relaxation variable ξ. The form of this latter 
quantity, τ(ξ), depends on the particular type of 
microscopic process under consideration.

4.1.  Polarizability Factor within the Pair 
Approximation

An evaluation of the polarizability factor within 
the pair approximation was suggested by Pollak 
and Geballe38 in analysing the a.c. conductivity 
data of impurity conduction in crystalline silicon. 
For two sites, separated in space by R and in energy 
by ∆, the polarizability can be calculated by using 
the rate equations for the charge transfer between 
the two sites, i.e. 

 M F f f F1 21 2 12 1 2= - = -ω ω  (18)
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where f
1
 and f

2
(= 1 – f

1
) are the occupation 

probabilities for states 1 and 2, and ω
ij
 are the 

transition rates. The application of an electric field 
E to the system perturbs the levels, causing a change 
in the occupation numbers from their equilibrium 
values, which, if the field is small (eER « kT), 
means that the response can be linearized to 

 
α

ωτ
=

+






e R

T i
T

2 2

2
2

12

1 1

1k
kcosh ( )∆

 
(19)

where an average over an angle (between R and E) 
has been performed. It is interesting to note that 
the Debye form for the frequency dependence has 
been obtained; this is a direct result of the particular 
form of rate equation embodied in eqn. 18, whose 
solution is exponential time dependent as given in 
eqn. 10. The effective relaxation time τ that appears 
in eqn. 19 is given by

 τ τ= 











-1

2 2

1

cosho T

∆
k

 
(20)

if the transition rate is written as14

 ω
τij

o

ij ji

T
=

+





1

2
exp

∆ ∆
k

 
(21)

Above equation is valid for the multiphonon 
frequencies, i.e. when the energies involved in the 
transition are larger than the Debye energy. In the 
following, we shall be concerned almost exclusively 
with multiphonon processes giving rise to dielectric 
loss. Based on above considerations, we now turn 
to a discussion of the various basic types of models 
that have been proposed for the a.c. conduction in 
amorphous semiconductors before considering in 
more detail the a.c. conductivity of chalcogenide 
glassy semiconductors.

4.2.  Relaxation Due to the Quantum-
Mechanical Tunnelling

4.2.1. Electronic tunnelling
The tunnelling of charge carriers was observed 
first by Pollak and Geballe38 in connection with the 
effect of impurity on the conductivity of doped 
crystalline silicon, and subsequently extended to 
the other amorphous semiconductors by Austin 
and Mott.39 If the electronic relaxation is regarded 
as the origin of the dielectric loss observed in 
amorphous semiconductors then quantum-
mechanical tunnelling (QMT) is perhaps an 
obvious phenomenon to consider, because the 
d.c. conductivity (solids such as a-Ge and a-Si) 
below room temperature exhibits an exp(-T-1/4) 

dependence believed to results from the phonon 
assisted tunnelling between defect states.12 Thus, 
at sufficiently low temperatures the frequency 
dependent conductivity has been ascribed to the 
QMT of the charge carriers. The relaxation time 
is given in this case by a combination of eqn. 14 & 
14b i.e. τ ∝ exp(2αR) or equivalently substituting 
τ τ αo ot R= 2 2exp( ) in eqn. 20 giving

 τ
τ α

= ot

T

Rexp( )

cosh( )

2

2
∆
k

 (22)

It is generally assumed that the sites between 
which electron transfer occurs are randomly 
distributed in space i.e.

 P(R)dR = 4πNR2dR (23)

Based on the above considerations, an 
expression for the real part of the a.c. conductivity 
can then be obtained rather straight forwardly 
and simply using the above relations correlating 
the polarizability, relaxation time and spatial 
distribution of random sites. Based on the above 
considerations,

 σ ω
π ω

α
ωτ
ω ττ

τ

( )
( )

min

max

=
+∫

N e

T
R

d2 2
4

2 26 1k
 (24)

It is important to note that the factor R4 arises 
from two contributions: a factor R2 from the 
polarizability and a factor of R2 from the spatial 
distribution of centres. The lower limit of the 
integral in eqn. 24 represents the τ

min
 = τ

o
 (often 

taken to be of the order of an inverse of phonon 
frequency), which for the purposes of evaluation 
of the integral can be approximated by τ

min
 ≈ 0. 

