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Abstract | A number of recent works have discussed the issue of spin 
polarization of a Majorana zero mode in condensed matter systems. Here 
we show that the spin polarization density of a Majorana zero mode, 
computed as an average of the spin operator over its wave function, is 
identically zero. A single non-degenerate Majorana zero mode, therefore, 
does not couple to an applied magnetic field, except via hybridization 
with higher energy excited states (if present), which may perturb its wave 
function. If spin is defined by considering only the particle components 
of the wave function, as has been done in some recent works, Majorana 
zero modes do have a non-zero spatial profile of this quantity, which 
is measurable in scanning tunneling microscopy (STM) experiments.
However, if such a quantity is measured in spin-resolved tunneling 
experiments (without spatial resolution), we show that it cannot be used 
as a unique signature of Majorana zero modes in the topologically non-
trivial phase. As a byproduct, we show that in spatially inhomogeneous 
systems (specifically, in systems with a soft boundary), accidental zero 
energy modes (which for all practical purposes behave as Majorana zero 
modes) can appear with increasing magnetic field even in the absence of 
a topological quantum phase transition (TQPT). But only after gap closing 
and the associated TQPT, the modes are localized near the system 
edges, resulting in the maximum topological protection. In light of these 
considerations, demonstrating the nonlocal character of the topologically-
protected Majorana pair and its emergence after the systems undergo 
a TQPT, become critical tasks for the ongoing experimental search for 
Majorana bound states in condensed matter systems.

1 Introduction
Topological superconductors are defined as 
systems with a well defined spectral gap to 
fermionic excitations in the bulk but topologically 
protected gapless excitations on the surface.1–3 
Due to the superconducting particle-hole 
symmetry, the second quantized operators for 
Bogoliubov excitations in a gapped spinless 
superconductor, which is a prototype of a 
topological superconductor,1,2 satisfy the property 

γ γE E† = − . It follows that the gapless zero modes 
on the surface, should they exist, satisfy the 
property γ γ0 0

† ,=  implying particles identifiable 
with their own anti-particles, first proposed by E. 
Majorana in 1937 in the contextof high energy 
physics.4 In the context of condensed matter, the 
gapless zero energy Bogoliubov excitations, known 
as Majorana zero modes, emerge as localized  
zero-energy quasiparticles in topological 
superconductors bound to defects of the order 
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parameter such as vortices and sample edges. 
Aside from being fascinating non-elementary 
particles, in two-dimensional systems Majorana 
zero modes obey a special type of braiding statistics 
known as non-Abelian statistics, which is useful in 
implementing a fault-tolerant topological 
quantum computer.2,3 These emergent excitations 
are said to be topologically protected, in the sense 
that their existence on the surface and other 
interesting properties are insensitive to 
perturbations, so long as the system remains 
gapped in the bulk.

While Majorana zero modes (also sometimes 
called Majorana bound states (MBSs) or 
simply Majorana fermions (MFs)) have not yet 
been conclusively found in experiments, they 
have been theoretically shown to exist in low 
dimensional spinless p-wave superconducting 
systems,1,2 as well as other systems that are similar 
to them.5–14 In particular, the semiconductor 
heterostructure scheme, involving a spin-orbit 
coupled semiconductor in proximity to a s-wave 
superconductor and an externally applied Zeeman 
field,8–14 has motivated tremendous experimental 
efforts with a number of recent works claiming to 
have observed experimental signatures consistent 
with the existence of Majorana zero modes;15–20 for 
a review see Ref.21

Zero energy Majorana bound states in 
topological superconductors can be viewed as 
Andreev bound states22 with an equal admixture 
of electron- and hole-like components of the same 
spin. The second quantized Majorana operator, 
thus, creates anddestroys an equal amount of any 
physical quantity associated with these operators, 
and the excitation carries zero average charge and 
spin. Put another way, MBSs, by construction, 
cannot carry a non-zero value of an internal 
quantum number, e.g., charge or spin, because if 
they did, the field that couples to these quantum 
numbers (e.g., Zeeman field) would be able to 
remove MBSs locally, which goes against the 
concept of topological protection.2 Despite this, 
a number of recent works23–26 have proposed the 
existence of a spin-polarization associated with a 
single MBS in condensed matter systems.

