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Abstract | Following the centuries old concept of the quantization of flux 
through a Gaussian curvature (Euler characteristic) and its successive 
dispersal into various condensed matter properties such as quantum Hall 
effect, and topological invariants, we can establish a simple and fairly 
universal understanding of various modern topological insulators (TIs). 
Formation of a periodic lattice (which is a non-trivial Gaussian curvature) of 
‘cyclotron orbits’ with applied magnetic field, or ‘chiral orbits’ with fictitious 
‘momentum space magnetic field’ (Berry curvature) guarantees its flux 
quantization, and thus integer quantum Hall (IQH), and quantum spin-Hall 
(QSH) insulators, respectively, occur. The bulk-boundary correspondence 
associated with all classes of TIs dictates that some sort of pumping or 
polarization of a ‘quantity’ at the boundary must be associated with the 
flux quantization or topological invariant in the bulk. Unlike charge or spin 
accumulations at the edge for IQH and QSH states, the time-reversal (TR) 
invariant Z2 TI class pumps a mathematical quantity called ‘TR polarization’ 
to the surface. This requires that the valence electron’s wavefunction (say, 
ψ↑( )k ) switches to its TR conjugate ψ ↓ -†( ( )k ) odd number of times in half 
of the Brillouin zone. These two universal features can be considered as 
‘targets’ to design and predict various TIs. For example, we demonstrate 
that when two adjacent atomic chains or layers are assembled with opposite 
spin-orbit coupling (SOC), serving as the TR partner to each other, the system 
naturally becomes a Z2 TI. This review delivers a holistic overview on various 
concepts, computational schemes, and engineering principles of TIs.
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1 Introduction
Phase transition is distinguished by a change in 
symmetry, involving both a reduction or addition 
of symmetry in the ground state. A reduction of 
symmetry, which commonly involves translational, 
Time-Reversal (TR), rotational, gauge symmetries, 
among others, leads to a classical/quantum phase 
transition, and is defined by an order parameter 
within the Landau’s paradigm. On the contrary, a 
topological phase is defined by the emergence of a 
new quantum number (such as Landau level, 
Chern number, etc.), arising from the geometry or 
topology of the band structure. The topological 
invariant can be understood from a pure 
mathematical formalism of the Euler characteristic 
or Euler number. This implies that the net flux 
through a Gaussian curvature is always quantized. 
This is precisely what happens, according to 
Laughlin’s argument,1 in two-dimensional (2D) 
lattices (which can be represented by a torus—a 
Gaussian curvature) when magnetic field is 
applied perpendicular to it. In this case, the 
magnetic flux through the 2D system or torus 
remains quantized, giving rise to Integer Quantum 
Hall (IQH) effect. This is the first realization of 
topological invariance in condensed matter 
science.

IQH is a well understood phenomenon, with 
different ways to quantify its topological invariants. 
For example, Thouless, Kohmoto, Nightingale, 
and Nijs (TKNN) have shown that the IQH 
effect can also be understood from the Berry 
phase paradigm in the momentum space.2 The 
corresponding topological invariant is thus known 
as TKNN number or Chern number. Haldane 
proposed a pioneering idea to obtain Quantum 
Hall (QH) effect without external magnetic field in 
a honeycomb lattice.3 Honeycomb lattice has two 
different sublattices. With the application of an 
external gauge field, the intra-sublattice hoppings 
possess chiral motion, and the chirality of two 
sublattices becomes opposite to each other. Each 
intra-sublattice hopping form counter-propagating 
triangular ‘cyclotron orbits’, each threading 
opposite ‘magnetic fields’. As we will go along in 
this review, we will identify that the formation of 
localized ‘cyclotron orbitals’ in 2D lattice without 
a magnetic field, which we call ‘chiral orbits’, is 
the key ingredient to obtain QH effect. Each such 
chiral orbit now encloses integer flux quanta, in 
the same language of the IQH effect, and due to 
TR symmetry breaking a net QH effect survives.

The next development to the TI field was put 
forward by Kane and Mele in 2005, for obtaining 
TR invariant TIs, as known by Z

2
 TI.4 They realized 

that Haldane’s ‘gauge field’ can be achieved by SOC 

Gaussian curvature: 
A Gaussian curvature is 

denoted by a curvature whose 
each point intersects a concave 

and convex curves in two 
perpendicular directions.

Spin-Orbit Coupling (SOC). Owing to the spin-
momentum locking, the right- and left-moving 
electrons have opposite spin polarizations. Since 
the TR symmetry is intact here, the flux passing 
through different spin-resolved chiral orbits in 
a 2D lattice are exactly equal but opposite. This 
makes the net flux to be zero, leading to no charge 
pumping to the edge, but the difference between the 
two fluxes is finite, giving rise to a net spin-resolved 
QH effect, as known by Quantum Spin-Hall (QSH) 
effect. This is the foundation of the 2D TI.

The generalization of the Z
2
 topological 

invariant to 3D cannot, however, be easily done in 
terms of chiral orbit formations, except in special 
cases of layered systems and heterostructures.5 
There are several mathematical formulations of 
the Z

2
 invariant4,6–14; among which, the Kane-Mele 

method of TR polarization is widely used.4 They 
proposed a derivation of the bulk Z

2
 topological 

invariant from the bulk-boundary correspondence, 
which is a necessary condition for all topological 
invariants. Recall that in the case of IQH and QSH 
insulators, charge and spin are accumulated at the 
edge. Based on this, they enquired that something 
similar must be pumped to the boundary in Z

2
 

TIs. Since QSH insulator also belongs to the Z
2
 

class, the quantity that is pumped to the edge must 
accommodate spin as a subset. Since the spin-up 
state at the +k and spin-down state at –k are TR 
conjugates to each other, Kane-Mele proposed 
that a more general mathematical quantity, called 
‘TR polarization’, is accumulated at the edges in 
this case. Here, electrons possessing a particular 
wavefunction and their TR conjugate partners 
move to different edges. This incipiently requires 
that the electron exchanges its TR partner odd 
number of times in traversing half-of the Brillouin 
zone (BZ). In what follows, Z

2
 topological invariant 

is nothing but counts of the number TR partner 
exchanges; odd number corresponds to Z

2
 invariant 

ν = 1, while even number implies ν = 0. Since the 
TR symmetric topological invariant only takes two 
values here, it has Z

2
 symmetry, but TR breaking 

IQH state can take arbitrarily large Chern number.
Chirality of electrons is an essential ingredient 

for TIs, which is obtained either by magnetic field, 
or in bipartite lattice (such as staggered hopping 
in Su-Schrieffer-Heeger (SSH) lattice,15 or 
graphene) or via SOC. Such chirality can also arise 
from the orbital texture inversion between even 
and odd parity orbitals at the TR invariant points, 
leading to a distinct class of spinless topological 
and Dirac materials.16,17 In simple terms, chirality 
means that the electron’s hopping matrix-element 
must be complex in the momentum space. As the 
electron’s hopping encloses a ‘chiral orbit, in the 

Chiral orbit: ‘Chiral orbit’ 
is a fictitious orbit imagined 

in the momentum space 
under a momentum space 
‘pseudo-magnetic field’ or 

Berry curvature. This term is 
dubbed in analogy of cyclotron 

orbit formed under applied 
magnetic field.
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momentum space’, the complex phase manifests 
into a magnetic field at the center—either applied, 
or self-generated (Berry curvature). For Z

2
 class, 

the TR partner switching discussed in the previous 
paragraph is nothing but the exchange of electron’s 
complex phase to its complex conjugate odd 
number of time in half-of the BZ.

Subsequently, Fu-Kane simplifies the 
calculation of Z

2
 invariant from the parity 

analysis.7 They showed that if a system has both 
TR and inversion symmetries, the Z

2
 topological 

invariant can be computed simply by counting 
how many times the electron exchanges it parity 
at the TR invariant momenta. If the valence band 
is not fully defined by a single parity, rather it 
exchanges parities odd number of times with the 
conduction band (as in the case of TR partner 
exchange), it gives a non-trivial topological 
invariant. This is also equivalent to chirality 
inversion in special cases as we will demonstrate in 
our engineering procedures. The band gap between 
the opposite parity conduction and valence 
bands at the TR invariant momenta also serves 
a ‘negative’ Dirac mass in the Dirac equation.9,18 
The consequence of this band inversion is very 
rich, allowing protected gapless surface or edge 
states with Dirac cone. This provides an alternative 
springboard to obtain numerous exotic properties 
originally proposed by solving Dirac equation in 
the high-energy theories.

This theory leads to the search of materials 
with band inversions at the TR invariant k-points 
as a simple tool to identify Z

2
 TI. The mechanism 

for the parity inversion is not unique, and can, 
in-principle, vary to a wide range of tuning 
parameters as well as electron-electron interactions. 
Among them, SOC is responsible for the band 
inversion in most of the known TIs. Initially, the 
search for TI had been much ‘blind-folded’,  
seeking materials with odd number of band 
inversions triggered by SOC.6,9,18,19 Subsequently, 
more advanced methods of TI materials genome 
such as ‘adiabatic transformation’ method was 
developed,20 which can be applied to systems 
without inversion symmetry. In this method, one 
starts with a known TI, and continuously tunes 
the atomic number of the constituent elements, 
and arrives at a new material. In this process if the 
band gap has not closed and reopened at the TR 
invariant points, the new material must also be a 
non-trivial TI. These two methods have enabled 
the discoveries of a rich variety of TI materials.

Subsequently, various distinct classes of 
TI are predicted and discovered. For example, 
mirror symmetry and p-wave superconducting 
pairing symmetry can lead to two distinct classes 

Berry curvature: 
Berry curvature is a fictitious 
magnetic field that can be 
derived in the momentum 
space as to be associated with 
the Berry phase. The formula 
used for the derivation is 
analogous to the Pierels phase 
arising from applied magnetic 
field. 

Adiabatic transformation: 
Adiabatic transformation 
is refereed to slow and 
continuous change of 
materials parameter such 
as lattice constant, atomic 
number etc and arriving at a 
different material or material 
phase.

of TIs, called topological crystalline insulator,21 
and topological superconductor,22,23 respectively. 
Spontaneous TR symmetry breaking TIs, without 
magnetic field, are known as Quantum Anomalous 
Hall (QAH) insulator in 2D, or topological axion 
insulator in 3D with subtle differences between 
them.24,25 The axion insulator has a quantized 
magnetoelectric response identical to that of a 
(strong) TI, but lacks the protected surface states 
of the TI. Other methods of obtaining insulating 
state such as disorder, Kondo effect, or Hubbard 
interaction, is associated with odd number of band 
inversion, are also proposed to give topological 
Anderson insulator,26,27 topological Kondo 
insulator,28 and topological Mott insulator29, 
respectively. Finally, a new class of TI is proposed 
by the present author, which is called quantum 
spin-Hall density wave (QSHDW) insulator in 
quasi-2D.30 When two opposite chiral states are 
significantly nested in a given system, it renders 
a transitional symmetry breaking Landau order 
parameter (forming spin-orbit density wave),31,32 
which can be associated with odd number of band 
inversion and Z

2
 topological invariant for a special 

nesting vector. In this case, the parity or chirality 
inversion occurs in the real space between different 
lattice sites, breaking the transitional symmetry, 
but not the TR symmetry.

Density functional theory (DFT)18,19 
calculations take a preceding role in predicting 
most of the TIs, many of which are followed by 
experimental realizations. Owing to weak SOC in 
graphene, this material has not been realized to be 
intrinsic TI despite its first prediction. HgTe/CdTe 
quantum well state were predicted to be 2D TI,9 which 
was followed by its experimental realization.33 The 
3D topological semimetal predicted8 and realized34 
is Bi

1-x
Sb

x
. The first 3D TI was discovered in Bi

2
Se

3
, 

Bi
2
Te

3
 and Sb

2
Te

3
 families, both theoretically and 

experimentally.18,19,35 This is followed by a series 
of predictions of 3D TIs including gray tin,7 
HgTe, InAs,20 ternary tetramytes Ge

m
Bi

2n
Te

(m+3n)
 

series,36 half-Huesler compounds,37,38 Tl-based 
III-V-VI2 chalcogenides,39,40 ternary I-III-VI2 and 
II-IV-V2 chalcopyrites, I3–V–VI4 famatinites, 
and quaternary I2–II–IV–VI4 chalcogenides,41 Li

2
 

AgSb,20 LiAuSe honeycomb lattice,42 β-Ag
2
Te,43 

non-centrosymmetric BiTeX (X = Cl, I, Br)44–46. 
Recently a number of materials were discovered to 
have a stable 2D structure, among which Si, Ge46, 
Sn,47 As,48 Bi,49,50 P51 are predicted to exhibit QSH 
insulating state with SOC, and with other tuning. 
Pb

1-x
Sn

x
Se/Te52–54 and SnS55 are the only known 

topological crystalline insulators known to date. 
f-electron based compounds such as SmB

6
,28,56 

and YbB
6
,57 are predicted to be topological Kondo 
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insulators, while PuB
6
 is considered a topological 

Mott insulator.58 URu
2
Si

2
 is considered as a 

candidate material for the spin-orbit density wave 
induced hidden topological order system.31,59,60 
Ir, and Os-based oxides are proposed to be axion 
insulators.25 The list of QAH insulator is rather 
small,61 most of which requires external tuning 
with magnetic doping and thin films. LaX (X = Br, 
I and Cl) family is predicted to be intrinsic QAH 
insulator with sizable band gap for applications.62 A 
complete materials repository and their individual 
properties can be found in Refs.63,64

Despite this tremendous success as well as 
continuing research activities for harvesting more 
TI materials, the real struggle with the presently 
available materials is that the unwanted bulk 
conduction band lies below the Fermi level, and 
contributes to the transport phenomenon. There 
have been considerable efforts to eliminate the 
bulk band above the Fermi level by chemical 
doping,65,66 pressure,67,68 photo-doping,69 and 
heterostructure,70,71 among others. All these efforts 
have, however, little success, and the ultimate 
aim for obtaining pure edge current remained 
unachieved. In the 2D counterpart, the challenge 
extends to the lack of material diversity. Moreover, 
although HgTe/CdTe33 and InAs/GaSb72 are 
demonstrated by transport measurement to show 
QSH behavior, for other measurements, these 
samples are proven inapt.