The upper limit τ
max

 corresponds to the maximum 
tunnelling distance, which according to eqn. 22 
can in principle increase without limit, and hence 
it can be approximated as τ

max
 ≈ ∞. The integral in 

eqn. 24 can be evaluated in an approximate manner 
by noting that the function 

ωτ
ω τ1 2 2+  is sharply peaked 

in τ space, and extremely sharply peaked in R space, 
and therefore it effectively acts as a δ-function. 
The factor R4 can therefore be removed from the 
integral part, having been given the value of Rω at 
which ωτ

ω τ1 2 2+  is a maximum i.e. at ωτ = 1.
The characteristic tunnelling distance Rω at a 

given frequency ω is thus given by

 
Rω α ωτ

= 





1

2

1
ln

o

 (25)

where ωτ  =  1  has been substituted into eqn. 
24. Hence, the final expression for the real part 
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of the a.c. conductivity for the QMT can be 
written as 

 
σ ω

α
ω ω′( ) ( )=

Ce T
N E RF

2
2 4k  

(26)

where N(E
F
) is the density of states at the Fermi 

level and N = kTN(E
F
) is the number of states 

actually contributing to the a.c. loss. The constant 
C is equal to 1

24
2π  in the simple treatment case; 

a more rigorous analysis yields a slightly different 
value of 1

24
4π , but the functional form for σ(ω) is 

remains the same.

4.2.2. Small Polaron Tunnelling
A small polaron may be formed in a covalent solid 
if the addition of a charge carrier to a site causes 
such a large degree of local lattice distortion that the 
total energy (electronic + distortion) of the system 
is thereby lowered by an amount W

p
, the polaron 

energy. The small polarons are generally assumed 
to be so localized that their distortion clouds do not 
overlap. A small polaron behaves as a free particle with 
enhanced mass (m

p
) at low temperatures but moves 

by thermally activated hopping at high temperatures 
(i.e. kT > 1

2 ω, where ω is the phonon frequency). 
Therefore, the activation energy for polaron transfer, 
W WH p≈ 1

2  and is not dependent on the intersite 
separation. The relaxation time for small-polaron 
tunnelling at high temperatures can be written as40

 τ τ α= 



o

HW

T
Rexp exp( )

k
2  (27)

whereas at sufficiently low temperatures, below 
the Debye temperatures, the transition rate, and 
hence the relaxation time, are independent of 
temperatures, i.e.

 τ τ
ω

α=






o

H

o

W
Rexp exp( )

1
4

2


 (28)

where ω
o
 is the vibrational frequency describing 

the lattice distortion. The frequency dependent 
conductivity at the high temperature limit expected 
for the tunnelling of the carriers trapped at the 
structural defects (which are randomly distributed 
in space) and which form small polarons can be 
evaluated in exactly the same way as in the earlier 
section by using eqn. 27, i.e. the characteristic 
relaxation time is now temperature dependent, 
τ τ′ = o

W
T
Hexp( )

k . The tunnelling distance at a 
frequency ω now written as

 
R

W

To

H
ω α ωτ

=






-










1

2

1
ln

k

 (29)

and the a.c. conductivity is given in eqn. 26, but 
with the above expression for Rω used instead of 
eqn. 25. It is interesting to note that the tunneling 
distance decreases more rapidly with increasing 
frequency than in case of QMT (eqn. 25). Indeed, 
Rω and hence σ(ω) are predicted to go to zero at 
sufficiently high frequency with the frequency is 
equal to

 ω
τc

o

HW

T
= -





1
exp

k
 (30)

The validity of above equation (30) becomes 
pathological, since for frequencies greater than ω

c
 

a negative value for Rω is predicted. The frequency 
dependence of s for this model is negative, i.e. 
there is a maxima in the frequency dependence 
of σ′(ω) prior to Rω → 0. In practice, of course, 
the tunnelling distance cannot become equal to 
zero; the minimum value of Rω is equal to the 
interatomic spacing. At higher frequencies (or 
lower temperature) than given by the critical 
condition eqn. 30, the contribution to the overall 
a.c. conductivity due to the small-polaron 
tunnelling mechanism would tends to zero.