In this paper we first show that the spin 
polarization of a MBS, computed as an average of 
the spin operator over its wave function, vanishes 
everywhere. An applied Zeeman field, therefore, 
has no effect on an isolated MBS, consistent with 
the concept of topological protection. Not only 
does the Zeeman field have no effect on the energy 
of Majorana zero energy state, even the Majorana 
wave function is unaffected by the Zeeman field 
provided the gap to the higher energy excited states 

non-Abelian: Is a non-
commutative process.

is large enough (change in the Majorana wave 
function by an applied Zeeman field occurs via 
hybridization with the higher energy excited states, 
and thus disappears for a truly ‘stand-alone’ MBS). 
If spin is defined, however, by taking into account 
only the particle components of the Majorana 
wave function, as has been done in the recent 
works,23–26 we show that Majorana zero modes do 
have a non-zero spatial profile of this quantity, 
and it can be measured in scanning tunneling 
microscopy (STM) experiments. However, if this 
quantity is measured in spin-resolved tunneling 
spectroscopy (without spatial resolution), we 
show that it cannot be used as a unique signature 
of Majorana bound states in the topological 
superconducting phase of semiconductor-
superconductor heterostructures. Our conclusion 
is that although the spin polarization can be 
probed by spin-resolved tunneling experiments 
(such as STM and tunneling spectroscopy from 
the ends) no extra information can be gleaned by 
spin-resolved tunneling (beyond what is gained 
by spin-unresolved tunneling) that can help us 
discriminate between zero energy states in the 
topologically trivial and non-trivial regimes in the 
parameter space.

As a byproduct of this work we also show that 
in spatially inhomogeneous systems, MBSs can 
appear with increasing Zeeman field even in the 
absence of a topological quantum phase transition 
(TQPT). When the system is still topologically 
trivial, a regularlow energy subgap state near a soft 
boundary can nucleate two spatially separated zero 
energy states that (for all practical purposes) behave 
as Majorana zero modes. So long as the system 
remains topologically trivial, these Majorana bound 
states are localized inside the smooth confinement 
region, while in the topologically non-trivial 
superconducting phase (i.e., with Zeeman field 
larger than the critical field required for TQPT) 
the two Majorana states are localized near the ends 
of the wire. In light of this finding we conclude 
that demonstrating the nonlocal character of the 
topologically-protected MBS pair and its emergence 
after the system undergoes a TQPT, become critical 
tasks for the ongoing experimental search for MBSs 
in solid statestructures. In particular, we conjecture 
that observing a zero-bias conductance peak 
(of height ∼2e2/h) that sticks to zero energy for a 
certain range of Zeeman fields does not represent 
a unique signature of the topologically protected 
Majorana bound states (because such a signature 
can also appear in the topologically trivial phase, 
see Fig. 8).

Below in Section 2 we discuss the issue of spin 
polarization of MBSs, clearly distinguishing 
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between average spin computed with respect to 
the full Majorana wave function and another 
quantity (also sometimes called ‘spin polarization’ 
of MBSs23–26) where the average is computed with 
respect to only the particle components of the 
wave function. In Section 3, we discuss and 
distinguish MBSs that appear in the topologically 
non-trivial phase of a semiconductor-
superconductor heterostructure with accidental 
zero energy states in the topologically trivial phase 
that can also be considered as a pair of MBSs. In 
Section 4 we discuss if ‘spin polarization’ of a MBS 
(understood as an average with respect to the 
particle part of the wave function) can help 
discriminate between the topologically trivial and 
non-trivial zero energy states in semiconductor-
superconductor heterostructures. We summarize 
and conclude in Section 5.

2  Spin Polarization of Majorana 
Bound States

Our main goal is to answer the following basic 
questions: in what sense can one talk about the 
spin polarization of a Majorana bound state and 
what are the observable physical implications 
of the existence of such a property? To answer 
these questions, westart with the basic equation 
that describes the quasiparticle dynamics in 
a superconductor at the mean-field level, the 
Bogoliubov-de Gennes (BdG) equation, then we 
discuss the concept of Majorana ‘spin density’ and 
discuss its possible observable manifestations.