A jump-start to the field was offered by 
various engineering principles of TIs. There have 
also been considerable efforts to engineer TIs by 
proximity induced SOC in graphene through 
adatoms,73 or with interfacing with transition 
metal di-chalcogenides,74,75 and in artificial 
heterostructures,5,16,76–78 and in optical lattices.79–81 
Artificially grown heterostructures can be very 
versatile as they offer higher materials flexibility 
and tunability. The present author has proposed a 
number of design principles for engineering quasi-
1D,30 2D,81 as well as 3D TI5,16 by decorating atoms 
or layers. The basic idea lies in generating chiral 
orbits in a periodic fashion without breaking TR 
symmetry in 2D plane. Each chiral orbit thereby 
encloses a pseudo-magnetic field (Berry curvature) 
in the same sense as in the TKNN language and 
commence quantized Chern number.81 In real-
space, electron-electron interaction induced 
translational symmetry breaking can lead to 
chirality inversion between different sublattices, 
leading to a new type of Z

2
 quantum order, which 

is associated with topological invariant and edge 
states.30 The 3D generalization follows similarly 
in that the adjacent layers has opposite SOC, 
such that they serve as TR partners to each other. 

With a band inversion, a 3D TI naturally arises.5 
A heterostructure of even and odd orbitals is also 
a fertile setup to generate Dirac materials.16 The 
second part of this article discusses various forms 
of these engineering principles.

TI has been reviewed extensively in various 
forms. Three review articles are published in the 
Review of Modern Physics.23,63,82 Topological band 
theory63,83 and topological field theories14 are also 
discussed extensively. A materials repository can 
be found in Refs.63,64 Topological superconductors 
are reviewed in Refs.23,84,85 QSH86 and QAH61 
insulators are also reviewed separately. Reviews of 
Dirac and Weyl materials can be found in Refs.87,88. 
Two books are available to understand the basics 
of various TIs.89,90

2 Theories of Topological Invariants
Topological band theory encompasses broadly 
defined computational schemes for the calculations 
of various topological invariants in systems with 
or without TR symmetry, inversion symmetry, 
particle-hole symmetry, and mirror symmetry. 
Depending on larger number of symmetries 
present in the Hamiltonian, the computation of 
the corresponding topological invariant is 
accordingly simplified. Both Chern number and 
Z

2
 invariants are defined by single particle 

wavefunction, and can be calculated using the 
tight-binding or Wannier wavefunction within 
the DFT. For weakly interacting systems, such 
calculation can be extended to the quasiparticle 
spectrum within a Fermi-liquid or mean-field 
theory. For strongly correlated systems, the Chern 
number can be calculated by using the self-energy 
dressed Green’s function.91,92 In addition to 
rigorous calculations of Chern number or Z

2
 

invariants, there are also other simplified methods 
that can be used for preliminary diagnosis of a 
potential TI. For examples, one can determine the 
non-trivial TI by simply counting the odd number 
of band inversions at the TR symmetric k-points, 
or employing the adiabatic (band gap-) continuity 
between a known TI and an unknown insulator, 
and/or bulk-boundary correspondence.

We start this section with the historical 
development of topology, which forms the basis 
for modern topological invariant. Then we discuss 
various topological invariant calculations based on 
the number of symmetries present in a given case. 
Across most of the methods discussed below, some 
unified concepts can be excavated, which combine 
diverse formalisms of topological invariant. Among 
them, we have (i) Complex phase associated with 
electron hopping with quantized phase winding; 
(ii) Formation of cyclotron or chiral orbits in 

Preliminary diagnosis: 
Preliminary diagnosis means 
obtaining the indication of a 

given property, but this method 
can not be taken as a proof.

Complex phase: A simple 
Bloch phase is a complex phase, 
but when the electron hopping 
in +r and -r are exactly equal, 

the net imaginary term in 
the Bloch phase cancels out. 

Non-vanishing Bloch phase is 
often obtained in bipartite or 

the system has SOC, etc.
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periodic lattice (Gaussian curvature); (iii) Odd 
number of exchange of electron’s complex phase, 
or chirality or TR conjugate in half of the BZ; (iv) 
Search for bulk property (s) which can lead to 
accumulation of charge (IQH), or spin, (QSH), or 
TR polarizibility (Z

2
 class). In the sections below, 

we discuss such corresponding basic principles 
used for the derivation of various topological 
invariants.

2.1  Gaussian curvature, Euler number, 
and genus

Inception of the concept of invariants can be 
traced back to the times of Leonhard Euler and 
Carl Friedrich Gauss in the 18th century. Gaussian 
curvature can be a good starting point to build 
up the discussion. It is defined by the product of 
two principle curvatures (κ

1
, κ

2
), along any two 

perpendicular directions at a given point (see 
Fig. 1) as K = κ

1
κ

2
. If a principle curvature has a 

minimum (maximum) at the point (convex and 
concave curvatures), we assign its value to be -1 
(+1). In this sense, if a point on the surface has a 
minima or maxima in both principle directions, 
then the corresponding Gaussian curvature is +1 
[Figs 1(c–d)]. The outer and inner surfaces of a 
sphere provide the corresponding examples, both 

being topologically equivalent. On the other hand, 
if a point simultaneously possesses maximum 
and minimum in the two principle directions, 
the Gaussian curvature yields -1 [Fig. 1(e)]. The 
camel’s back or a torus is non-trivial Gaussian 
curvature with Κ = -1.

Euler characteristic (also known as Euler 
number) dictates that the flux through a Gaussian 
curvature is always quantized as

S dS ,Κ = =2πν νwhere integer.  (1)

The above integral formula can also be 
expressed in terms of the Gauss-Bonnett formula, 
giving a topological invariant, called genus (g), 
relating the Euler characteristic as ν = 2–2g. The 
Euler characteristic for a sphere is 2, giving g 
= 0 [Fig. 2(a)]. The same for a torus or Möbius 
strip is 0, with g = 1 [Fig. 2(b)]. Thus, the former 
geometry is attributed as topologically trivial, 
while the later (torus, Möbius strip) as non-
trivial curvature. Double torus and a three–hole 
pretzel have Euler characteristic as -2, and -4, 
with g = 2, and 3, respectively [Fig. 2(c)]. From 
these examples, it is evident that the genus or the 
topological invariant is related to the number of 
holes present in a Gaussian geometry. Another 

Figure 1: Various curvatures and corresponding invariants. (a–b) Concave and convex curvatures with, 
say, curvature values -1 and +1, respectively. (c–d) Topologically trivial points having the same curvatures 
along both principle directions. (e) Non-trivial Gaussian curvature having concave and convex curvatures 
in the two principles axes. Examples of such curvature (also known as saddle point) include camel-back, 
torus (donut), pretzel etc. (see Fig. 2).

Figure 2: Various Gaussian curvatures. (a) A sphere having convex curvatures in both directions represents 
a topologically trivial geometry. (b) A sphere with a hole gives a non-trivial topology with a single surface. 
In the language of topology, shape does not matter as long as they have the same geometry. For this 
reason, orange with a hole or full shape donut or distorted donut or even a coffee cup represent the same 
topology (g = 1) with one hole. (c) For the same reason, a pretzel is topologically distinct from the former two 
classes, having three holes or three topologically distinct surfaces. A 2D periodic lattice can be represented 
by a torus as shown in (b), in which magnetic field is applied perpendicular to both x- and y-directions.
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important observation can be made here that 
the number of holes or genus also dictates the 
number of distinct surface states. These results 
constitute the key mechanism for the emergence 
of topological invariants in the quantum and 
condensed matter world.

2.2  Laughlin’s argument and TKNN 
invariant

In simple Hall effect, as the magnetic field is applied 
perpendicular to the lattice, a potential gradient 
arises perpendicular to both applied magnetic 
field and applied current. This is because, due to 
magnetic field, the electron and holes feel opposite 
Lorentz forces and move towards different edges of 
the lattice (Fig. 3(b)). The transverse conductivity 
(σ

xy
) initially increases linearly with the magnetic 

field strength (Fig. 3(a)). But with further increase of 
the field, the Hall conductivity becomes quantized 
and exhibits plateau with magnetic field, and 
increases only by integer multiple of e2/h, e and h 
are the usual constants. This is the first realization93 
of topological invariant in physical systems.

In the QH regime, electrons form cyclotron 
orbits in the bulk and becomes localized (see 
Fig. 3(c)). Although magnetic field breaks 
translation symmetry, as the magnetic field is 
sufficiently large, the radius of the cyclotron orbits 
reduces. Here, the cyclotron orbits form a larger 
magnetic unit cell, whose cross-sectional area 
changes with the field strength. R.B. Laughlin1 
recognized that the periodic lattice in 2D plane can 
be represented by a torus, forming a non-trivial 
Gaussian curvature [Fig. 2(b)]. The magnetic flux 
through the magnetic torus is thus quantized, 
according to the Euler integral in Eq. (1), as

ϕ = = =∈S z zB dS B S h eMT / ,ν  (2)

where B
z
 is the perpendicular component of the 

applied magnetic field, S is the cross-sectional area 
of the magnetic torus (MT), ν is integer. So the Magnetic torus: 

Magnetic torus simple 
represents a 2D magnetic 

unit cell whose area is integer 
multiple of the original unit 
cell and encloses an integer 

multiple of the magnetic 
flux quanta.

question is as the magnetic field is continuously 
increased, how the area of the magnetic unit cell 
changes to respect the above quantization 
condition and how the bulk topology arises?

Thouless, Kohmoto, Nightingale, and Nijs 
(TKNN)2 argued that the area of the magnetic 
unit cell increases as integer multiple of the 
original unit cell (S

0
 = ab) as, S = q(ab), where a 

and b are the lattice parameters and q is an integer. 
Therefore, the flux through the original unit cell is 
a rational number times the flux quanta (ϕ

0
 = h/e.): 

ϕ ϕν .= ( ) =B ab
q 0  Once a magnetic unit cell is 

defined, we can now Fourier transform to the 
corresponding momentum space by redefining a 
magnetic translational symmetry and quantify a 
bulk topological invariant. We recall that here the 
Hall conductivity is itself a topological invariant: 
σ

xy
 = ve2/h, where v is called TKNN or Chern 

number. Therefore, from the general Kubo formula 
for conductivity, we can obtain our first definition 
of a topological invariant or the Chern number 
for the nth band (ν

n
) as

ν

ψ ψ ψ

n

n n

n n

n
x

n n
y

i f E f E

H

k

H

k

= −

×

∂
∂

∂
∂

′
′

′ ′

≠
∑

( ) ( ) ( )
k

k k

k k k

,

( ( ) ( ))

ψψ n

n nE E

k

k k

( )












( )− ′
2

 (3)

where E
nk

 is the eigenvalue of the Hamiltonian H, 
ψ

n
(k) is the Wannier wavefunction, and f(E

nk
) is 

the Fermi-Dirac distribution function.

2.3  Quantum Hall calculation in arbitrary 
parameter space

The above formula is based on the variation of the 
Hamiltonian in two orthogonal momentum 
directions, and thus implicitly assumes a 
periodicity of the lattice. In some cases, as in 
disordered lattice, where a proper unit cell is 

Flux quanta: Flux quanta 
is turning out to be a very 

precise quantity which 
is easily measurable, and 

by now considered as a 
fundamental constant 

of nature.

Figure 3: Hall and IQH effects. (a) A typical Hall effect to QH transition with increasing magnetic field. 
(b) In the typical Hall effect, the electron and holes are pushed to different edges by Lorentz force exerted 
by perpendicular magnetic field. (c) In the QH region, localized cyclotron orbits form in a periodic lattice, 
which renders gapless edge state due to skipping orbits mechanism.
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difficult to define, the above formula apparently 
fails. However, Niu, Thouless and Wu94 generalized 
their TKNN invariant calculations to any two 
arbitrary parameter space, by implementing the 
so-called “twisted boundary condition”. They 
introduced two fictitious parameters α, β (which 
does not require to have any physical relevance) 
and demanded that the lattice is periodic under 
them as

ψ ψ
ψ ψ

α

β
x L e e x
y L e y

i
i L i eB y L

i

i
i L

i

i+( ) = ( )
+( ) = ( )

( )
1

2

1 1

2

/ ,
.



 (4)

Here x
i
, y

i
 are the lattice site indices, and L

1
, L

2
 

represent the system size. In this case, the velocity 
operators can be rewritten as vx

H
k

H

x
= →∂

∂
∂
∂α , and 

vy
H
k

H

y
= →∂

∂
∂
∂β , and the QH invariant can be 

calculated in the (α, β) space by using Eq. (3). 
This generalization unravels an important insight 
that as the Hamiltonian is adiabatically varied 
in any closed parameter space, it gives the same 
topological invariant. This implies that as the 
wavefunction of the particle returns to its starting 
points, the expectation value of the velocity 
operators remains the same, but the wavefunction 
itself acquires an additional phase. This phase turns 
out be the Berry phase, proposed independently.95 
The expectation value of the velocity operator in 
any parameter space is a most important factor for 
topological invariant, with the only requirement 
for a given parameter space being that it has to be 
periodic (Gaussian curvature), but not necessarily 
a physical parameter. This is crucial for the 
conceptualization of the ‘chiral orbit’ we use for 
the QSH effect which implies that ‘chiral orbit’ can 
be a mathematical object which can be ‘created’ in 
any periodic parameter space for the calculation 
of the topological invariant in 2D systems. For the 
same reason, when a system is driven periodically 
with time, the corresponding time evolution of 
the Hamiltonian (Floquet Hamiltonian) can also 
give rise to a ‘Berry phase’ in the time-domain and 
lead to QH or topological phase.

2.4 Berry connection and curvature
The above section discussed how an applied 
magnetic field’s flux quantization leads to the IQH 
as computed within the Kubo formula. Now we 
can reverse our derivation, and start with the Kubo 
formula version of the topological invariant in Eq. 
(3), and define a band dependent ‘magnetic field’ 
in the momentum space F

n
(k). We again demand 

that its flux in the reciprocal space is quantized:

νn n BZBZ

d k d=
Ω

⋅ = ( )⋅∫∫ ∫∂

1 2

BZ

F k A k k( ) ,N   (5)

Fictitious parameters: 
A natural question arises in 
this context is that upon the 
insertion of periodic boundary 
condition in any Hamiltonian, 
can one obtain a finite 
TKNN invariant, while the 
system defined with physical 
parameters fails to possess it? 
A proof of this Lemma has to 
be  rigorously searched in the 
literature.