4.3. Relaxation Due to Hopping Process
We treat the term ‘hopping’ for those transfer 
processes that involve thermal activation over 
the barrier separating two different well defined 
sites, rather than quantum mechanical tunnelling 
through the barrier. Thus such processes are 
inherently relatively high temperature phenomena. 
In such cases, the relaxation time is given in 
more commonly as τ ∝ exp( )W

Tk , and no explicit 
dependence on the intersite separation is generally 
included. Here, we shall see this basic model can 
be modified to include an implicit dependence on 
separation.

4.3.1. Atomic Hopping
Pollak and Pike had developed first hopping 
model to the dielectric relaxation in amorphous 
semiconductors41 and subsequently extended by 
Lecleac’h,42 who assumed that the atoms or ions 
hopped over the barrier of height W separating 
two sites, having an energy difference, ∆. 
This model had its origin that the low-temperature 
thermal anomalies mentioned in the earlier 
section, but because of the thermal-activation 
nature of the charge transfer its applicability is 
at higher temperatures. The relaxation variable 
in this case is obviously W, which in the simplest 
case is independent of the intersite separation 
R. Furthermore, the dipole moment p and the 
change in p involved in an atomic transition are 
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W, as shown in figure 3. Now, for single electron 
transition is given by 

 W W
e

RM
o

= -
2

πεε
 (32)

The a.c. conductivity expressed for the case 
of single-electron transfer by the CBH model 
can be evaluated in exactly the same manner as 
employed previously using the expression for the 
polarizability given by eqn. 19 and the relaxation 
time corresponding as follows:

 τ
τ

= o
W
T

T

exp( )

cosh( )
k

k
∆

2

 (33)

In the narrow band limit (∆
o
 « kT), and 

assuming that the a.c. conductivity is given 
approximately as 

 σ ω π εε ω ω′( ) =
1

24
3 2 6N Ro  (34)

where the hopping distance at a frequency ω is 
given by 

 R
e

W To M
o

ω
ωτπεε

=
-

2

1[ ln( )]k
 (35)

It should be noted in passing that the 
behaviour of CBH model might also be regarded 
pathological as a function of frequency in the 
same sense as for the small-polaron QMT model. 
In the other extreme limit, namely the broad-band 
case (∆

o
 » kT) and for single-electron hopping 

motion, Long has calculated the a.c. conductivity 
as follows:

 σ ω π ω ω′( ) ( )=
1

12
3 2 2 6g T Ro k  (36)

where a constant density of states go
N

o
= ∆  has 

been assumed. The frequency dependence in the 
CBH model (for both limits) is embodied in the 
ω ωR6  factor, and can be expressed in terms of 
the frequency exponent s as 

 s
KT

W TM
o

= -
-

1
6

1[ ln( )]k ωτ

 (37)

It is interesting to note that s is predicted to 
be both frequency and temperature dependent. 
It should be noted that, at least for small values of  
W

T
M

k
, s increases with increasing the frequency and for 

large values of 
W

T
M

k
, the exponent s is nearer unity.

Finally it should be mentioned that the 
d.c. conductivity can also be predicted by the 
CBH model. In this case the ‘extended-pair 

not known a priori, and so p may be set equal 
to a constant value of p

o
 and independent of 

W and R. The relaxation time can be written as 
τ τ= o

W
T

exp( )
k

 if W » kT and ∆ » kT.14,41 Assuming 
that the distribution p(W) of barrier heights is 
uniform in the range 0 ≤ W ≤ W

o
, and also that ∆ is 

randomly distributed between 0 and ∆
o
. Based on 

the above considerations, the real part of the a.c. 
conductivity for this model can be evaluated as41

 σ ω π ω′( ) tanh= 





p
N T

W To
o o

o2

6 2

k

k∆
∆  (31)

The above eqn. 31 clearly predicts a strictly linear 
dependence on both frequency and temperature. 
The linear frequency dependence arises because 
there is no dependence of the hopping distance Rω 
on frequency ω.