2.1  Bogoliubov-de Gennes formalism 
and microscopic model

The (time independent) BdG equation describing 
the mean-field dynamics of quasiparticles in a 
superconductor has the generic form

HBdG n n nEψ ψ= ,  (1)

where n = 0, ±1, ±2, … is an integer quantum 
number that labels the quasiparticle energies 
E

n
, which, as a consequence of particle-hole 

symmetry, satisfy the property E−n
 = −E

n
 and 

the eigenvectors Ψ
n
 are 4-component spinors, 

Ψ
n
 = (u

n↑, u
n↓, v

n↑, v
n↓)T. The BdG Hamiltonian 

can be expressed in terms of the first-quantized 
Hamiltonian H of the (normal state) system  
as H H H H HBdG = − + + + ∆1

2 0
1
2( ) ( )T T

x y yτ τ τ σ , 
where τµ and σµ are Pauli matrices associated with 
the particle-hole and spin degrees of freedom, 
respectively, and ∆ is the pairing potential matrix. 
For concreteness, we will describe a semiconductor 
wire – superconductor hybrid system using a 
simple tight-binding model of N

y
 parallel coupled 

Heterostructures: Junction 
between two different 
materials. It can be lateral as 
well as vertical.

chains. The superconductor is not described 
explicitly (i.e. the corresponding degrees of 
freedom were already integrated out [21], but 
it induces a local (s-wave) pairing potential ∆ 
in the chains, so that ∆

ij
 = ∆δ

ij
, where i = (i

x
, i

y
)  

and j = (j
x
, j

y
) are site labels satisfying the  

conditions 1 ≤ i
x
, j

x
 ≤ N

x
 and 1 ≤ i

y
,j

y
 ≤ 

N
y
. The (second quantized) Hamiltonian 

H c H c
i j i i j j= ∑ ∑ ′ ′ ′. ,σ σ σ σ σ σ

†  describing the 
normal state of the coupled chains has the 
general form

H H H H VZ= + + +0 SOI ,  (2)

where the the first term corresponds to nearest 
neighbor hopping along and between the chains, 
the second describes spin-orbit coupling, the third 
describes the Zeeman coupling to an external 
magnetic field, and the fourth includes confining 
and disorder potential terms. Explicitly, we have

H t c c t c c c c

H

x
i

i i y
i

i i
i

i i

x

x

y

y0 = − − − ,
, ,

+
, ,

+
,

∑ ∑ ∑
δ σ

δ σ σ
δ σ

δ σ σ
σ

σ σµ† † †

SSOI h c= − + . .



 ,

=
,

+ +∑
∑

i
c c c c

H c c
i

i y i y i x i

Z
i

i x i

x y2 δ
δ δα σ α σ

σ

† †

†Γ ,,

= + ,
, , , ′

′ ′∑ ∑V V i c c W i c c
i

c i i
i

i i
σ

σ σ
σ σ

σσ σ σ( ) ( )† †

 (3)

where t
x
 and t

y
 are intra- and inter-chain nearest 

neighbor hopping matrix elements, respectively, 
µ is the chemical potential, α and α

y
 are the 

longitudinal and transverse Rashba coefficients, 
respectively, Γ is the Zeeman splitting, V

c
 is a 

confining potential, W is a spin-dependend 
disorder potential and we have used the spinor 
notation c

i
 = (c

i↑, c
i↓)T.

As a consequence of the intrinsic particle-hole 
redundancy of the BdG theory, the Hamiltonian 
that describes the dynamics of the quasiparticles 
has particle-hole symmetry, i.e. it satisfies the 
following relation

H HBdG BdG= −τ τx
T

x .  (4)

This implies that the eigenvectors from Eq. (1) 
corresponding to n and −n are not independent. 
Specifically, we have ψ τ ψϕ

−
∗=n

i
x ne , where eiϕ is 

a constant phase factor. In terms of particle and 
hole components, this means that the particle 
component of the eigenvector corresponding to 
energy E

n
 is related to the hole component of the 

eigenvector corresponding to −E
n
,

v u en n
i

−
∗= .σ σ

ϕ  (5)



Tudor D. Stanescu and Sumanta Tewari

Journal of the Indian Institute of Science  VOL 96:2  Apr.–Jun. 2016  journal.iisc.ernet.in110

For a Majorana bound state, which is a 
solution of Eq. (1) corresponding to n = 0, 
particle-hole imposes the constraint v u ei

0 0σ σ
ϕ= ∗ . 