Kubo formula: Note that 
Kubo formula for conductivity 
is derived and valid for any 
system in general and also 
holds for the quantum Hall 
systems.

where Ω
BZ

 is the BZ phase space area, and N is the 
normal unit vector to the 2D BZ. In the last step, 
we have employed the Stokes’ theorem, which 
allowed us to define a momentum space ‘vector 
potential’ as F

n
(k) = ∇

k
 × A

n
(k) The formalism for 

F(k) is simply the right-hand side of Eq. (3), and 
that for A(k) can also be obtained subsequently. 
Another elegant formalism for F and A can be 
obtained by using the identity

∂ ( ) =
( ) ∂

∂
( )

−
( )

′

′

′
′

≠
∑k n
n n

n
i

n

n n
ni

H

k

E E
ψ

ψ ψ
ψk

k k

k
k k

,

 (6)

which yields

F k k kn ( ) = ∇ ( ) × ∇ ( )i k n k nψ ψ| | ,  (7)

A k k kn ( ) = ( ) ∇ ( )i n k nψ ψ| .  (8)

To further elucidate the physical significance, 
we refer back to Eq. (5), which can be compared 
with the Peierls phase in real space, acquired by a 
charged particle moving in a magnetic field, 
ϕ = ⋅( )∫ A r l

c

c
d

1

2 , where A(r) is the vector potential, 
and c

1
 and c

2
 are starting and end points of the 

path. This implies that the topological invariant 
here is a momentum space ‘Peierls phase’ 
(equivalent to Aharonov-Bohm phase) acquired 
by the electron in traversing a closed path in the 
reciprocal space under an intrinsic gauge field 
A(k). In this sense, ν

n
 is called the Berry phase,95 

and A(k) as the Berry connection, while F(k) is 
the Berry curvature. Note that the Berry connection 
is gauge-dependent, and therefore topological 
invariant formulas [such as axion angle formalism 
in Eq. (19) below] involving A(k) does not give 
unambiguous result. On the other hand, the Berry 
curvature is gauge invariant and observable. 
Therefore, for a band which possess a well-defined 
Berry phase in a close trajectory in the momentum 
space (translational symmetry is assumed as 
above), it possesses an intrinsic Chern number, 
and therefore, can give rise to a IQH effect without 
the application of an external magnetic field.

In the IQH effect, the applied magnetic field 
provides the ‘chirality’ for the electrons to form 
cyclotron orbit. Without magnetic field, the QH 
phenomenon can be thought of occurring in a 
reverse fashion. Here, a self-generated chirality of 
electrons creates a pseudo-magnetic field (Berry 
curvature) in the process of forming chiral orbits. 
In solid state systems, such intrinsic chirality 
can stem from a multiple origins, including SSH 

Aharonov-Bohm: 
The Aharonov–Bohm 
effect, sometimes called the 
Ehrenberg–Siday–Aharonov–
Bohm effect, is a quantum 
mechanical phenomenon in 
which an electrically charged 
particle is affected by an 
electromagnetic potentials 
(scalar or vector potentials), 
despite being confined to 
a region in which both the 
magnetic field B and electric 
field E are zero.  
—Exerts from Wikipedia.
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type staggered electron hopping,15 sublattice 
(as often referred to pseudospin) symmetry in 
the hexagonal lattice,96 SOC,3 or certain type of 
even-odd orbital texture mixing.16,17 In simpler 
terms, the chirality arises if the electron hopping is 
complex, because it naturally accompanies a phase 
associated with electron’s hopping. As the k-space 
magnetic field or the Berry curvature threads 
through a periodic lattice (Gaussian curvature), 
the Euler characteristic ensures a quantization of 
the flux [Eq. (1)], and bulk topological invariant 
arises. The intrinsic formation of ‘chiral orbit’ in a 
periodic lattice is the foundation of TR invariant 
TIs, which however, have different interpretations 
and mathematical expositions such as Pfaffian 
nodes, chiral vortex, momentum-space monopoles 
etc. as we uncover below.

2.5  Chern number as zero magnetic 
field topological invariants

If an 1D chain is made of two inequivalent 
sublattices, the hopping between the two 
sublattices becomes complex as used in the SSH 
model.15 According to the above prescription, the 
emergent chiral hopping can be associated with a 
winding number. Recall that in a QH state, since 
the cyclotron orbits cannot complete a full circle 
at the edges, it leads to the edge current, and thus, 
Hall effect arises. Something similar happens in 
1D chain with chiral state. Since a localized chiral 
orbit cannot be assumed in 1D, the chirality of 
the electrons can be thought of as charge current 
following across the chain, allowing electrons and 
hole to be accumulated in opposite ends. This 
phenomenon naturally arises if we solve Eq. (5) 
with open boundary conduction, which gives 
topologically protected polarizibility at the ends. 
This is called the Zak phase,97 which is a topological 
invariant (discussed further in Sec. 2.13 below).

F.D.H Haldane3 realized that such complex 
hopping can be easily obtained in 2D honeycomb 
lattice for the same reason, namely, due to the 
presence of two inequivalent sublattices. Each 
sublattice form triangular lattice, which are 
oppositely aligned, see Fig. 4. The low-energy 
Hamiltonian of a honeycomb lattice can be written 
in terms of the 2 × 2 Pauli matrices (σ) entangled 
with linear momentum, in which two sublattices 
provide the pseudospin spinor basis96

H dk k( ) = ( ) ⋅ σσ,  (9)

where d
1
,
2
(k) contains linear-in-k term, and d

3
 gives 

the Dirac mass. Such Hamiltonian is analogous to 
the Dirac equation in 2D, and forms Dirac cone in 
the absence of the Dirac mass term. For such 

simplified Hamiltonian, the Chern number can be 
calculated from the d-vectors itself. Starting from 
Eq. (3) and substituting (9), one obtains

ν
π

=
⋅ ∂ × ∂( )

∫
1

4
2

3
BZ

k k
d

x y
.k

d d d

d
 (10)

For the usual Dirac Hamiltonian, d
i
 

components are proportional to k
i
 (where i = x, y), 

and therefore, it is easy to see that the Chern 
number is proportional to the d

3
 term. d

3
 term 

stems from the onsite energy difference between 
the two sublattices, and intrinsically remains zero. 
A key ingredient is still missing here. Note that 
honeycomb lattice provides an imaginary hopping 
term between different sublattices, but the intra-
sublattice hopping still remains real [Fig. 4]. 
Therefore, electrons hopping within each 
triangular sublattice do not have any chirality, and 
fail to form our desired chiral orbits. For a remedy, 
Haldane affixed an ‘extrinsic’ gauge field (but not 
a magnetic field) to the intra-sublattice hopping. 
Additionally, he imposed the condition that the 
‘gauge field’ has different signs for different 
sublattices, such that the resulting chiral orbits for 
them are counter-propagating. Therefore, they 
tread opposite flux and the net magnetic field 
effect remains zero. However, the staggered ‘gauge 
field’ naturally induces different onsite energy to 
different sublattices, and therefore, d

3
 term 

becomes finite, and Eq. (10) gives a finite Chern 

Chern number: 
Chern number is same as 

the TKNN number and both 
are used to define the IQH 

insulator, also refereed as 
Chern insulator.

Extrinsic: Here the word 
extrinsic simply refers that 
the corresponding term is 

added to the Hamiltonian by 
hand. This does not mean 

that the obtained gauge field 
is required to be extrinsic, and 

can be obtained intrinsically by, 
for example, SOC.

Figure 4: Haldane model. The net inter-sublattice 
hopping t1e

ika remains complex, since its complex 
conjugate hopping t1e

-ika is absent. On the other 
hand, the net intra-sublattice hopping t2e

ikb+t2e
-ikb 

= 2 cos (kb) becomes real. Haldane added an 
extrinsic phase (ϕ) into the hopping as t2e

i(kb+ϕ), 
with opposite phase for different sublattices (blue 
and red). Therefore, the corresponding flux in the 
blue and red triangles are equal but opposite.
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number. This signifies that two oppositely rotating 
triangular chiral orbits are split by a negative Dirac 
mass. Haldane’s proposal was important for the 
conceptual development of the QH effect without 
magnetic field, but for decades, it was assumed to 
be ‘unphysical’, since obtaining the required gauge 
field without magnetic field was not feasible. Very 
recently, researchers have successfully generated 
Haldane model by commencing time-dependent 
Hamiltonian with periodic pumping. The periodic 
time evolution naturally gives a Bloch Phase in the 
time-space, which provides Haldane’s gauge-
field.98

2.5.1 Spin Chern number: Kane and Mele 
turned on SOC to obtain Haldane’s ‘gauge-field’, 
which does not break TR symmetry.4 This gave 
birth to the TR invariant QH effect and eventually 
Z

2
 TIs. They considered two copies of Haldane’s 

Hamiltonians for spin-up and spin-down 
states to form a Block diagonal Hamiltonian: 
H k h k h k( )= ( )⊕ ( )↑ ↓ . The Hamiltonian respects  
both TR and inversion symmetry with 
h k h k↑ ↓

∗( ) = − −( ). The resulting Hamiltonian 
can be expressed in the 4 × 4 Dirac matrix 
basis as H(k) = d(k). Γ, where d-vector has five 
components and the corresponding Γ (including 
identity matrix) are the usual Dirac matrices 
(Kane and Mele used few additional cross-terms, 
which we do not discuss here for simplicity). The 
k-dependence of each d

i
 component (d

0
 and d

4
 

contain even power of k, while others contain 
odd power) complements the symmetry of their 
corresponding Γ

i
 matrices to preserve the TR 

symmetry. In the case when two valence bands are 
fully spin-polarized, the Chern number for each 
band corresponds to different spin states (ν↑, ν↓). 
Due to SU(2) symmetry ν↑ = -ν↓, which means 
two equal and opposite chiral orbits are stabilized 
due to the spin-momentum locking, as shown 
in Fig. 5. Therefore, the total Chern number ν = 
ν↑ + ν↓ vanishes, while their difference, namely 
spin Chern number, ν

s
 = ν↑ – ν↓ , becomes finite. 

Therefore, according to Kane and Mele, there is no 

charge pumping to the edge, but there is a net spin 
pumping, and hence, they refer the corresponding 
state as QSH effect.

Bernevig, Hughes, Zhang (BHZ) predicted 
that the Quantum Well (QW) state arising in the 
HgTe/CdTe heterostucture commences 2D QSH 
insulator above some critical thickness.9 They 
realized that the band structure for HgTe and CdTe 
are completely inverted across the Fermi level. In 
particular, the SOC split bands with Γ

8
 and Γ

6
 

symmetries, respectively, constitute conduction 
and valence bands in HgTe, while they form 
valence and conduction bands in CdTe. Therefore, 
if we derive a 2 label Hamiltonian and expresses in 
terms of Pauli matrices as in Eq. (9), we immediately 
find that the Dirac mass d

3
 < 0 for HgTe and d

3
 > 0 

for CdTe. Therefore, if one makes an HgTe/CdTe 
heterostructure, at their boundary d

3
 must vanish, 

which means gapless Dirac fermions emerge here. 
Based on this idea, they proposed a 4 × 4 
Hamiltonian using the Kramers pairs of Γ

8
 and Γ

6
 

levels. The Hamiltonian is also block diagonal with 
each block representing different spin state as in 
Kane-Mele model. The Dirac mass inversion 
(which is same as band inversion or parity inversion 
as we will discuss in Sec. 2.7 below) guarantees 
that each block gives equal but opposite Chern 
numbers, and QSH insulator arises. Due to the 
block diagonal nature of the mode, it is popularly 
known as half-BHZ model.

When two spin states cannot be separated 
to assign individual Chern number, the present 
method does not work. Kane and Mele proposed 
more rigorous method to calculate the Z

2
 invariant 

using TR ‘polarization’ as discussed in Sec. 2.6. As 
we will go along, we will learn more techniques and 
interpretations of various topological invariances.

2.5.2 Mirror Chern number: In the cases, 
where the band inversion occurs at non-TR 
symmetric points, a distinct topological invariant 
can be obtained if the system possess mirror 
symmetry.8,21,53 Let us consider a case where k

m
 

represents a mirror plane in the BZ with the 
corresponding mirror operator ( )M , defined by 

H mk( )  =,M 0. In such a case, the mirror plane 
can be decomposed into two subspaces, denoted 
by ±M. Then, as in the case of half-BHZ model, 
the present Hamiltonian on the mirror plane can be 
split into two blocks, coming from two sub-space 
as H(k

m
) = h+m

 (k
m
) ⊕ h-m

(k
m
). Each block (h

±m
) 

gives equal but opposite Chern number (due to TR 
symmetry). Therefore, their difference ν

m
 = (ν+m

 – 
ν-m

)/2 leads to to a finite value, called mirror Chern 
number. The corresponding TI family is refereed 
as topological crystalline insulator.21

Quantum Well: Quantum well 
states are the split bands that 
appear due to finite size effect 
and near the boundary of 
the lattice due to inter-layer 
hopping.

Kramers: Kramers pair 
should be read as pairs 
of wavefunction which 
are degenerate due to TR 
symmetry. It is explained 
below in details.

Figure 5: Two slabs with localized counter-helical 
‘chiral orbits’ and counter-propagating helical edge 
states. Each slab gives integer but opposite Chern 
number and thus gives rise to the QSH effect.
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Given that the low-energy Hamiltonian here 
has mirror symmetry, the leading term in the 
edge state will have even power in momentum 
along this direction. Let us consider an example 
of a mirror plane at k

x
 = 0, which dictates H(k

x
, 

k
y
, k

z
) = (-k

x
, k

y
, k

z
). Since a linear term in k

x
 

violates this condition, it will drop out from 
the Hamiltonian. Therefore, the corresponding 
surface state will be quadratic. Along other 
directions lacking a mirror symmetry, the edge/
surface state can be linear in momentum. In fact, 
the surface states of the topological crystalline 
insulator Sn

1-x
Pb

x
Te,83 contain both quadratic 

and linear bands.

2.6  Z2 invariant and time-reversal 
polarization

In the case of TR breaking IQH insulator, Chern 
number can take any arbitrary value. However, this 
is not the case in TR invariant TIs. For such cases, 
spin or mirror Chern number can take only 0 or 1 
(mod 2) value, and thus, the topological invariant 
is represented by a more general Z

2
 invariant.4,6 

Z
2
 invariant becomes equal to spin or mirror 

Chern number in cases where latter is defined, 
but there exist other methods of evaluating it. 
Although spin and mirror Chern numbers are 
observables via QH effect, Z

2
 invariant is not a 

directly measurable quantity in the bulk, and is 
often diagnosed by the observation of topological 
surface state.

For TR symmetric cases, Kramers degeneracy 
at the TR invariant k-points dramatically reduces 
the full momentum space calculations into only TR 
invariant k-points. The antiunitary TR operator Θ 
imposes the symmetry in the Hamiltonian as ΘH* 
(k)Θ-1 = H(-k). Let us consider a system where 

the spin-rotational symmetry is broken, say due 
to SOC, without breaking the TR symmetry as 
Θ | , | ,k k↑〉 = − ↓〉. The high-symmetric points ,k s

∗   
which are invariant under TR symmetry [e.g. 
(0,0,0), (π,0,0), (0,π,0), (π, π,0), (π, π, π), etc. 
in a cubic lattice in Fig. 5] are special. Here k s

∗ 
and − ∗k s  points are the same [up to a reciprocal 
lattice vector: k k Gs s

∗ ∗= − + ], so they must be 
spin degenerate. This is called the Kramers’ 
degeneracy.