4.3.1. Correlated Barrier Hopping Model
The correlated barrier-hopping (CBH) model 
was originally proposed by Pike43 in order to 
calculate the frequency dependent conductivity 
in scandium oxide films, and then extended by 
Elliott,44 in the study of chalcogenide glasses. It 
should be emphasized that the CBH model is based 
on several assumptions. The assumption made 
in the simple hopping model described above is 
that the relaxation variable W is independent of 
the distance between the two sites R, and hence 
the hopping is independent of frequency. This 
restriction was lifted by CBH model, where the 
electron transfer by thermal activation over the 
barrier between two sites, each having a coulombic 
potential well associated with it. For neighbouring 
sites at a distance R, the coulomb wells overlaps 
and resulting in a lowering of the effective barrier 
from W

M
 (at an infinite separation) to a value 

WM

Conduction band

E

R

W
∆

Figure 3: Schematic illustration of the lowering of 
the barrier height for two closely spaced charged 
centres on the CBH model.
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approximation’ has been used, where carrier 
motion is not just confined to pairs of states, but 
the contributions of other sites to the d.c. current 
are taken into account in an average way and a 
percolation condition is imposed. In this way, the 
d.c. conductivity for bipolaron transport within 
the CBH model is given by 

 σ σdc o
pW R

T
= exp

( )-



k

 (38)

where the pre-exponential factor given by

 σo
o

p
Mg N

R R
W

T
= - 





2
5 5

15
[ ]expmin k

 
(39)

where N is the defect concentration and the 
conductance term g

o
 is given by45

 g
e

T
o

o
W

T
M

=
2

4k kτ exp( )

 
(40)

where the symbols have their usual meaning. R
p
 

is the critical percolation radius which in three 
dimensions is given by

 
R

Np = 



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8

4

1

3

π
 

(41)

and R
min

 is a lower limit of the hopping distance 
Rω, given by 

 
R

e

Wo M
min =







2 2

πεε
 

(42)

which is necessary to preclude any unphysical 
values of the hopping energy Wω. Therefore, the 
activation energy for the d.c. conductivity in this 
model namely W(R

p
) is simply the barrier between 

the two sites separated by the critical percolation 
radius R

p
.

 
W R W

e

Rp M
o p

( ) = -
2 2

πεε
 (43)

Based on the above considerations and 
with the defect density N ≈  1016 cm-3 in the 
case of a-As

2
Se

3
, the predicted d.c. conductivity is 

σ
dc

 = 10–13 S/cm,45 which is comparable but still 
less than the measured d.c. conductivity. Thus, 
for most cases, it is expected that the a.c. and d.c. 
conductivities in chalcogenide materials are not 
due to the same mechanism, and so a separation 
of the total measured conductivity into separate 
a.c. and d.c. components, as in eqn. 1, is in general 
a valid procedure.

5.  Experimental Results on Chalcogenide 
Glasses

An experimental a.c. conductivity measurement 
has been reported for a wide variety of amorphous 
chalcogenides including simple selenium, binary 
and ternary semiconductors. Although there 
would appear to be an excess of a.c. data for these 
materials, in fact many of the reports are rather 
restricted in scope, describing a.c. measurements 
taken over a limited range of frequencies and 
temperatures. We note in passing here that in order 
to make detailed comparison with existing theories, 
and hence ultimately to decide between models on 
the basis of experimental evidence for the a.c. loss 
data (both conductance and capacitance) should 
be measured over as wide a range of frequencies 
and temperatures as possible, ideally for a range of 
compositions of the material as well. Nevertheless, 
we show in figures 4 and 5 representative 
experimental data typical of chalcogenide 
materials available in the literature measured 
over range of temperatures and frequencies. In 
figure 4 we show the temperature dependence of 
conductivity of a-Se at different frequencies.46 The 
temperature dependence of these data is shown 
more explicitly by plotting against the inverse of 
temperature. It can be seen from these figures that 
the a.c. conductivity has only weak temperature 
dependence, which is considerably less than that 
exhibited by the d.c. conductivity. The frequency 
exponent of the conductivity s shows the strong 
dependence on temperature, where at low 
temperatures the exponent found to be unity 
and at high temperatures the value decreases to 
0.85. Similar results were obtained on other Se 
based alloys such as As