Consequently, the spinor describing a zero-energy 
Majorana state has the following generic form

ψ ϕ ϕ
0 0 0 0 0= ↑ ↓ ↑

∗
↓

∗( , , , ) .u u u e u ei i T  (6)

In this equation, u
0σ ≡ u

0σ(i
x
, i

y
) are functions 

of position and eiϕ is a constant phase. We note 
that Eq. (6) requires only particle-hole symmetry 
and the vanishing of the energy, E

0
 = 0, i.e. it 

holds in the presence of any type of perturbation 
(e.g., spin-dependent disorder) as long as the two 
requirements are satisfied. We also note that in 
the presence of additional symmetries, e.g., chiral 
symmetry,27,28 which is realized in the absence of 
transverse Rashba coupling,29 α

y
 = 0, Eq. (6) can 

be further simplified.30

2.2  Spin density operator and Majorana 
spin density

To clarify the concept of ‘Majorana spin density’, 
let us start with the expression of the spin 
density operator in the BdG formalism. Let us 
consider the (first quantized) spin operator 
S e S e S e Sx x y y z z= + +ˆ ˆ ˆ , where µê  are unit 
vectors in a Cartesian coordinate system and 
Sµ µσ= 

2
 are operators for the corresponding 

spin components. The (second quantized) 
spin density operator can be expressed as 
S c S c c S c c S ci i i i i i

T
i= = − ′ ′ ′ ′ ′ ′σ σσ σ σ σσ σ σ σσ σ

† † †( ) ,1
2  

where, for simplicity, we have used the same 
symbol for the first and second quantized spin 
operators. Introducing the four-component spinor 
notation i i i i i

Tc c c cˆ ( )† †ψ = , , ,↑ ↑ ↑ ↓ , we can write the 
spin density operator as S Si i i= 1

2
†ˆ ˆψ ψ , where the 

S  is the spin operator in the BdG format,

S
S

ST
=

−















0

0
.  (7)

Given the wave function ψ
n
(i) of a generic 

Bogoliubov quasiparticle, we can write the 
corresponding spin density as s i i in n n( ) ( ) ( )= 1

2ψ ψ† S . 
If we consider now the case of a zero-energy Majorana 
state, Eqns. (6) and (7) imply

s i i i0 0 0
1

2
0( ) ( ) ( ) .= =ψ ψ† S  (8)

We note that a similar conclusion can be 
reached concerning the charge density of the 
Majorana state. In other words, the charge and 
spin densities of a zero-energy Majorana state are 
identically zero. We emphasize that these are local 

(rather than global) properties: not only the total 
spin and charge of the Majorana vanish, but the 
corresponding densities are identically zero.

Our conclusion so far, namely that zero-energy 
Majorana states do not carry spin and charge, is 
certainly not surprising. However, the key questions 
concern the observable physical consequences of 
this property. More specifically, what we want to 
understand is i) whether or not a Majorana bound 
state couples to an external magnetic field and ii) if 
there is any unique signature of Majorana bound 
states in spin-resolved tunneling experiments. 
Furthermore, our analyses did not distinguish 
between Majorana bound states that emerge in a 
topological superconducting state (e.g., as zero-energy 
states localized near the ends of a superconducting 
wire) and regular zero-energy Bogoliubov 
quasiparticles, which may occur in a topologically 
trivial superconductor. Is there any spin-related 
property that can be used to discriminate between 
these types of zero-energy states? In the subsequent 
sections of this article we will discuss these issues 
based on a numerical analysis of the effective model 
for a system of coupled superconducting chains 
given by Eqns. (2) and (3).

Returning to the spin density, let us remark that 
the vanishing of S

0
(i) is due to an exact cancellation 

between the particle and hole contributions to this 
quantity. Taken separately, these contributions are, 
in general, nonzero. Hence, the natural question 
is, can we ascribe any physical significance to the 
particle (or hole) contribution to the spin density? 
More specifically, let us define the quantity

S i u i S u i( ) ( ) ( )= .∗
′ ′

1

2 0 0σ σσ σ  (9)

Is there a measurement that probes this 
quantity? The answer turns out to be affirmative, 
as has been pointed out in the recent works,23,24,25,26 
as spin-resolved local density of states (LDOS) and 
spin-resolved tunneling spectroscopy are related 
to this quantity.