Among many methods available for the 
evaluation of the Z

2
 invariant, Fu-Kane-Mele 

method is often easier to implement, especially in 
the cases where both TR and inversion symmetries 
are present.7 To understand this method, we draw 
analogy with some of the properties of IQH, 
QSH states discussed above. In these insulators, it 
is the bulk Chern number that induces charge or 
spin polarizations, respectively, at the edge. Kane 
and Mele asked a similar question: What bulk 
property for TR invariant Z

2
 class can pump a 

similar ‘polarization’ to the boundary. In QSH 
effect, opposite spins with opposite momentum, 
due to SOC, are pumped to the edge, requiring 
that the electron exchanges its spin in traversing 
half of the BZ odd number of times. Since 
opposite spins with opposite momentum are just 
the TR conjugate to each other, a more 
fundamental property to exchange in Z

2
 TI is the 

TR partner of electrons. Based on this analogy, 
Kane, Mele proposed a mathematical concept, 
called ‘TR polarization’, in which they argued 
that electrons with one Bloch wavefunction and 
their complex conjugate partner are accumulated 
at the edge.4,99 This requires that the electron 
switches its TR partner odd number of times in 
traversing half of the BZ [green line in Fig. 4(a)]. 
[For systems with inversion symmetry, it is 
equivalent to the odd number of parity, or 
equivalently the Dirac mass or just simply band 
inversion in half of the BZ, as discussed in 
Sec. 2.7.].

They subsequently quantified this 
hypothesis4,6,7,99 by defining the matrix element of 
the TI operator between a Bloch state u

n
(k) and 

its TR conjugate u km
∗ −( )  in the Fermi sea, and 

constructed an antisymmetric, unitary matrix, 
with components w u umn m n( ) ( )| | ( ) .k k k= − Θ  
We define P(k) = Pf[w(k)]. For many TI 
Hamiltonians dealing with SU(2) spin, the filled 
state is two-fold degenerate, especially when 
inversion symmetry is present. Therefore, the 
above matrix-element is a 2 × 2 matrix, in which 
the Pfaffian is just the off-diagonal term (the 
formula for topological invariant is, however, 
general to any number of filled bands).

Polarization: 
Polarization simple refers to 

accumulation of a certain 
quantity higher in quantity 

than its counter-part. Charge 
and spin polarizations are 

examples of this term.

Mass: In this context, 
the term mass means band 

gap and vice versa.

Figure 6: (a) Odd subspace of electrons 
encircling a single Pfaffian [P(k)] node. Across the 
node, electron switches its TR partner [um (−k) → 
un(k)]. (b) P(k) along the nodal line. Since P(k) is 
required to have odd number of nodal points in the 
half-Brillouin zone, the nodal points occur on the 
high-symmetric directions, with the corresponding 
high-symmetric k-points obtaining opposite sign of 
P(k), i.e. ds = ±.
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Based on the value of P(k), the BZ can be split 
into the ‘even’ and ‘odd’ subspaces. In the even 
subspace, Θ|u

n
(k)  is proportional to |u

m
(-k) , 

making |P(k)| = 1. In the odd subspace, Θ|u
n
(k) is 

orthogonal to |u
m
(-k) , implying P(k) = 0, which is 

important for topological invariance. Let us assume 
that ±k  is a pair of points that are TR partners, 
where P(k ) = 0 [see Fig. 4(a)]. The phase of P(k) 
about each of these points winds up in opposite 
directions (equivalent to having counter propagating 
‘chiral orbits’ in the momentum space). If ±k  
coincides with any TR invariant point ks

∗, the two 
k-space ‘chiral orbits’ annihilate each other. Again, 
if there are even number of such points, say, ± ∗k1 2, ,  
then unless k1 2,

∗
 are protected by some additional 

symmetry, they can also annihilate each other by 
scattering or perturbation. But a single pair of  
±k  does not have the option to scatter to another 
k-point, except to the corresponding ∓ k-points, 
which however, requires the corresponding 
spin to flip. Since spin flip is prohibited by the 
TR symmetry, such nodal points at ±k  remain 
protected from TR invariant perturbations.

Similarity, between the Berry connection 
formalism, and the Pfaffian P(k) can be rigorously 
shown. Differentiating w(k), and using the unitary 
property of the w matrix, we obtain the Berry 
connection in terms of w(k), and P(k) as7 [using 
Eq. (8)]

A k k k

k

k

k

k

k

( ) ( ) ( ) 

( )[ ]
(

= − ∇

= − ∇

= − ∇

i
w w

i
w

i
w

2

2

2

Tr

Tr log

log

†

det ))[ ]
( )[ ]= − ∇i Pk klog  (11)

Based on this, Z
2
 invariant can be defined 

by calculating the winding number of the P(k) 
over a single k-space ‘chiral orbit’, in a contour 
enclosing half of the BZ (so that only either +k  
or -k  is included), as shown by green boundary 
in Fig. 4(a). So, from Eq. (5), Z

2
 invariant can be 

evaluated as:

ν
π

δ= ⋅∇ ( ) + ∫
1

2 i
d P i

C
k kk log ,  (12)

where a complex term id is introduced to evaluate 
the above integral in a complex contour plane. This 
simplifies the integral into a residue problem, with 
singularities occurring at the loci of P(k*) = 0.

Given that there should be an odd number 
of Pfaffian nodes in half of the BZ, it is expected 
that the corresponding nodes would occur on the 

high-symmetric k-directions. This simply means 
that P(k) should change sign odd number of times 
on both sides of the nodes at the TR invariant 
k-points [see Fig. 4(b)]. Therefore, the calculation 
simply reduces to counting the sign of P(k) at the 
TR invariant momenta in the first quadrant of the 
BZ only. If we take the product of the sign of the 
Pfaffian at all TR invariant points, and the result 
comes out to be negative, then there must be odd 
number of zeros in the first quadrant of the BZ. 
Since [Pf(w)]2 = det (w), the sign of the Pfaffian 
can be defined in a formal way as

δ s

s

s

w

w
=

( )





( )





= ±
∗

∗

det

Pf

k

k
.1  (13)

Therefore, in a 1D system, the TR polarization 
can be defined as (-1)ν  = d

1
d

2
, where d

1
 and d

2
 

are evaluated at the two TR invariant points. If d
1
 

and δ
2
 have opposite signs, we get the Z

2
 invariant 

ν = 1, which signals the non-trivial topological 
phase. The formula generalizes to a higher 
dimensions as

,−( ) =
=

∏1
1

ν δ
s

N

s

s

 (14)

where N
s
 is the total number of the TR invariant 

momentum in the first quadrant of the BZ. In a 2D 
square lattice, N

s
 = 4, while in a 3D C

4
 symmetric 

lattice N
s
 = 8. If there are odd number of d

s
 = -1 

in this k-space, the right hand side of the above 
equation gives -1, which therefore yields ν = 1, 
a non-trivial topological invariant. This is called 
the strong topological invariant (denoted by ν

0
). 

Note that for any arbitrarily large odd number 
of d

s
 = -1, topological invariant remains ν

0
 = 1, 

otherwise 0. Therefore, unlike in IQH insulator, 
where arbitrarily large Chern number is possible, 
here one only gets two values of ν

0
, and the Z

2
 

symmetry emerges.
In some cases, there can be total even number 

of ks
∗-points with d

s
 = -1, but they lie in different 

planes (say on the k
x
 = 0, and k

x
 = π planes) [see 

Fig. 5(c)]. Thus, those 2D planes contain odd 
number of d

s
 = -1, and constitute non-trivial 2D 

TIs, while the 3D system remains trivial TI. This 
is called the weak TI. Since in 3D, there are three 
orthogonal coordinate axes, there are three weak 
topological invariants (ν

1
, ν

2
, ν

3
). Fu, Kane, and 

Mele,6 thereby, introduced four Z
2
 invariants (ν

0
: 

ν
1
, ν

2
, ν

3
) for 3D TIs. This part is explained with 

examples in Fig. 5 and discussed further in the 
following section.
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2.7  Z2 calculation with inversion 
symmetry

If the system possesses inversion symmetry, in 
addition to TR symmetry, the calculations of 
topological invariants becomes exceptionally 
simpler. Suppose P  is the parity operator 
defined by P | , | ,k k↑ − ↑〉= 〉, under which the 
Hamiltonian transforms as H k H k−( ) = ( ) −P P 1. 
Inserting P2 1=  in the expression for w

mn
(k), 

and employing the identity that H ,PΘ[ ] = 0 , d
s
 

parameter at the TR invariant moment k s
∗ can be 

evaluated as7

δ ξs m s
m

N

k= ( )∗

=
∏

1

,  (15)

where ξm sk∗( ) = ±1  is the parity eigenvalue at k s
∗ 

defined as P u k k u km s m s m s
∗ ∗ ∗( ) = ( ) ( )ξ . The 

product is computed for N filled bands. In practice, 
one does not have to include all filled bands in the 
calculation, rather only those bands that undergo 
band inversion at the TR invariant points. For the 
two typical Dirac Hamiltonians that are expressed 
in terms of 2 × 2 Pauli matrices or 4 × 4 Dirac 
matrices, the parity term turns out to be σ

z
, or 

Γ4 2 2= ⊗ ×σz I , respectively. The corresponding 
k-dependent d-vector component can often 
be written as d k k ks s s4 1 2 2∗ ∗ ∗( ) = ( )− ( )( )ε ε / , 
where ε1 2, ks

∗( )  are the conduction and valence 
bands near the Fermi level. Therefore, the parity 
eigenvalue of the Hamiltonian is determined 
simply by ξm s sk d k∗ ∗( ) = ( )



sgn 4 . For systems 

with both inversion and TR symmetries, the Z
2
 

invariant is obtained by simply counting the 
number of band inversion at the high-symmetric 
momenta as

−( ) = ( ) − ( )





=

∗ ∗∏1
1

1 2
ν ε εsgn .

s

N

s s

s

k k  (16)

In other words, if there are odd number of 
band inversions at all TR invariant momenta 
in an insulator, the system acquires non-trivial 
topological behavior with the same odd pair of 
edge or surface states. Interestingly, d

4
 term is the 

mass term in the Dirac equation; that means parity 
inversion is equivalent to Dirac mass inversion from 
positive (trivial) to negative (non-trivial) value. 
For systems, where parity is not a good quantum 
number, the Dirac mass inversion serves as a good 
measure of the topological phase transition as 
often used in the literature (see Fig. 5).

The reason for the popularity of this method 
lies in the fact that identifying the parity of a given 
band within the tight binding model or Wannier 
method is quite straightforward. In most cases, it 

is nothing but knowing the orbital character of 
the valence and conduction bands. So band 
inversion simply refers to switching orbital 
character between these two classes.16,17,83 However, 
band inversion does not mean that an orbital 
entirely switches its position between conduction 
and valence bands at all k-points, rather it has to 
be done only at odd number of TR k-points, and 
not at other k-points. For example, in Fig. 7(a), if 
the odd parity conduction band drops fully below 
the Fermi level, the system still remains 
topologically trivial. This means the inter-orbital 
overlap matrix-element has to be strongly 
momentum dependent. Simple local inter-orbital 
hopping or crystal field splitting or onsite 
interactions such Hubbard U or Hund’s coupling 
are often not adequate to commence such a 
k-dependent band inversion. SOC does this job in 
most of the known TIs.

Some caution has to be taken for the cases 
when a band at a given TR invariant k-point is not 
fully orbitally polarized, rather it contains a 
mixture of both even and odd orbitals. In such 
cases, the band inversion mechanism cannot be 
considered as conclusive. In this context, a term 
called band inversion strength is often used, which 
measures the amount of orbital weight is 
exchanged between the conduction and valence 
bands. Band inversion strength is also used as a 
measure for Dirac gap at the TR k-points [see, for 
example, Ref.].20 Associated with the orbital weight 
transfer, the band topology also changes in this 
process. For example, if the top of the valence 
band has an upward curvature, it changes to a 
downward curvature around the TR k-point after 
the band inversion. This structure is sometimes 
referred as a ‘dent’ in the band structure, which is 
seen in the DFT band structure, as well in the 
experimental data.5,65

Three representative examples for trivial, 
strong, and weak TIs are given in Fig. 7. Owing 
to TR symmetry, it is sufficient to consider only 
the first quadrant of the BZ to count the number 
of band inversions, since the other k-points are 
related to them by TR symmetry. As mentioned 
earlier, if the conduction and valence bands 
possess the same parity at all k-points, but 
different among them, Eq. (15) suggests that it is 
a trivial topological insulator, or not a topological 
insulator at all [Fig. 7(a)]. Fig. 7(b) depicts the 
case of a single band inversion at the Γ-point, 
indicating a strong TI (ν

0
 = 1). In this case, all 

three surfaces of the lattice possess Dirac cones 
with the vertex of the cone lying at the same 
k-point where the band inversion has occurred. If 
the band inversions occur even number of times 

Hubbard U: Hubbard U 
is the local or onsite Coulomb 

potential experienced by  
electron when it comes 

close to another electron 
with opposite spin.

Dent: A ‘dent’ in band 
structure refers to opposite 

band curvature. For example, 
if a band is electron-like every 

where, but suddenly changes its 
curvature to become hole-like 

near a k-point, it appears to 
have a dent in its dispersion.
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in the first quadrant, a weak TI can be obtained 
if one or more BZ sides possess odd number of 
band inversions. For example, in Fig. 7(c), we 
consider the case of two band inversions at the 
Γ- and at (π,0,0)-points, yielding ν

0
 = 0. But the 

k
x
 = 0 and k

x
 = π-planes contain only single band 

inversion, and the corresponding topological 
invariant becomes ν

1
 = 1, while ν

2,3
 = 0. A weak 

3D TI can be thought of a stacking of 2D TIs, each 
having edge states. Since there are even number 
of Dirac cones here, scattering between them 
due to impurity or correlation can open a gap, 
and thus they are not topologically protected. 
Thus, this state is refereed as weak topological 
insulator.

Each TR invariant k-point possessing a band 
inversion hosts an edge state. No matter how 
many band inversions occur, as long as it is odd in 
number, we have the same Z

2
 invariant ν

0
 = 1, but 

the corresponding number of Dirac cones at the 
edge is equal to the number of band inversions. 
This is in contrast to the Chern insulator where 
the bulk topological invariant dictates the number 
of surface state.

2.8  Z2 calculation without inversion 
symmetry

Subsequently, Fu and Kane have generalized the 
Z

2
 calculation for systems without inversion 

symmetry:99

ν
π τ

τ
= ( ) − ( )













∫∫ ,
1

2
2A k dk F k d kn nd  (17)

τ is half of the BZ, one in which the Berry 
curvature is to be computed, while dτ is the boundary  
where the integral of the Berry connection is to 
be calculated (see Fig. 8). The difference between  
Eq. (17) and Eq. (5) is that here an additional surface 
integral over the Berry connection is present. This  
term appears in the process of gauge fixing as follows.