2
S

3
 and As

2
Se

3
, however, the 

exponent found to vary ± 0.05 among the different 
samples at a given temperature.47 In figure 5, we 
show the temperature dependent conductivity of 
ternary chalcogenide glass system measured at 
different frequencies, where all the results show the 
similar features relating to the a.c. conductivity. It is 
worthwhile to mention that there are discrepancies 
in the magnitude of the a.c. conductivity between 
the bulk and vapour-deposited thin-film of the 
same material at a given temperature.

We shall focus in the following sections in 
more detail on a.c. conductivity spectra and their 
temperature dependences in different chalcogenide 
glasses and compare with the different theoretical 
model predictions. More specifically, we divide 
the temperature range into three different regimes 
such as (i) low temperatures (below 100 K), 
(ii) intermediate temperature (100 K–300 K) and 
(iii) high temperatures (above 300 K). Certain 
features of the experimental observations relating to 

Bipolaron: Those for 
which the special extent 
of the polaron is large 
as compared with the 
interatomic spacing and the 
distortion clouds overlap 
with each other
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the a.c. conduction in chalcogenide materials serve 
to rule out immediately several of the theoretical 
models described earlier. In particular, the behaviour 
of the frequency exponent s with both temperature 
and frequency is an important factor.

5.1. Low Temperatures
The behaviour of the a.c. conductivity of 
chacogenide glasses at low temperature regime, 
i.e. below 100 K has been attributed to the QMT 
phenomenon. The conductivity spectra appear 
to become temperature-independent and the 
frequency dependence becomes liner at the 
lower temperatures with an exponent value of 
nearly unity. Obviously, at very low temperatures 
the transition mechanism must tend towards 
the quantum limit of atomic tunnelling model 
(Sec. 4.2.1). The parameters that appear in the 
conductivity expression for this model, namely two 
level system (TLS) asymmetry-energy bandwidth 
∆

o
, the width λ

o
 of the distribution of tunnelling 

parameters and the dipole moment p
o
 are not 

known explicitly, and so estimates for the density 
of atomic sites responsible cannot be obtained. 
The only way to isolate this parameter is to study 
a given material in detail, varying the density of 
active sites in a systematic way if possible, perhaps 
by doping or irradiation.

The involvement of atomic motion in low-
temperature a.c. loss has been unequivocally 
determined in simple system like amorphous 
SiO

2
 containing an appreciable amount of OH 

impurity.47,48 In this case, the terminal OH groups 
can rotate about the Si-O bond between a number 
n of positions corresponding to various potential 
minima. In the case of chalcogenide glasses, 
Philips has examined the low temperatures results 
obtained on glassy As

2
S

3
 via a.c. conductivity, 

specific-heat and photo-echo measurements 
and concluded that in this material there exists a 
subset of polar states, which are responsible for the 
temperature variation of the dielectric constant 
and sound velocity.49 It is interesting to note that 
the density of polar states deduced in this way 
(∼1.6 × 1018 cm3 eV–1) is almost identical with the 
value obtained from a.c. conductivity data at high 
temperatures, assuming that bipolaron motion 
via the CBH mechanism is responsible. A possible 
candidate for the atomic tunnelling centre is 
therefore the D- centre, which is sufficiently polar by 
virtue of the charge density localized on the defect. 
Additionally, it has been shown by the photo-echo 
measurements that the induced dipole moment 
which gives an intersite separation of ≈10 Å,50 
which is consistent with the hopping distance, 
deduced from the a.c. conductivity measurements 
assuming CBH bipolaron transport. Therefore, the 
low temperature a.c. conductivity measurements 
show that a close link between tunnelling states 
and the charged defect states (D+ and D- centres).