In the remainder of this article we will call the 
quantity S ( )i  given by Eq. (9) ‘spin density’. We 
emphasize, however, that this is an abuse of 
language, as S ( )i  represents only the particle 
component of the spin density S

0
(i), which is 

identically zero. Below, we identify different 
contexts in which one of these concepts of spin 
density or the other are relevant. We focus on the 
question concerning whether or not these concepts 
are helpful when trying to distinguish between 
topological Majorana bound states and 
topologically trivial zero-energy Andreev bound 
states.

Andreev bound states: Bound 
states formed due to the 

interference between electron 
and hole like states.
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3  Majorana Bound States versus 
Topologically Trivial Zero-Energy 
States

Discriminating between the Majorana bound 
states predicted to emerge in a topologically 
nontrivial superconductor and certain trivial zero-
energy Andreev bound states represents a crucial 
component of the ongoing search for Majorana 
quasiparticles. Below we address the question if 
the concept of spin density can possibly shed some 
light on this problem.

3.1  Trivial zero-energy states 
in a superconducting wire 
with smooth confinement

There are several different scenarios that 
predict the occurrence of zero-energy states 
in a topological trivial superconductor, e.g., in 
the presence of disorder31,32 or in a system with 
smooth confinement.33 To better understand the 
similarities and the differences between these 
trivial states and the topological Majorana modes, 
we consider the chain model given by Eqns. (2) 
and (3) for a system with hard-wall confinement 
at one end and smooth confinement at the other 
end. Specifically, we have

V i

V
i

i

i Nc

c
x

x

x x( )

,

,

.

=

+ −
+

≤ ≤

< ≤
∞










max if

if

otherwise

δ
δ

δ

δ

1

1
1

0  (10)

The position dependence of the confining 
potential is represented schematically in the 
upper panel of Fig. 2. The parameters used 
in the numerical calculation are δ = 100,  
N

x
 = 400, and Vc

max = 5∆, where ∆ is the induced 
superconducting pairing and will represent our 
unit for energy. The values of the other model 
parameters used in the calculation are µ = 2.5∆, 
t

x
 = 50∆, t

y
 = 10∆, α = 5∆, and α

y
 = ∆. Note that, 

with a nearest neighbor distance along the chains  
a

x
 = 10 nm, a separation between neighboring 

chains a
y
 ≈ 22 nm and an induced pairing potential  

∆ = 0.4 meV, the hopping parameters correspond 
to an effective mass m

eff
 ≈ 0.02m

0
, where m

0
 is the 

free electron mass, and the Rashba spin-orbit 
coupling coefficient is α

R
 ≈ 200 meVÅ, which 

are typical values for the semiconductors used in 
experiments.

In the absence of an applied magnetic field, the 
system is in a topologically trivial superconducting 
state and the corresponding BdG spectrum is 
characterized by a gap 2∆. To observe a Majorana 
zero mode, we need to turn on the Zeeman field. 

2∆: This is the 
superconducting gap.

More specifically, we expect the Majorana bound 
states to emerge in the topological superconducting 
state that obtains for values of the applied field 
above the critical value Γ ∆ ∆c = + ≈µ2 2 2 7. . 
The actual dependence of the quasiparticle 
energies on the applied Zeeman field is shown in 
Fig. 1. The key features are i) the emergence of a 
zero-energy mode (red line) for Γ ∆


> 1 6.  and ii) 

the vanishing of the bulk gap (blue lines) at  
Γ = Γ

c
. For values of the Zeeman field in the range 

1 6 2 7. . ,∆ Γ ∆
 
< <  the system is in a topologically 

trivial phase but supports a zero-energy mode.
To better understand the nature of the lowest 

energy mode (red line in Fig. 1), we calculate the 
corresponding wave function for different values 
of the applied field. The results are shown in 
Fig. 2. For Γ = Γ

c
, i.e. in the topologically trivial 

phase, the lowest energy mode corresponds to a 
bound state localized near the softly confined end 
of the wire. The corresponding wave function is 
characterized by a single peak at low fields and splits 
into two separated components asthe strength of 
the Zeeman field increases. As these components 
become clearly separated (i.e for Γ ∆


> 1 6. ), the 

energy of the mode vanishes. At the critical field  
Γ

c
 ≈ 2.7∆ one of the components becomes 

delocalized, then (i.e. inside the topological 
superconducting phase) the wave function has 
two components exponentially localized near the 
two ends of the wire (see Fig. 2, lowest panel).