In systems with finite Chern number, the center 
of the cyclotron orbit or ‘chiral orbit’ poses an 
obstruction to smoothly affix a gauge to the wave-
function; because the phase of the wavefunction is 
supposed to acquire a discontinuity at the center 
of the orbit to commence finite phase winding or 
Chern number. If the wavefunction has a smooth 
gauge at all k-points, both A and F acquire the 

Figure 7: Band inversion and non-trivial TI. According to Eqs. (14 and 15), topological invariant is 
determined by the total odd number of inversions of the Pfaffian sign or parity (ds) in the valence band. 
In this figure, the choice of signs of ds for conducting and valence bands and the cubic lattice structure are 
completely arbitrary and for illustration purpose only. (a) There is no band inversion and thus it’s a trivial 
band insulator. Even when the conducting band drops below the Fermi level at all k-points, the system 
still remains topologically trivial. (b) When the band is inverted at odd number of TR invariant k-points, 
one obtains strong TI (v0 = 1). Each k-point where bands are inverted, a metallic Dirac cone arises at the 
corresponding edge or surface. (c) When even number of band inversions occurs, it does not render a 
strong 3D TI (v0 = 0). But those 2D planes accommodating odd number of band inversions become 2D TIs 
(such as ky = 0 and ky = π planes in this example): (ν0: ν1ν2ν3) = (0:100).
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same gauge, yielding ν = 0 by Stokes’ theorem. 
For Z

2
 TIs, although the Chern number is zero, 

but a similar obstruction arises at the nodes of 
the Pfaffian where the wavefunction switches to 
its TR conjugate [see Sec. 2.6]. This affirms that 
one cannot simultaneously obtain a node in the 
Pfaffian and a smooth gauge in the wavefunction.

However, Fu and Kane proposed99 that if 
the contour is restricted within half of the BZ, 
see Fig. 8, and also we choose a gauge that is 
periodic, i.e., u k u k G( ) = +( ) , in addition to 
the TR symmetry, the problem can be solved, 
see discussions in Refs.10,100–102 In this case, Eq. 
(17) can be solved by converting the integral into 
summation over a uniform discretized k-mesh 
on the region τ. Imposing the TR symmetry 
on the boundary dτ, we can obtain a link  
matrix as W k u k u k ki

mn
m n i( ) = ( ) +( )| δ , and the 

unimodular link variable ∆i i ik W W( ) = det / det , 
where δk

1
(δk

2
) is the step of the mesh in the direction 

of the reciprocal vectors G
1
 (G

2
). Then we define 

the gauge potential as A
i
(k) = log ∆

i
(k), which gives 

F(k) =  log[∆
1
(k) ∆

2
 (k + δk

1
) ∆

1
 (k + δk

2
)-1 ∆

2
 

(k)-1]. Then the Z
2
 invariant can be calculated as

ν
π δτ τ

L
k ki

A k F k= ( ) − ( )









∈ ∈
∑ ∑1

2 1 1 .  (18)

For systems with inversion symmetry, this 
formula cannot be used since A and F terms cancel 
each other.

The 3D generalization of this calculation 
follows similarly.10 A 3D BZ has six inequivalent 
2D planes at k

i
 = 0, π, where i = x, y, z. Using 

Eq. (18), one obtains six topological invariants 
on these six planes, namely ν π0,

i . Among which, 
the strong topological invariant condition implies 
that ν ν ν ν ν νπ π π0 0 0

x x y y z z= = . Therefore, as in Sec. 2.6, 
we get four independent topological invariants 
defined by ν ν ν ν ν ν ν ν νπ π π π0 0 1 2 3= = = =x x x y z, , , .

2.9 Axion angle as topological invariant
According to the axion electrodynamics,103 electric 
and magnetic fields can couple linearly, giving 
rise to an additional term in the Maxwell’s action 
S d xdtθ

θ
π

α
π= ( )( )∫4 2

3 .E B , where α is the hyperfine 
constant, and θ is the coupling constant, called 
the axion field. Given that the Berry curvature 
F(k) acts like a momentum space magnetic 
field, a similar effect can be expected here in 
that F(k) can couple to the polarizibility of the 
charged particles. This is what is shown by the 
Chern-Simon theory,14,24,104–106 which can in fact, 
describe the IQH effect. In this case, the Maxwell’s  
action becomes S d xdt F Fθ

θ
π

µστρ
µσ τρε= ( )∫32

3
2 . 

The axion angle can be computed from the Berry 
connection:14,24,106,107

θ
π

ε µστ
µ σ τ µ σ τ= ∂ +



∫

1

4

2

3
3d k Tr A A i A A A ,

 (19)

As in the case of IQH effect, θ becomes 
quantized to be 0 or π (mod 2π) if the system 
is TR invariant. For Z

2
 TI, θ reflects the same 

topological invariant as θ = νπ. Therefore, 
θ = 0 indicates a topologically trivial state, while 
θ = π signifies a non-trivial topology. Interestingly, 
ν which changes by integer values, θ changes 
continuously from π to 0 as TR symmetry is lifted 
by spontaneously introducing magnetic moment. 
Again, unlike the Z

2
 invariant, axion field θ is 

an observable quantity, since it gives rise to a 
topological electromagnetic effect. Therefore, TI 
with small magnetic moment belongs to a new 
class, namely topological axion insulator. So far, 
this state is proposed in few materials,25,107,108 but 
not realized yet. As the magnetic moment is further 
increased, another class of TI, called quantum 
anomalous Hall (QAH) insulator, may arise if the 
system undergoes a similar band inversion. Here, 
a Z

2
 classification is destroyed, and the system 

can, in principle, possess arbitrarily large value 
of Chern number. QAH state is proposed and 
realized in various engineered structures,61,109–111 
and LaX (X = Br, Cl, I) is the only family predicted 
so far as intrinsic QAH insulator.62

Figure 8: Half-Brillouin zone (τ) with arrows 
dictating the path (δτ) for line integral in Eq. (17). 
The contributions from the two sides (green 
dashed arrows) cancel each other since they 
are connected by the reciprocal vector. Then we 
can make an arbitrary gauge choice along the 
remaining portions (blue arrows, for example). 
Finally, the gauge should be transferred to the red 
arrows segments by TR symmetry (k → −k).
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2.10  Topological invariant for interacting 
fermions

For non-interacting systems, the topological 
invariant can be extracted from the Kubo formula 
for the Hall conductivity in 2D [Eq. (3)]. For 
interacting systems, one can follow the same 
strategy.91,112 For such systems, a single-particle 
wavefunction cannot be defined, and thus we start 
from a different Kubo formula for interacting 
systems as σ ω δωxy

e i= +( )∂
∂

2

 Im .Κ  The current- 
current correlation kernel K(ω + id) can be 
expressed in terms of the interacting Green’s 
function G(k, iω) as

Κ
Ω

i Tr v G k i i v G k i
BZ k i

x yω
β

ν ω
ν

( ) ( ) ( ) = − +∑1

,

, , ,

 (20)

where Ω
BZ

 is the phase space volume, β = 1/k
B
T, 

and the velocity vertices are ν
i
(k) = ∂Η(k)/∂k

i
. 

For (2 + 1)D systems, the vertex can be expressed 
within the Ward identity as ν

i
(p) = ∂G-1(p)/∂p

i
, 

where p = (k, iω). Integrating over the (2 +  1)
D phase space volume, we obtain a similar 
topological invariant (Chern number) in terms of 
generalized Green’s function as92

ν π
π

ε µρσ

µ ρ σ
=

( )
∂
∂

∂
∂

∂
∂













∫
− − −

6 2

3

3

1 1 1

.
d p

Tr G
G

p
G

G

p
G

G

p

 (21)

Extension to higher dimensions follows the 
same procedure, in which the number of vertices 
is equal to the dimension of the system.14,113 
Clearly, Eq. (21) also applies to non-interacting 
Green’s function G

0
(k, iω) = (iω – H(k))-1. For the 

multi-orbital systems, corresponding Green’s 
function is a tensor. Electron-electron interaction 
or disorder effect can be incorporated within 
the Dyson, or the T - matrix formalism, among 
others, giving a generalized formalism G(k, 
iω)-1 = G

0
(k, iω)-1 –S(k, iω), where S is the self-

energy correction. Dynamical mean-field theory 
(DMFT), and momentum-resolved density 
fluctuation (MRDF) theory114–119 are two widely 
used methods to explore the dynamical correction 
effects, with the later method having an added 
advantage of incorporating the full momentum 
dependence of the correlation effects. For many 
systems such as transition metal oxides,114,117 and 
di-chalcogenides,116 intermetallics, lanthanum and 
actinide compounds,115,118 the momentum 
dependence of the electron-correlation is 
significantly strong, which can lead to a 
characteristic change in the Berry curvature F(k). 

Kubo formula: 
The generalization of 
the Kubo formula to the 
interacting system was done 
by Streda, and thus this 
formula is also refereed as 
Streda formula.

MRDF: MRDF method 
is introduced by the present 
author to calculate the 
correlated electron properties 
of materials residing in 
the weak to intermediate 
coupling regime.

These features can be captured within the MRDF 
method.

2.11  Topological invariants for 
superconductors

Superconductivity is a correlated phenomenon, 
which arises due to the condensation of electron-
electron pair (Cooper pair) in the low-energy 
spectrum. Within the mean-field theory, the 
corresponding Hamiltonian can be casted into 
a single particle (quasiparticle) Hamiltonian in 
which the superconductivity opens a band gap 
at the Fermi level. Therefore, although in the two 
electrons picture, the system is superconducting 
(SC), in the single electron effective model it 
represents an insulator (assuming the SC gap opens 
everywhere on the Fermi surface). Interestingly, 
fully gapped superconductor, and topological 
insulator share an analogous Hamiltonian, 
and thus many of the topological concepts also 
apply in the former case.22,85,120–125 The single-
band Hamiltonian for a superconductor can be 
expressed exactly by Eq. (9), with d

3
 = ε(k), d

1,2
 are 

the real and imaginary parts of the SC gap, ∆ k( ).  
Furthermore, the owing to the criterion for the 
formation of ‘chiral orbit’ or ‘chiral vortex’, the 
SC gap must be a chiral pairing symmetry, which 
is often obtained in p-wave superconductors (for 
spinful superconductors, this condition can be 
relaxed if SOC is present).23 The chiral p-wave 
superconductors have odd parity gap symmetry 
and breaks TR symmetry. In such a case, the 
topological invariant is obtained by the sum of the 
first Chern number (ν

n
) on each bands weighted 

by the sign of the gap as22,23,120,126

N = ( )∑1

2 n
n nkν sgn .∆  (22)

For spinful case, TR invariant topological 
superconductor can be obtained if the pairings 

ψ ψk k↑ − ↑
† †  and ψ ψk k↓ − ↓

† †  have opposite chirality, 
i.e., ∆↑↑ = p

x
 + ip

y
, and ∆↓↓ = p

x
 - ip

y
. Here again, if 

the corresponding 4 × 4 Hamiltonian can be split 
into the block diagonals, as in the case of half-BHZ 
model for QSH insulator, we can apply the same 
Chern number calculation to evaluate the 
topological invariant. Due to the associated 
particle-hole symmetry, the zero energy boundary 
modes must be a Majorana mode,83,121,125 which 
means, its eigenstate must be real.

2.12 Adiabatic continuity
Adiabatic continuation is a simple and powerful 
tool to identify a non-trivial TI with reference 
to another known TI, if both these systems 

Majorana: Majorana mode 
results from the solution 
of a special Dirac equation 
whose wavefunction is real. 
Therefore, these particles or 
fermions do not have any anti-
particle component. Copper 
pairs of particle below the 
Fermi level always have hole-
hole pair counterparts above 
the Fermi level. Thus those 
pairs which live at zero energy 
act as both particle and 
hole, and can be thought 
of Majorana excitations. 
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are adiabatically connected. Here ‘adiabatic 
connection’ simply means that as one transforms 
a non-trivial TI ‘A’ into another material ‘B’ by 
continuously changing the atomic number of the 
constituent elements, the bulk band gap of the ‘A’ 
system does not close and reopen in this whole 
process, then they are adiabatically connected or 
belong to the same non-trivial TI class.

The band evolution between a non-trivial TI 
to a trivial TI is shown in Fig. 9. Suppose with 
a given tuning, such as chemical potential, or 
atomic number, or pressure, the band gap simply 
decreases, without any band inversion, as in going 
from Fig. 9(a) to 9(b), then these two systems are 
adiabatically connected and belong to the same 
topological class. At the topological critical point, 
when the bulk band gap closes at the TR invariant 
point, it produces a bulk Dirac cone (also refereed 
as 3D Dirac cone), Fig. 9(c). Note that graphene is 
a non-trivial system lying at the topological critical 
point. Above the critical point, as the bands are 
inverted back, the system transforms into a trivial 
insulator. Such band evolution including the 3D 
Dirac cone formation is seen experimentally in 
BiTl(S

1–δSeδ)2
.65

The difficulty with this method is that one 
requires to study the band topology by 
continuously changing the atomic number, i.e. by 
doping, which is not an easy calculation within 
the first principles methods. Yet, the method has 
been successful in predicting a number of 
materials, especially those that do not have 
inversion symmetry, by starting with a nearby 
known TI which has inversion symmetry. Lin et al. 
have shown20,37 that one can test a large class of 
materials by adiabatically changing the atomic 
number of the constituent elements, which is done 
by alloying or doping. For example, we can start 
with a hypothetical system with three elements 
MM′X, with nuclear charge Z

M
 = 3 – 0.5x + 0.5y, 

Hypothetical system: 
The term hypothetical system 

also refers to systems which are 
yet not realized in nature.

Z
M’

 = 47 + x, and Z
X
 = 51 – y, respectively, where x 

and y are adjustable parameters. x and y are not 
necessarily integers, but the choice must maintain 
the charge neutrality. This mapping can start with 
x = 0 and y = 0, which corresponds to Li

2
AgSb, and 

end with x = 3 and y = 1, which corresponds to the 
artificial compound He

2
SnSn. Li

2
AsSb is known to 

be a non-trivial TI. With increasing x, and y, we 
obtain Li

2
AgBi, Li

2
AuBi, and Li

2
CdSn which are 

non-trivial topological metals. On the other hand, 
the end element Li

2
CuSb is a trivial band insulator 

in which the bulk band gap has reopened above 
the critical point.