5.2. Intermediate Temperature Regime
In the intermediate temperature regime, the 
observation that the frequency exponent s is 
temperature-dependent and it indicates the 
signature of the fact that the hopping distance 
at a particular frequency becomes a function of 
temperature or in other words that the effective 
dipole moment is temperature-dependent. In 
this context, there are two models which take into 
account for the experimental observation: they are 
the CBH model and the overlapping large polaron 
model.

The CBH model was first proposed by Pike 
in 1972 to account for the a.c. conduction in 
amorphous scandium oxide films43 and later it has 
been extended to chalcogenide glasses by Elliott.44 
In chalcogenide glasses, the intrinsic charged 

Figure 4: The real part of the a.c. conductivity for a-Se is plotted against 
the inverse of the temperature for three different frequencies (Lakatos and 
Abkowitz 1971). The temperature dependence of the d.c. conductivity is also 
shown in the figure.
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defect states that give rise to the Coulombic 
potentials, and which, when they overlap, lead 
to a lowering of the activation-energy barrier 
to hopping. It is assumed that for most of the 
materials in the intermediate temperatures only 
charged defect states are present, i.e. the effective 
Hubbard correlation energy U

eff
 is sufficiently 

large (U
eff

 > kT) indicating that all neutral Do 
centres are converted to D+ and D– centres. In this 
case the only possible form of electron transfer 
between defects that preserves the identity of the 
defects if a.c. field is applied. However, it should 
be mentioned that in certain materials there is 
evidence for the presence of Do centres at room 
temperature, and that in these cases single-polaron 
transport would be predominant.

5.3. High Temperature Regime
In this section we shall discuss the a.c. behaviour 
of chalcogenide glasses at temperatures higher 
than 300 K. Above this temperature range the 

measured conductivity approaches the d.c. 
limit and here the temperature dependence of 
σ

dc
 is usually much greater than the frequency 

dependence part. However, we are not interested 
in this rather trivial instance of strongly 
temperature-dependent behaviour, since 
we are assuming that, at least for the case of 
chalcogenide glasses, a.c. and d.c. conductivities 
are due to different mechanisms. The temperature 
dependent behaviour under consideration can 
be seen in the experimental data reported in the 
literature by various authors and in different 
chalcogenide systems. Based on these results at 
longer time scale, the motion of charge carriers 
has been characterized by the long-range diffusive 
behaviour, i.e. random motion. On the other 
hand, in a short time scale the charge carriers 
are characterized by the subdiffusive behaviour, 
i.e. the charge carriers perform the correlated 
forward backward hopping motions. The 
temperature dependence of σ′(ω) predicted by 
CBH model does in fact increase with increasing 
temperature, but it is insufficient to account for 
the increase observed experimentally. The a.c. 
conductivity resulting from the CBH motion of 
single electron has been in discussed earlier and 
in the narrow-band limit (kT > ∆

o
), valid at high 

temperatures.

6.  Correlation of the A.C. Conductivity 
to Material Properties

In this section, we shall discuss the relationship of 
the a.c. conductivity to other material parameters 
of a given material, in particular the band gap and 
defect concentrations, in the context of the CBH 
model. The parameter W

M
 appearing in eqn. 32 is 

the maximum energy required to remove, in the 
case of bipolaron transport, two electrons from 
a D- centre, i.e. when infinitely separated from a 
D+ centre. An estimate for the value of W

M
 can be 

obtained from a consideration of the properties 
of centres suffering a negative U

eff
. The activation 

energy required to take two electrons out of a D- 
centre and to place them in the conduction band 
is given by 

 W B W WM = - +1 2  (44)

where B is the optical energy gap, W
1
 is the energy 

required to take an electron from the valence 
band and place it on a Do centre thereby turning 
it into D-, and W

2
 is the total energy necessary to 

take an electron from a Do centre and place it in 
the conduction band. W

M
 can also be understood 

as being simply twice the energy difference 
between the Fermi level and the conduction 

Figure 5: The temperature dependence of the total measured conductivity 
σ(ω) and d.c. conductivity of Pb

20
Ge

19
Se

61
 glass sample at various frequencies. 