To gain further insight, we note that, due to 
the intrinsic redundancy of the BdG description, 

Figure 1: Dependence of the low-energy BdG 
spectrum on the applied Zeeman field for a 
system of superconducting chains with smooth 
confinement. Only the positive energies are shown. 
The confinement potential profile is shown in Fig. 2. 
Note the vanishing of the bulk gap (blue lines) at 
the critical field Γ ∆ ∆c = + ≈µ2 2 2 7. , which signals 
a topological quantum phase transition. The zero-
energy mode extends into the topologically trivial 
phase Γ < Γc.
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the zero-energy mode is in fact double degenerate. 
The corresponding quasiparticles, which represent 
a single Dirac fermion, can be viewed as a pair 
of Majorana modes. The wave functions of the 
two Majoranas ψ

0α, with α = 1,2, have the forms 
given by Eq. (6) and can be obtained by taking 
linear combinations of the zero-energy solutions 
obtained numerically. In the topological regime 
(Γ > Γ

c
), the zero-energy quasiparticles are two 

Majorana bound states localized near the ends of 
the wire, as shown in the lower panel of Fig. 3. By 
contrast, the zero-energy bound state that emerges 
in the topologically trivial regime (Γ < Γ

c
) consists 

of two (weakly overlapping) Majorana bound 
states localized in the region with nonuniform, 
smoothly varying confinement potential (see 
Fig. 3, upper panel).

We emphasize that in a superconductor any 
zero-energy state can viewed as a linear combination 
of two Majorana quasiparticles (or, more 
generally, an even number of them). However, the 
stability of the state, i.e. whether or not it becomes 
gapped when a perturbation is applied to the 

system, depends on the overlap between these 
Majoranas. In principle, perfect stability requires 
the absence of any overlap, which in the case of 
Majorana bound states emerging in a quasi one-
dimensional superconductor corresponds to the 
ideal limit of infinitely long wires. The realistic, 
finite length system is discussed below.

3.2  Ideal versus effective Majorana 
bound states

The Majorana bound states localized near the 
ends of a topological superconducting wire 
are characterized by wave functions that have 
exponentially decaying envelopes (see, for example, 
the lower panel of Fig. 3). In a finite wire, the 
exponentially small tails generate a finite splitting 
of zero mode that oscillates as a function of the 
applied Zeeman field.34 Hence, the lowest energy 
mode (i.e. the red line in Fig. 1) has exactly zero 
energy only at a discrete set of Γ values and finite 
(although very small) energy everywhere else. This 
is illustrated in the upper panel of Fig. 4. Note that, 
qualitatively, there is no difference between the 
topologically trivial and nontrivial regimes.

The first obvious question is the following: can 
we actually talk about Majorana bound states for 
values of the Zeeman field that are different from 
the nodes of the lowest energy mode? After all, the 
corresponding excitations are just regular, finite 
energy Bogoliubov quasiparticles? To answer 
this question we need a conceptual clarification. 
Specifically, we introduce a distinction between 
i) ideal Majorana bound states and ii) effective 
Majorana bound states. An ideal Majorana bound 
state (MBS) is a zero-energy state localized near 
the end of an infinitely long quasi-1D topological 

Figure 2: Upper panel: Schematic representation 
of the confining potential profile. The system has 
smooth confinement at the left end of the chains 
and hard-wall confinement at the right end. 
Lower six panels: Evolution of the wave function 
corresponding to the lowest energy mode in Fig. 1 
with the applied Zeeman field. The energy of the 
mode vanishes for Γ ∆


> 1 6. .