2.13  Bulk-boundary correspondence 
and surface states

Spontaneous (continuous) symmetry breaking 
leads to gapless Goldstone mode in the 
corresponding excitation spectrum. For example, 
the spin rotational symmetry breaking in 
quantum magnets leads to gapless magnons in 
the spin excitation spectrum, or the translational 
symmetry breaking in the formation of a lattice 
renders gapless phonon mode (acoustic modes). 
Similarly, as the cyclotron orbits or ‘chiral orbits’ 
become periodically arranged in a lattice (creating 
a Gaussian curvature), breaking the translational 
symmetry, which is associated with the emergence 
of non-trivial bulk topology, it manifests into 
gapless edge states at the boundary. Although 
a rigorous calculation to validate this premise 
is yet not explored, however, the application of 
Goldstone theory for the realization of bulk-
boundary correspondence can be intriguing. For 
example, electromagnetic response of TIs stipulates 
two dynamical axion modes, one of them is gapless 
Goldstone-like mode, and another is Higgs-like 
gapped mode, as shown in earlier calculation.106

According to the bulk-boundary 
correspondence of TI, the bulk topological 

Figure 9: Topological phase transition. (a–b) Band diagrams for two non-trivial TIs which differ only by 
the value of the bulk band gap and band inversion strength. So they are adiabatically connected. (c) With 
further tuning, when the bulk band gap closes, a 3D Dirac cone forms in the bulk. This is the topological 
critical point. (d) Bands are inverted into a positive Dirac mass (M ) with further tuning, and the system 
becomes a trivial insulator.
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invariant dictates the number and characteristics 
of edge states at the boundary. For the case of 
IQH effect, the N Chern number prescribes N 
chiral edge states. For the spin or mirror Chern 
numbers, edge states form in pair; for example, N 
spin Chern number has 2 N counter-propagating 
chiral edge states. The same principle also 
applies to Z

2
 topological invariant with some 

modifications. Kane-Mele proposed that for TR 
invariant Z

2
 TI, the TR partners are accumulated 

at different sides, leading to ‘TR polarization’. In 
the presence of additional inversion symmetry, 
TR polarization is equivalent to ‘parity 
polarization’, in which different parity states are 
pumped to different sides. This also implies that 
the edge or surface state must contain both TR 
partners, which means that the edge states must 
come in pairs. However, both states must also be 
degenerate at the TR invariant k-points, forming 
a Dirac cone, which is guaranteed by the Z

2
 

invariant in the bulk.
With the application of perpendicular magnetic 

field, electrons and hole are pushed towards 
opposite side of a plane, leading to Hall effect. The 
theory of bulk-boundary correspondence for TIs 
can be developed similarly, by studying the effect 
of the momentum space ‘magnetic field’ or Berry 
curvature in the boundary. This is precisely what 
is done by Zak, by calculating the Berry phase in a 
finite 1D chain to obtain the so-called Zak phase 
or end state at the boundary. Zak97 assumed a bulk 
periodic boundary condition in the momentum 
space, which yields [from Eq. (5)]

γ π
π

π
n nk

nka

a

a
i

a
dk u x

u x

k
dx= ( ) ∂ ( )

∂
∗

− ∫∫2
0/

/
,  (23)

where u
nk

(x) is the periodic part of the Bloch 
state, and a is the lattice constant. By using the 
corresponding Wannier function a

n
(x), he arrived 

at a spatial dependence of the Berry phase as

γ π
n na

x a x dx= ( )
−∞

∞
∫

2 2
.  (24)

We notice that the above equation is identical 
to that of the electric polarizibility when multiplied 
with electric charge. As the inversion symmetry is 
imposed, γ

n
 takes the values of either 0 or a/2. At 

both ends, the integral range survives either -∞ to 
0, or 0 to ∞. Since the integrand is odd function of 
x, the integrals obtains ±γ

n 
at the ±x ends, 

respectively. By multiplying elementary charge e, 
we see that the polarization at the two ends have 
opposite sings, implying that the electrons and 
holes are separated into different ends of the 1D 

chain. This is referred as charge pumping in 1D 
TI [see Fig. 8(a)]. In the 2D IQH effect, similarly, 
electron and hole states are accumulated at the 
two edges, see Fig. 8(b). Since a single edge state 
has to smoothly connect both the electron (filled 
band) and hole (empty band) states, it has to 
pass through the neutral or zero energy mode. 
Therefore, the zero energy edge state is guaranteed 
by the bulk topology, and cannot be destroyed by 
any weak perturbation or disorder, as long as bulk 
topology remains intact.

For the case of QSH insulator, opposite spin 
Chern numbers dictate opposite charge pumping 
to a given edge. For example, if the spin-up state 
drives electrons toward the +x direction, then 
spin-down state will pump holes to the same 
side. This cancels the net charge in each edge 
but allows a net spin accumulation, see Fig. 8(c). 
Therefore, here always a pair of counter dispersive 
and spin-polarized edge states arises, which meet 
at the TR invariant momentum, ks

∗, owing to 
Kramers’ degeneracy. Let us assume an edge state 
along the k

y
 direction. Since any band dispersion 

can be expanded via Taylor series around the 
ks

∗  as: ε ε( )q q vy s y s= + ∗ , with q k ky y ys= − ∗ 1, 
and vs

∗  is the band velocity. Since ε
s
 is a constant 

term, we can neglect it. TR symmetry demands 
Θ | ( ) | ( )u q u qy y↑ ↓= −〉 〉, implying that if we set 
ε↑ = *q vy s , the band for the opposite spin must 
be ε↓

∗= −q vy s , or vice versa. For an electron 
below the Fermi level, its spin is interchanged as 
it traverses to the other side of ks

∗ , or as q
y
 → q

y
. 

Equal and opposite effect simultaneously occur 
for the hole state. Therefore, if we express our edge 
Hamiltonian in the spinor (ψ↑, ψ↓), the minimal, 
low-energy Hamiltonian for an 1D edge state with 
eigenvalues ± ∗q vy s  is23

.H v qedge s y z= ∗ σ  (25)

The corresponding edge state is schematically 
shown in Fig. 10(c) (lower panel).

We can understand the emergence of 2D 
surface state in 3D TI in a similar way, with the 
idea of ‘TR polarization’.99 Let us start with a 
stack of 2D QSH insulators placed along the 
x-direction, each of which contains topological 
edge states along the y-direction. Now as we turn 
this into a ‘strong’ 3D TI, the spin pumping (or 
TR polarization, in general) must occur along 
both y-, and x-directions. This constraints the 
surface Hamiltonian to have 2D spin-polarization, 
and can therefore be written in the same spinor 
(ψ↑, ψ↓) as [see Fig. 10(d)]

.H vsurf s= ⋅∗ q σ  (26)

Neutral: Neutron and zero 
energy modes are synonymous 
in the context. However as the 
mode disperses away from the 
Fermi level, they accumulate 
electrons and holes on both 
both sides, with total charge 
being equal if the particle-hole 
symmetry is preserved. 
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Note that this surface Hamiltonian is 
analogous to the Rashba-type SOC h

R
 = k2/2mI

2×2
 

± α
R
 (q × σ), where α

R
 is the SOC strength and the 

other symbols have the usual meanings. Indeed, 
owing to the loss of inversion symmetry at the 
surface, the surface states actually originate from 
the Rashba-type SOC, with a crucial difference. In 
the topological surface state, the kinetic energy of 
each spin (k2/2m) is much smaller compared to the 
SOC strength, k2/2m  α

R
. This is a manifestation 

of the bulk-boundary correspondence of the TI. 
For the Rashba-band, in Fig. 11(a), each spin band 
bends backward away from the TR momentum 
as the kinetic energy term dominates over SOC 
term at higher momenta. The Rashba-bands are 
not required to connect to the bulk states at all. 
On the other hand, topological surface states 
are required to adiabatically connect to both the 
bulk conduction and valence bands, and thus 
they cannot bend backward and rather disperse 
monotonically across the bulk insulating gap. 
This is illustrated in Fig. 11. It is obvious that all 
edge/surface states are not topological surface 
state. More importantly, even in a TI, all surface 
states are not necessarily topological surface state 
as well.127 A topological surface state must have a 
Dirac cone at the TR point where band inversion 
occurrs in bulk state, and also has to connect 

Figure 10: Charge/spin pumping and metallic edge state formation. Upper panel shows a finite lattice 
in different dimensions. Middle panel shows the energy levels diagram in the corresponding real space. 
Lower panel shows the corresponding bulk and edge state properties. (a) In 1D chain, Zak phase leads 
to charge accumulation to the ends. (b) In IQH insulator, a similar effect occurs which leads to Hall effect. 
Here the energy level in real space is a fully filled Landau level, which crosses the Fermi level at the edges, 
giving metallic edge state. (c) For QSH insulator, one can think of a pair of quantum Hall layers, each of 
them pumping opposite charge to a given edge. The energy level of a layer is filled (not a Landau level) 
while the other one is empty. Therefore, at the edge, they produce oppositely dispersing states, which are 
bound to meet at the Fermi level. This is the reason a Dirac cone forms in QSH insulator. (d) In 3D TI, there 
are accumulations of TR polarization (TRP) at the surfaces, according to the Kane-Mele formalism. The TR 
partner switching or the parity exchange in the bulk corresponds to level inversion as in the case of QSH in 
(c), and leads to a 2D Dirac cone at the surface. The bulk boundary correspondence ensures that the edge 
or surface states are adiabatically corrected to both the bulk conduction and bulk valence bands.

Figure 11: Difference between the Rashba-
type SOC split bands in a trivial surface and the 
topological edge/surface state. (a) For Rashba 
SOC, the split bands bend backward at higher 
momentum as the quadratic term in the kinetic 
energy begin to dominate over the SOC. Thus, 
the 2D bands fail to connect both conduction and 
valence bands and remains topologically trivial. 
(b) On the contrary the surface state of TI remain 
‘massless’, and thus these states do not bend 
backward. The curvature of the surface state is 
chosen here for illustration purpose to emphasize 
that when one starts with Rashba-bands and 
create 3D TI out of their heterostructure (Secs. 
3.1 and 3.2), the Rashba states at the surface 
deviate from the usual behavior to connect the 
bulk valence band to obey the bulk-boundary 
correspondence.
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both the bulk valence and conduction states. 
There might be situations where an apparently 
isolated topological state may arise, which is not 
connecting any other state.128 Here however, if 
one study the eigenvector or weight of the band, 
it may appear that the weight has changed from 
surface to bulk as one moves away from the Dirac 
node.

3 Engineering Topological Insulators
The above introduction highlights some key 
ingredients universally relating different TI 
families. The foremost ingredient is that electrons 
must contain a chirality, i.e., complex hopping term, 
which is obtained either via applied magnetic field 
(Pierels phase), or in bipartite lattice (such as SSH,15 
or graphene lattice,96), or via SOC, or in orbital 
selective lattice,16,17 or even by artificial gauge fields 
as often done in optical lattice systems.98,129 These 
chiral states must also form cyclotron or chiral 
orbits, with or without magnetic field. The ‘chiral 
orbits’ naturally produces a k-space ‘magnetic 
fields’, or Berry curvature. As these ‘chiral orbits’ 
are arranged in a 2D lattice, the system can be 
represented by a Gaussian curvature (torus as in 
the case of IQH system), each threading counter 
propagating integer multiple of quantum flux of 
the Berry curvature. In Sec. 2.3, we also discussed 
that the ‘chiral orbits’ does not have to be formed 
in a physical parameter space, such as real or 
momentum space, but can also be formed in any 
generalized parameter space as long as they obey 
periodic boundary conditions. For such case, the 
Hall conductance can be precisely calculated. 
Therefore, for the cases where two chiral states 
can be fully separated in the Hamiltonian (as in 
the case of half-BHZ model,9 for example), each 
state can be assigned with spin or mirror Chern 
numbers, as applicable, with their net value 
vanishes, but the difference yields finite value. For 
the generalization to evaluating Z

2
 invariant, odd 

pair of Pfaffian nodes is analogous to the center 
of odd pairs of ‘chiral orbits’ in the momentum 
space. Here one requires that the electron’s 
wavefunction must change into its TR conjugate 
odd number of times as it traverses through half 
of the BZ.4,99 These ingredients are used in the 
following methods as the targets to engineer TIs.

The idea would be to take a bottom-up 
approach to assemble TIs in desired dimensions. 
Here we start with an atomic chain or layer with 
SOC, and invert the SOC in its adjacent chain or 
layer, so that it acts as the TR conjugate partner to 
the former one. Therefore, the electron switches 
its TR partner in hopping from one chain/layer 
to another. The Pfaffian P(k) thereby acquires 

a node in between them, and the Z
2
 invariant 

becomes 1. This setup can be achieved by aligning 
the direction of SOC in each chain or layer by 
manipulating lasers (in optical lattice) or by 
reversing electron field directions (for Rashba-
SOC), or via interaction. As an insulating state 
occurs, the system is guaranteed to behave as a 
Z

2
 TI.

In systems with inversion symmetry, Z
2
 

invariant can be evaluated by the odd number of 
band inversions between the two chiral states at 
the TR invariant momenta.7 This phenomena can 
be thought of as the ‘chiral orbits’ are split along 
the energy axis and/or in the momentum space 
with negative Dirac mass. At the end of this 
section, we will introduce another new concept 
for chiral band inversion in the real-space, due to 
interaction effect. We attribute the corresponding 
emergent topological phase as quantum spin-Hall 
density wave (QSHDW) insulator.30 Our research 
group has a major thrust in this research direction, 
among which we give below four representative 
examples.

3.1  Engineering topological ‘chiral 
orbits’ in 2D

In the first example, we start with a 1D chain of 
atoms with 1D SOC. Such state arises in quantum 
wires,130 optical lattices,81,131,132 as well as in bulk 
systems when Rashba- and Dresselhaus-type of 
SOCs have equal strength. We denote such a wire 
by ‘A’ SO wire. The corresponding Hamiltonian in 
the continuum limit is81,130–132

H
k

m
I i kA R x x= +×

2

2 22
,α σ  (27)

where the first term gives the kinetic energy, and 
the second term gives the SOC with strength α

R
. 