The temperature dependence of the d.c. conductivity is also shown in the 
figure.
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band. Amorphous chalcogenide glasses are in 
general p-type, exhibiting simply activated d.c. 
conductivity of activation energy ∆E. Thus W

M
 

can be written equivalently as 

 W B EM = −2( )∆  (45)

which has the advantage that W
M

 can be estimated 
using commonly measured experimental 
parameters. Since the Fermi level of these materials 
often lies near the mid-gap (so ∆E ≈ ½B), a 
consequence of the fact that W

1
 ≈ W

2
, which further 

leads us both eqn. 44 and eqn. 45 indicate that to a 
first approximation we may take W

M
 ≈ B. From the 

above results, it is clear that W
M

 is associated with 
the band gap of a material exhibiting a negative 
U

eff
 is that the a.c. and d.c. conductivities should 

therefore be correlated if the loss mechanism 
is CBH involving D- and D+ centres. Such 
correlation of experimental data for chalcogenide 
glasses has previously been noted by Davis and 
Mott51 but without any reasons for the observed 
correlations. If the a.c. and d.c. conductivities 
arise from different mechanisms (as mentioned 
earlier), it is not obvious at first sight why there 
should be any correlation whatsoever between a.c. 
and d.c. behaviour. The possible resolution of this 
paradox is that there are defect states exists in the 
gap, which effectively control the d.c. conductivity 
by governing the position of E

F
 within the gap, 

and which also act as relaxation centres giving 
rise to dielectric loss. Thus, the energy gap B 
is an important parameter in determining the 
magnitude of the both a.c. and d.c. conductivities 
of chalcogenide materials and consequently the 
charge transport are predominantly governed by 
bipolaran mechanism. In addition to the band 
gap dependence of σ′(ω), there is a concomitant 
dependence of the frequency exponent s of the a.c. 
conductivity with the energy gap predicted by the 
CBH model. It has been observed that the exponent 
s is predicted to increase with increasing W

M
 and 

consequently with B in the As
x
Se

1-x
 glasses.52 It 

can be seen that the behaviour of s with arsenic 
content qualitatively follows that of ∆E.

7. Doping Effects
It is well known that amorphous chalcogenides 
are normally insensitive to electrical doping by the 
addition of impurities, because of the pinning of 
the Fermi level at midgap by the valence-alternation 
pairs (VAP).53 However, it has been realized by Mott 
that charged additives could change the ratio of 
valence-alternation pairs to such an extent that the 
Fermi energy could become unpinned.54 Metallic 
additives such as Bi and Pb in chalcogenide glasses 

enter the network as charged species, altering the 
concentration of VAP.55,56 When the concentration 
of charged additives exceeds that of intrinsic VAP, 
the chalcogenide glasses can exhibit carrier-type 
reversal, i.e. p-n transition has been observed in 
different alloyed chalcogenide glasses, with the 
addition of Bi and Pb.57–61 In order to understand 
the change in the conduction mechanism in these 
materials by using the conductivity spectroscopy 
technique few attempts have been made in the 
literature. The addition of Pb impurities is found to 
change the conduction mechanism and it appears 
to occur by two processes, namely single-polaron 
hopping between randomly distributed defect sites 
and bipolaron hopping between non-randomly 
distributed defect sites. At lower temperatures the 
calculations based on CBH model for bipolaron-
hopping contribution agrees quite well with the 
experimental data points. The single-polaron- 
hopping process becomes the predominant 
contributor to σ′(ω) at higher temperatures.62–64 
More specifically, the Pb or Bi metal doping brings 
out a relative diminishing in D+ defects as compared 
D- ones. As the doping concentration increases, 
the bipolaron hopping contribution decreases due 
to the decrease in the density of D+ defect states. 
But single polaron hopping contribution increases 
because of the shift of the Fermi level towards 
the conduction band as discussed earlier. Due to 
the shift of E

F
 towards conduction band, W

2
 will 

decrease and it seems that single polaron hopping 
starts to dominate over bipolaron hopping as the 
concentration of metal dopant increases.

Additionally, the incorporation of transition 
(e.g. Mn) and certain other metals such as (Ag, Cu 
and Tl) has been observed to cause pronounced 
changes in the electrical and optical properties65–67 
of chalcogenide glasses. The changes are most 
pronounced when the materials are ‘chemically 
modified’, i.e. when the impurity is introduced 
into the amorphous solid under the conditions 
of thermal non-equilibrium. The increase in the 
total d.c. conductivity can be attributed to one 
of the three possible causes: (i) impurity induced 
movement of the Fermi level, (ii) hopping 
conduction in impurity-related gap states and 
(iii) partial contribution of ionic conduction 
from the incorporated metallic species. In order 
to differentiate between the various contributions 
more clearly, additional experiments need to 
be performed, for example thermopower or 
transport—number measurements. If the CBH 
mechanism involving charged structural defects 
is assumed to be operative for the undoped 
chalcogenide glasses, several consequences may 
result from doping with impurities. Kitao and 

Valence-alternation 
pairs: In chalcogenide 
glasses, contain positively 
and negatively charged 
defect states known as 
valence-alternation pairs
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co-workers have found that Ag-doped glassy 
As

2
Se

3
 exhibits an ωs frequency dependence over 

the entire frequency range measured, but that the 
value of the frequency exponent found to decrease 
with the addition of Ag.65 More interestingly, it 
was found that the frequency exponent s is much 
more strongly temperature-dependent when the 
glass is doped with metallic impurities than when 
it is undoped. The necessity of assuming single-
polaron motion for the doped glasses implies 
that either D+, Do or D-, Do centres are involved, 
but it is then difficult to understand why these 
centres are paired in accordance with a Coulombic 
interaction. A more likely situation is for an Ag+ 
ion, acting as an ionized donor,65 to trap an electron 
from a neighbouring D- centre, thereby forming 
a Do centre; single-electron hopping between a 
D+ and the Do can take place. Similar arguments 
involving single-polaron transport have been used 
by Takano et al. to explain the data on Cu doped 
glassy As

2
Se

3
, except that in addition a contribution 

due to bipolaron CBH was found to be necessary 
in order to fit the data at lower temperatures.66

8. Conclusions
The motivation of this review has been to 
survey the various theories for a.c. conduction 
in amorphous semiconductors, emphasising 
towards the recent developments that have taken 
place. The experimental a.c. loss behaviour of 
chalcogenide glasses have been reviewed in more 
detail. Based on the available experimental results, 
at least for temperatures above 100 K, it appears 
that the a.c. conductivity of chalcogenide glasses 
can be described by the ‘correlated-barrier-
hopping’ (CBH) model in a more appropriate 
manner. At very low temperatures, the CBH is no 
longer valid, since it considers the charge transport 
by classical hopping rather than quantum 
mechanical tunnelling. In order to understand 
the a.c. loss behaviour on an atomic scale level, 
two advances needs to be made. One of the major 
stumbling blocks is the relative paucity of high-
quality experimental data taken in a systematic 
fashion in a series of compositions for a given 
material. More specifically, the experiments to 
be carried out over wide range frequency and 
temperatures, particularly at low temperatures, 
where there is very little data extant. Additionally, 
the validity of any theory requires a comparison 
between the real and imaginary part the dielectric 
functions, and such comparisons are very limited 
at present. The other area in which the further 
development needed and equally important is 
our present understanding of the theory. An 
advanced theory should be developed in a self-

consistent fashion the changeover from classical 
hopping to quantum-mechanical tunnelling in 
a single theory, i.e. it should be able to consider 
the transition from high-temperature behaviour 
to low-temperature behaviour of the a.c. 
conductivity of all amorphous semiconductors, 
not just chalcogenide glasses. The other aspect in 
which further theoretical development is required 
concerns the coupling between lattice distortion 
and electronic states at defect sites. The small-
polaron theory of Emin has addressed this to 
a certain extent, but for the case of essentially 
normally bonded sites, rather than for intrinsic 
defect sates, which we believe are responsible 
for the a.c. conductivity behaviour of most 
amorphous materials. With such improvements, 
we confidently expect the a.c. loss technique to 
yield important information about the nature 
and distribution of defects in amorphous 
semiconductors in the years to come.
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