(In optical lattice, in the process of creating SOC 
with lasers, a Zeeman-like terms also arise which 
has the form of Ωσ

Z
, where Ω depends on the laser 

strength).131 The corresponding spin split state is 
shown in Fig. 12(b). So far researchers are only 
able to generate 1D SOC in optical lattice which is 
inadequate to create ‘chiral orbit’ in 2D plane, and 
thus poses a serious setback to obtain 2D or 3D 
TIs here. We propose to use the second SOC wire 
(called ‘B’ wire) with opposite SO such that its 
Hamiltonian can be written as H k H kB A( ) = −( )∗ . 
Without quantum tunneling between the two 
wires, the spin-polarization of bands for two wires 
are reversed, and the Γ-point has now four-fold 
degeneracy (see Fig. 10(c)). Therefore, bands at 
the Γ-point can now be gapped without breaking 
the TR symmetry (spin degeneracy is still 

QSHDW: The word density 
wave is used here in analogy 
with the traditional density 
wave orders in which a well 
defined spin or charge density 
is modulated in the lattice 
and have a wavelength which 
is usually larger than the 
underlying lattice constant. 
Here the spin Hall density 
refers to the Hall conductivity 
for each spin which has a 
modulation vector larger than 
the lattice constant. 
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present), by switching on the inter-wire quantum 
tunneling, as shown in Fig. 12(d). Note that in 
this setup we have obtained chirality along the 
k

x
 direction through SOC, but the same thing is 

still lacking for hopping between the wires. This 
can be obtained by allowing staggered inter-wire 
hopping, in which the distance between ‘A’ and ‘B’ 
wires and that between ‘B’ and next ‘A’ wires (‘A’ 
wire lying on opposite sides of ‘B’ wire) can be 
made different.

For this setup, the formation of localized ‘chiral 
orbit’ can be understood from the corresponding 
real-space view of the hoppings, see Fig. 13. Let us 
assume that a spin-up electron in the ‘A’ wire is 
right-moving, and that in the ‘B’ wire becomes 
left-moving, due to opposite SOC. Therefore, 
when a spin-up electron hops from ‘A’ wire to ‘B’ 
wire, its motion is reversed and as the electron 
hops back to the ‘A’ wire, it forms a ‘chiral orbit’ 
(reverse direction for the spin-down electron) as 
shown in Fig. 13(a). As the hopping amplitude is 
increased, these ‘chiral orbits’ become localized 
in the bulk, leading to a band insulator, as shown 
in Fig. 11(b). Due to the translational symmetry in 
the lattice, the TKNN invariants could have been 
assigned to each chiral state, with equal and 
opposite Chern numbers. However, due to SOC, 
the two chiral states switch TR partner across 
Γ-point. Therefore, we can calculate the ‘TR 
polarization’ as discussed in Sec. 2.6. Finally, with 
the calculation of Pfaffian, we show that the 
present engineered device becomes a non-trivial 
TI, with spin polarized edge state as shown in 
Fig. 12(e). We find that the resulting Pfaffian4,99 
takes the form of P k e

i ky( ) = + −
1

2
, which therefore, 

depends on the Bloch phase associated with the 
inter-wire hopping e

iky . The Pfaffian has one pair 
of nodes inside the first BZ at ky

* /= ±π 2. Therefore, 
irrespective of the parameters, the present setup is 
guaranteed to produce a non-trivial TI.

Localized: Localization of 
the ‘chiral orbit’ simply means 

that the radius of the orbital 
becomes smaller than the 
half-distance between the 

adjacent orbits such that they 
do not overlap.

Figure 12: Band evolution from free fermion to TI in our first engineering principle in 1D system described in 
Sec. 2.1. (a) Free electron dispersion without SOC. (b) A typical Rashba-SOC split band structure in a single 
wire. (c) Two decoupled wires without any quantum tunneling between them. Since two wires have opposite 
SOC, they render opposite spin splitting. Therefore, the combination presents a spin degenerate band structure 
at all k-points. (d) As the quantum tunneling between the two wires is turned on, a band gap first opens at the 
Γ-point, without breaking the spin-degeneracy at all k-points. (e) As more pairs of TR coupled wires are joined 
in a lattice, a full band gap develops at k-points giving an insulating state with Dirac cone at the edge.

Figure 13: Real space view of ‘chiral orbit’ 
formation in 2D with two TR conjugate wires. (a) A 
atomic wire decorated with two orthogonal lasers (E1 
and E2) to produce a 1D SOC α(k). In the adjacent 
‘B’ wire, E1 laser is reversed to obtain TR conjugate 
SOC α*(k). If the spin up state is left handed in ‘A’ 
wire, it becomes right handed in ‘B’ wire and vice 
versa. As a spin up atom/electron hops from ‘A’ to 
‘B’ wire it will move backward, and then eventually 
hops back to ‘A’ wire. As the SOC strength and the 
hopping strength are tuned to their proper values, 
two counter-helical ‘chiral orbits’ form in the bulk 
and an insulating state commences. (b) As a 2D 
lattice (Gaussian curvature) is formed for the ‘chiral 
orbits,’ a non-trivial TI state is guaranteed to arise 
here with helical edge states.
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3.2  Engineering 3D topological 
insulators with Rashba bilayers

Next we discuss our method of engineering 3D 
TIs by stacking 2D layers in a heterostructure, in 
which alternating layers have opposite SOCs.5 
Here we start with a 2D electron gas (2DEG) with 
Rashba-type SOC α(k). The approach is based 
on growing bilayer of Rashba-type 2DEG with 
opposite SOC on adjacent planes of bilayers. We 
find that in the stack of bilayers grown along the 
(001)-direction, a topological phase transition 
occurs above a critical number of Rashba-bilayers, 
with the formation of a single spin-polarized Dirac 
cone at the Γ-point.

The band progression from trivial insulator 
to non-trivial TI is demonstrated in Fig. 14. The 
building block is a Rashba bilayer with opposite 
Rashba SOC in each layer denoted by α(k) and 
α*(k). We tune the interlayer distance such that 
an anisotropic quantum tunneling, D(k), couples 
them, as illustrated in Fig. 14(b). Here again, 
without breaking the TR symmetry, the Rashba-
bilayer opens an insulating gap at the Γ-points, 
which is determined by D(0). Then we add 
another Rashba-bilayer on top of the previous 
one with an inter-bilayer electron hopping, t

z
, 

which is required to be different from D(0) to 
eliminate the degeneracy related to the number of 
bilayers. For two Rashba bilayers, the bulk bands 
in the two interior single layers have reduced band 

gap, and a massive ‘preformed’ Dirac like surface 
state appears, see Fig. 14(c). However, our parity 
analysis reveals that this setup still remains trivial 
insulator without any band inversion. However, 
as we add one more bilayer, a magic topological 
phase transition occurs, see Fig. 14(d). We see in 
the band structure that there exists a bulk band 
inversion between the valence and conduction 
bands at the Γ-point [indicated by arrows between 
Figs. 14(c), and 14(d)]. The band inversion can be 
easily visualized, confirmed by the parity analysis, 
from the change of curvature of the valence band 
near the Γ-point (or a ‘dent’ band structure). While 
the valence band is hole-like at all other momenta, 
it changes the topology to become electron-like at 
the Γ-point. Despite non-trivial band topology, the 
Dirac cone in the surface state obtains a tiny band 
gap due to finite size effect. As we grow a large size 
heterostructure with more Rashba bilayers, we see 
that band inversion strength in the bulk increases 
and the gap in the surface state gradually vanishes, 
see Fig. 14(e).

The low-energy effective model for a single 
Rashba-bilayer can be expressed as

H
D

D
BL( )

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

k

k k

k k k

k k k

k k

=





 ∗

∗

ε α

α ε

ε α
α ε

0 0

0

0

0 0














,  (28)

Figure 14: Engineering 3D TI. (a) Two decoupled TR conjugate Rashba-states with opposite SOC. (b) A 
coupled Rashba bilayer (1BL) with anisotropic inter-layer hopping [D(k)]. (c) Two Rashba bilayers setup, 
with inter-BL coupling tz ≠ D(k) This is a trivial insulator. (d) 3 BL is guaranteed to give non-trivial TI with band 
inversion (indicated by the red dashed lines). Here due to finite size effect, two surfaces hybridize and open 
a gap at the Dirac cone. (e) Above about 6 BLs, a gapless Dirac cone arises.
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with ε(k) = k
2
/2m, the intra-bilayer hopping 

D(k) = (D
0
 + D

1
k2). Each such bilayer is now 

stacked along the z-direction, which are connected 
by the nearest-neighbor inter-bilayer hopping 
T = t

Z
I

2×2
. Interestingly, the resulting insulatng 

bulk gap depends on the two tunneling terms D
0
 

and t
z
, which are readily tunable. The surface state 

is determined by H
surf

 = α
R
(σ

x
k

y
 – σ

y
k

x
), with its 

surface Dirac fermion velocity fully controlled by 
the Rashba SOC strength. For values of the Rashba-
coupling constant as large as 3.8 eVA, achieved to 
date in bulk BiTeI,133 we get v = 5.8 × 105 ms-1, 
which is much larger than the highest speed 
achieved so far in 3D Tis as v ∼ 3 × 105 ms-1.5.

Such Rashba-bilayer can be easily manufactured 
by creating a potential gradient between two 
2DEGs with the help of gating, or by inserting 
oppositely polarized ferroelectric substrate 
between them, among others.5 This idea is applied 
in the GaAs/Ge/GaAs heterostructure with 
opposite semiconductor interfaces.134 The giant 
electric field generated by charge accumulation 
at the interfaces creates a Rashba-bilayer on both 
sides on Ge layer, and that allows a band inversion 
with an insulalting gap of 15 meV or larger. 
Another example is the synthesization of bulk 
strong TI by stacking 2D weak TIs:135 Bi

14
Rh

3
I

9
. Its 

Bi–Rh sheets are graphene analogues, but with a 
honeycomb net composed of RhBi

8
 cubes rather 

than carbon atoms. The strong bismuth-related 
SOC renders each graphene-like layer a TI with 
a 2,400 K bandgap. The non-centrosymmetric 
BiTeCl is an experimentally realized 3D TI44 in 
which alternating layers of Bi and Te obtains 
opposite charge polarization, and thus opposite 
SOC. Therefore, our design principle is not only 
applicable in engineered heterostructure, but is 
also at play in bulk single crystals.

3.3  Spatial modulation of ‘chiral orbits’ 
and quantum spin Hall density wave 
insulator

Next we discuss an interesting situation where the 
energy level inversion occurs in real space between 
sublattices due to electron-electron interaction. 
To understand this phenomenon, we revisit the 
nearly free-electron model from the elementary 
condensed matter course. We know that when 
a weak periodic potential V

G
, where G is the 

reciprocal wavevector, is applied to free electron 
gas, band gap opens at those k-points which obey 
2k = G relation, see Fig. 15(a–b). In this case, those 
parts of the bands, ε(k), which lie above 2k > G 
are folded back into the reduced BZ by explicitly 
including it in the Hamiltonian as ε(k + G). The 
resulting system breaks translational symmetry, 

D(k) = (D
0
 + D

1
k2): 

The leading term in the 
momentum dependence 

is quadratic which is easily 
obtained due to ‘in-plane’ next-
nearest-neighbor hopping, but 

between the ‘adjacent’ layers.

v: The estimate of the 
Fermi velocity does not 

include correlation effect 
which tends to reduce 

the velocity.

and thus opens a band gap at the zone boundary 
by V

G
. A similar translational symmetry can occur 

due to electron-electron or electron-phonon 
interactions generated potential at a preferential 
wavevector V

Q
, where Q is called the Fermi surface 

nesting vector, defined as 2k
F
 = Q, where k

F
 is 

the Fermi momenta. As a result, charge or spin 
density of the electrons at each lattice site becomes 
modulated and obtain a new periodicity which 
is different from the original periodic lattice. 
Similarly, at the edge of the reduced BZ [at k = 
Q/2], a quasiparticle gap opens. Here the gap is 
defined by the Landau-like order parameter, and 
the corresponding states are called charge/spin-
density wave orders.

An analogous, but more exotic, situation arises 
when the Fermi surface nesting occurs between 
the two SOC split bands. As shown in Fig. 15(c–d), 
in such cases, the nesting simultaneously occurs 
for both spin states, giving rise to the spin-resolved 
potentials VQ

↑↓  (unless TR symmetry is broken, 
the absolute values of the two potential can be 

Figure 15: Upper panel: BZ folding and band 
gap opening in the nearly free electron model. 
(a) Free electron dispersion in which k and –k 
are connected by the reciprocal vector G with a 
periodic potential VG. (b) Band gap opens at the 
zone boundary and the bands above the zone is 
folded inside by doubling the unit cell. Lower panel: 
A similar situation arises with Rashba-SOC. (c) Two 
FS nestings simultaneously occur here between 
the two helical states (V↑, V↓). (d) Corresponding 
correlated band structure with SODW. Here the 
reduced BZ for the two helical states are different 
(red and blue shadings).
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equal). For such a case, there will be two spin-
density waves, with each spin density having 
opposite spin-polarization at a given site, due to 
SOC. In such a case, a distinct order parameter, 
namely Spin-Orbit Density Wave (SODW) arises, 
which breaks translational symmetry, but in most 
cases it preserves TR symmetry. A detailed 
discussion of this order parameter can be found in 
Refs.31,32,59,130,136 Here we discuss how such a state 
can naturally give a Z

2
 topological order 

parameter.30

We illustrate this case for a Rashba-type SOC. 
Inside the reduced zone, the non-interacting band, 
and the Rashba SOC are ε(k), and α(k), and their 
folded counterparts are ε(k + Q), and α(k + Q). 
An interesting case arises when the nesting vector 
is exactly Q = (π, 0)/(0, π). In this case, the folded 
Rashba SOC changes to the complex conjugate of 
the main SOC as α(k + Q) = α*(k). [This becomes 
obvious if we use the lattice form of the Rashba 
SOC where it takes the form of α(k) = α

R
(sin k

y
σ

x
 + 

sin k
x
σ

y
) , which changes to α*(k) as k → k+Q]. 

This gives rise to a situation that is analogous to 
the Hamiltonian for TI written in Eq. (28). To see 
that we can express a mean-field Hamiltonian in 
the basis of Ψk k k k Q k Q= ( )↑ ↓ + ↑ + ↓ψ ψ ψ ψ, , ,  as

H =
+

∗ ∗

∗

∗

ε α

α ε

ε α

α ε

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) (

k k k

k k k

k k Q k

k k

0

0

0

0

∆

∆

∆

∆ kk Q+



















)

.  (29)

By comparing Eq. (28) with Eq. (29), we see 
that the single-electron tunneling term D(k) 
in Eq. (29), is replaced here by the interacting 
SODW gap ∆ k( ) = ↑ + ↓V

k k Qψ ψ† , with V 
being the interaction strength. The above 
Hamiltonian can also be expressed in terms of 
the Dirac matrices, in which the coefficient for 
the Parity operator (Γ

4
) is the Dirac mass term 

M = (ε(k) – ε(k + Q))/2. Therefore, the topological 
invariant can be evaluated by the parity analysis 
[Eq. (16)] by tracking the band inversion induced 
by the main and folded bands at the TR invariant 
points.

The physical interpretation of the SODW 
induced TI is that the electron-electron interaction 
induces a chirality inversion in the real-space 
between different sublattices. In 2D, the emergent 
QSH effect is, therefore, spatially modulated as 
demonstrated in Fig. 16, which we call Quantum 
Spin-Hall Density Wave (QSHDW) insulator. In 
typical topological classes, topological invariants 
arise from the non-trivial geometry of the band 
topology of non-interacting fermions. Electron-

SODW: In spin-orbit density 
wave, the total spin density 
remains same in each lattice 
sites, but the spin density in 
each orbital is modulated with 
a wavevector larger than the 
lattice constant. 

electron interaction does not directly drive a 
topological phase transition, except in few cases 
such as topological Mott, or Kondo or Anderson 
insulators, in which, however, no Landau-type 
order parameter develops. The proposed QSHDW 
phase is a new kind of Landau order parameter, 
which is associated with topological invariant. The 
realization of this order state requires SOC, strong 
coulomb interaction, as well as chemical potential 
tunability to obtain the desired nesting wavevector. 
Quantum wires of Pb, Bi and other SOC elements 
are ideal systems to study this problem.130 Because 
here due to quasi-1D nature, Fermi surface nesting 
is enhanced, and here all these three parameters 
can be tuned both externally and internally. The 
QSHDW phase can also be explored in non-
centrosymmetric heavy-fermion materials that 
allow SOC split band structure.

3.4  Spinless orbital texture inversion 
induced topological ‘chiral orbits’

So far we have discussed the formation of magnetic 
field free chiral electrons in two methods, namely via 
the staggered hopping in SSH model15 or in graphene 
lattice,96 and due to SOC. In some of the nodal 
superconductors, such as nodal d-wave copper-
oxide superconductors, owing to the particle-hole 
symmetry, the quasiparticle dispersion around the 
discrete nodal point acts as Dirac excitations.87,88 
Therefore, in the existing classes of Dirac materials, 
‘massless’ Dirac fermions only appears in certain 
conditions. For example, Dirac cones only form 
in atomically thin layer of graphene, or on the 
surface states inside the bulk gap in TI. Therefore, 
the relevant materials choices are restricted to heavy 
elements which, by nature, have lower band velocity 
and higher correlation strength.

Recently, the present author has proposed a 
new theory for a distinct type of Dirac materials, 
called ‘Weyl/Dirac orbital semimetals’ and 

Figure 16: Two TR conjugate Hall bars containing 
staggered ‘chiral orbits’. The unit cell is doubled 
here. In the momentum space, different chiral 
states have different reduced BZ [as discussed in 
Fig. 13(d)], enclosing opposite Berry curvatures, 
F(k) and –F(k + Q). The Chern number in each 
reduced BZ possess opposite sign, giving rise to 
a QSHDW state. This can be compared with Fig. 5 
for QSH state for better understanding.
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topological orbital insulator, which has Weyl/
Dirac cone arising due to orbital texture inversion 
at discrete momenta between two orbitals with 
different symmetries.16,17 The general idea of this 
design principle lies in assembling different atoms 
with distinct conduction electrons in such a way 
that the inter-orbital electron hopping or tunneling 
term naturally obtains an odd function of energy-
momentum dispersion. Finally, the intra-orbital 
terms also conspire in such a way that the 
corresponding low-energy Hamiltonian can be 
reduced to an effective k.p - type Dirac 
Hamiltonian. The resulting Dirac/ Weyl cones at 
the orbital degenerate points are protected by 
lattice/ translational symmetry.

We discuss here a specific example for 
engineering Weyl cones. Weyl cones are split 
Dirac cones arising from the Dirac Hamiltonian 
when either inversion or TR symmetry is lifted, 
see Fig. 17. We take a layer-by-layer setup which 
includes even and odd parity orbitals in alternating 
layers - dubbed orbital selective superlattice. Such 
structure is odd under mirror symmetry along 
the superlattice growth axis. As shown in Fig. 18, 
we consider ‘s’ and ‘p

z
’ orbitals, placed along the 

z-direction in different layers, such that inter-
orbital or inter-layer hopping has same amplitude 
(unlike in the SSH model15 in which the amplitude 
itself is different), but acquires different sign. 
The net tunneling matrix-element then becomes 
purely imaginary as ε sin( )sp

z
sp

zit k ck( ) = −2 , where 
t z

sp is the hopping amplitude and c is the interlayer 
distance. Such complex hopping term can also 

Topological orbital insulator: 
In topological orbital insulator, 

we expect to have orbital 
polarization to the edges or 

surfaces, in analogy to the TR 
polarization in Z2 class or spin 
polarization in QSH insulator.

arise in various other orbital combinations, such 
as a combination of bonding and antibonding 
states, or from the mixture of two even orbitals 
(such as s and d

xy
), or two odd orbitals (such as p

x
 

and p
y
) orbitals when they are placed diagonally, as 

discussed in Ref.17 Let us fix d
3
(k) = εsp(k

Z
), hence 

we are left with obtaining imaginary in-plane 
hoppings corresponding to d

1
 and d

2
. Here we 

can seek the same principle as orbital selective 
in-plane lattice sites, or a hexagonal lattice, or p

x
 

+ p
y
- wave pairing or SOC, all yielding essentially 

similar Hamiltonians. We take a Rashba-type SOC 
which sets d

1
 = α

R
 sin(k

x
a), and d

2
  = -iα

R
 sin(k

y
a). 

This Rashba-SOC is the lattice generalization 
of the same Rashba-SOC discussed in Sec. 
3.3. Now the Hamiltonian can be expressed in 
the usual Γ-matrix form in the orbital spinor 
Ψk k

s
k
s

k
p

k
p= ( )↑ ↓ ↑ ↓ψ ψ ψ ψ, , ,  as

H dk k k k( ) = ( ) + ( ) + ( )+
×

− . ,ε εI4 4 4Γ Γ  (30)

where ε±(k) = (ε s(k) ± εp(k))/2, with εs/p(k) being 
the intra-orbital dispersions. The energy spectrum 
is E d± + −= ± +( ) ( ) ( )( ) | ( ) |k k k kε ε 2 2. Therefore, 
the contour of ε-(k) = 0 gives a gapless nodal ring, 
among which all the k-points become gapped by 
finite values of d-vectors except those discrete points 
at which all its components vanish simultaneously. 
At these discrete k-points, Dirac/Weyl cones arise. Γ

4
 

is the parity operator, and is even under TR, while 
Γ

1,2,3
 are odd under TR. Since ε-(k) is even function 

of k, while d
1,2,3

 are odd functions in momentum, 
the Hamiltonian is invariant under both inversion 
and TR symmetries. In such case, 3D Dirac 
cones can appear only at the TR invariant high-
symmetric k-points, and are four-fold degenerate. 

Figure 17: Bulk Dirac and Weyl cones. (a) A 3D 
Dirac cone forming at the TR invariant k-point. 
Due to the presence of both TR and inversion (I) 
symmetry, this Dirac cone is four-fold degenerate. 
(b) As inversion symmetry is lifted, the Dirac cone 
splits intro two Weyl cones in the momentum 
directions. Weyl cones must reside at non-TR 
k-points, otherwise they would annihilate each 
other to merge to the 3D Dirac cone again. (c) 
Splitting of Dirac cone into Weyl cones along the 
energy direction as TR symmetry is lifted. Note 
that TR symmetry breaking also leads to splitting 
of Dirac cones along the momentum direction.

Figure 18: A schematic orbital selective layered 
setup for engineering Weyl orbital semimetal and TI 
without SOC. The idea is to stack orbitals with even 
parity (say s-orbital) and odd parity (say p-orbital) 
in alternative layers so that the setup breaks the 
mirror symmetry with respect to the even orbital 
layer. Therefore, the hopping between the orbitals 
on both sides will possess different sign, and only 
itzsin(kzc) term thus survives in the net hopping. 
Therefore, a complex hopping matrix-element can 
be achieved here.
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As the inversion symmetry is lifted, they split in 
the momentum space, while with TR symmetry 
breaking, the splitting can occur in both momentum 
and energy directions. The corresponding two-
fold degenerate nodal cones are called the Weyl 
cones, each enclosing integer, but opposite Chern 
numbers. Therefore, Weyl cones always appear in 
pairs, each representing the center of counter helical 
‘chiral orbits’, but remain protected by translational 
symmetry.137 As a negative band gap is opened at 
the 3D Dirac cone, the system becomes a Z

2
 TI. 

Similarly, negative band gap at the Weyl nodes can 
also give rise to topological crystalline insulators if 
mirror symmetry is present. Such orbital texture 
inversion induced TIs is refereed as topological 
orbital insulators. One can envision engineering 
topological orbital insulators in a similar fashion as 
discussed in Sec. 3.2, with layer-by-layer approach, 
in which stacking adjacent layers must host Weyl/
Dirac cones with opposite chirality at the same 
momentum.

Recently, we have predicted that the ferromag-
netic V

3
S

4
 is an intrinsic Weyl orbital semimetal.17 

The theory of Weyl orbital semimetals does not 
depend on the uncommon conditions such as 
sublattice symmetry in atomically thin graphene, 
or high value of SOC in TIs. Engineering Weyl 
orbital materials will expand the territory of the 
Dirac materials beyond the typical heavy elements’ 
Dirac systems or graphene to even lower atomic 
number system and thereby enhance the value of 
Fermi velocity. The nature of impurity scattering 
protection for different quantum orbitronics cases 
is characteristically different. In the present family, 
an electron can only scatter from one orbital state to 
another when the impurity vertex contains a corre-
sponding anisotropic orbital-exchange matrix- ele-
ment or if the electron dynamically passes through 
the momentum and energy of the Dirac cone. 
Another advantage of the Weyl orbital semimetal is 
that here the Dirac cone is even immune to TR sym-
metry breaking, and a bulk gap can be engineered 
by the lattice distortion. Therefore, the generation, 
transport and detection of orbitally protected elec-
tric current may lead to new opportunities for orbit-
ronics. Chiral orbital current in the Weyl semimetals 
can be detected by Kerr effect.

4 Conclusion and Outlook
This article presented a thorough understanding 
of the topological invariant in the absence 
and presence of TR symmetry, as well as other 
symmetries such as inversion symmetry, mirror 
symmetry, or particle-hole symmetry. The key 
strategy that we followed here is that the historical 
development of the topological invariant, starting 

from the quantization of flux through a non-
trivial Gaussian curvature to the IQH to QSH 
to Z

2
 TI, provides a more transparent and step-

by-step development of this field. A unique 
feature of this field is that it blends concepts from 
various fields including mathematics, condensed 
matter physics, chemistry, and particle physics. A 
detailed discussion of the materials chemistry of 
the TI systems is left out in this article and can be 
found elsewhere.63 We can highlight an interesting 
difference between the trivial insulator and TI from 
a chemist’s perspective. In a band insulator, the 
valence and conduction bands remain fully filled 
and empty, respectively. Therefore, such insulators 
are sought in elements or compounds whose outer 
most orbital contains even number of electrons. 
TI is also a ‘band insulator’ with a twist. Here the 
valence and conduction bands are also expected 
to be completely filled and empty, respectively, 
but at the same time, these bands are inverted at 
the TR invariant k-points, suggesting otherwise. 
Therefore, one can neither seek for elements with 
completely full outermost orbital, nor partially 
filled orbital (since partially filled state should give 
a metallic state). For the same reason, the material 
should neither be too covalent, nor too ionic.

Therefore, intermetallics are obvious elements 
to consider for non-interacting TI (interaction 
can change this simple explanation). Indeed, most 
of the TIs are made of intermetallics. Here we can 
consider at least two partially occupied elements 
which participate in orbital-overlap and/or 
coupled via SOC. Therefore, a band can remained 
fully occupied by accommodating two partially 
filled orbitals. If the exchange of the orbital 
character occurs at odd number of TR invariant 
points, it gives rise to ‘strong’ TI, otherwise even 
number of orbital weight switching can give rise 
to either a ‘weak’ TI or a trivial insulator.

From high-energy physicists’ perspective, 
TI field offers a plenty of new opportunities to 
predict new excitations as well as to realize some 
of the uncharted ‘particles’ predicted there. Weyl 
fermions138–141 and Majorana fermions142–144 which 
remained elusive for decades have only been 
realized recently in TI platforms. Axion,24,106 and 
anyons145,146 are two widely searched excitations 
which are predicted to be present in TIs. Recently, it 
is shown that supersymmetry (SUSY) can be found 
in TI and superconductor heterostructures.147,148

Cold atom physicists also find it interesting 
to contribute to the TI fields in various ways. 
Haldane, in his original paper,3 commented that 
“the particular model presented here is unlikely 
to be directly physically realizable”. Cold atom 
researchers have made it possible to create 
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the Haldane model with optically generated 
honeycomb lattice.98 They have engineered TR 
and inversion symmetry breakings by carefully 
enhancing next-nearest-neighbor hopping, and 
providing staggered onsite energies to different 
sublattices, respectively, as proposed by Haldane. 
More recently, protected edge state is generated 
in various optical lattice structure by employing 
synthetic gauge field.149,150 The apparent setback to 
realize the Z

2
 TI due to the lack of 2D SOC can 

be overcome with our engineered structure (as 
discussed in Sec. 3.1),81 and the realization of TR 
invariant TI in optical lattice field is a matter of 
time. Due to tremendous controls over structural 
and quantum properties in these setups, an 
unprecedented tunability of TI properties for 
further exploration can be possible here.

Despite the predictions and discoveries of 
several TI materials classes, materials flexibility still 
remains a grand challenge.63 Bi

2
Se

3
 family is 

widely used for many experiments on TI, since 
both single crystal and thin films of this system can 
be easily grown. HgTe/CdTe33 and InAs/GaSb72 are 
the only two systems experimentally demonstrated 
as QSH insulators, which are however, not being 
used in other experiments. Magnetic doped thin 
film of Bi

2
Se

3
 is the only system synthesized so far 

to be QAH insulator.109,110 Pb
1-x

Sn
x
Se/Te52–54 and 

SnS55 are the only two systems known to be 
topological crystalline insulator. SmB

6
 is predicted, 

and subsequently realized to be topological Kondo 
insulator,56,151,152 although evidence against this 
conclusion is also present.153 Cd

3
As

2
154,155 and 

Na
3
Bi156,157 are synthesized to be 3D TI, while TaAs138–

140 and NbAs141 family are discovered recently to 
be Weyl semimetal. Many other families, such as 
topological Mott insulator, topological Anderson 
insulator, and topological axion insulators are yet to 
be discovered. Moreover, the inevitable presence of 
the bulk conductivity in most of the 3D TI samples 
poses a serious nuisance to experimentalists. 
On the other hand, engineering TI can be rather 
simpler. It also offers tremendous versatility in 
terms of materials growth, and obtaining quantum 
and topological properties. Therefore, the successful 
preparation of ‘home-made’ TI may cater to 
physics, chemistry and engineering fields seeking 
suitable materials with higher tunability and 
materials flexibility.
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