Figure 3: Pair of Majorana bound states 
associated with the zero-energy mode. The 
corresponding wave functions are ψ01 (red filling) 
and ψ02 (yellow filling). In the topologically trivial 
phase (upper panel) the Majorana bound states 
are localized inside the smooth confinement region, 
while in topological superconducting phase (lower 
panel) the two Majorana states are localized near 
the ends of the wire.
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superconductor. The ideal MBS does not overlap 
with its partner at the opposite and, consequently, 
it is an exact zero-energy eigenstate of the BdG 
Hamiltonian regardless of how one perturbs 
the system (as long as the superconducting gap 
remains open). An effective MBS, on the other 
hand, has a small (but finite) overlap with its 
partner and is not an exact eigenstate of the BdG 
Hamiltonian. However, the states associated with 
the nearly-zero, lowest-energy mode of the system 
are linear combinations of these effective MBSs.

Specifically, let us consider a state ψ+ of energy 
ε > 0 corresponding to the nearly-zero mode 
(e.g., the red line in Fig. 4) and its negative energy 
partner ψ− of energy −ε. The corresponding 
effective Majorana bound states ψ

01
 and ψ

02
 have 

the generic form given by Eq. (6), more specifically, 
ψ 01 01 01= ( , )u u ei T∗ ϕ  and ψ 02 02 02= − ∗( , )u u ei Tϕ , 
where we used the notation u

0i
 = (u

0iw
, u

0i↓)T. The 
wave functions of the finite-energy Bogoliubov 
quasiparticles can be expressed in terms of the 
effective MBS wave functions as

ψ ψ ψ

ψ ψ ψ

+

−

= +

= −

1

2
1

2

01 02

01 02

( ),

( ),
 (11)

In the calculations, we determine ψ± by 
diagonalizing the BdG Hamiltonian, then we 
obtain the effective MBSs by inverting Eq. (11), 
after properly fixing the relative phase between ψ+ 
and ψ−. Note that we have ψ ψ0 0 0i i| |HBdG = , 
but the matrix element of the Hamiltonian between 
the two different MBSs is finite as a result of them 
having a nonzero overlap, ψ ψ ε01 02| |HBdG = . 
We emphasize that this construction can be done 
for arbitrary finite energy eigenstates of the BdG 
Hamiltonian, but the resulting Majorana states ψ

0i
 

will generally be extended, rather than localized. 
In other words, the concepts of effective MBS 
ismeaningful only at low energy, i.e. for ε less 
that than a certain energy scale associated, for 
example, with the experimental energy resolution 
or the inverse timescale for MBS manipulation, 
a key quantity when considering the braiding of 
Majorana bound states.

The term ‘overlap’ has been used several times 
in the preceding sections in relation to a pair of 
effective MBSs, but without being too specific. 
Obviously, this cannot refer to the matrix element 
ψ ψ01 02| , which is always zero. What we actually 

mean by two MBSs having a nonzero overlap is 
that there is a certain region where the 
corresponding wave functions are both nonzero. 
We can quantify this by defining the following 
quantity, which we will call the overlap of ψ

01
 and 

ψ
02

,

Ω = +∑
i

u i u i v i v i
,

(| ( )|| ( )| | ( )|| ( )|).
σ

σ σ σ σ01 02 01 02

 (12)

For a pair of ideal Majorana bound states we 
have Ω = 0. In a finite system, or in the case of 
topologically trivial nearly-zero energy states the 
overlap is finite, but typically Ω << 1. Fig. 5 shows 
the dependence of the overlap on the applied 
Zeeman field for a wire with soft confinement. We 
note that, as expected, in the topological regime 
(Γ > Γ

c
) the overlap can be made arbitrarily small 

by increasing the length of the wire. However, one 
can also reduce the overlap in the topologically 

Overlap: Between the two 
localized Majorana states 
near the ends of a topological 
superconductor.

Figure 4: Lowest energy mode as function of the 
applied Zeeman field. The continuous red line is 
the same as in Fig. 1, while the dashed black line 
is obtained by applying an additional local field 
with δΓ0 = 0.25∆ (see main text). The gray region 
corresponds to the topological regime.

Figure 5: Overlap as a function of the applied 
Zeeman field for a wire with soft confinement. 
The confinement potential has the same profile 
as in Fig. 2 but the confinement region is 1.5 µm 
long. The total length of the wire and the slope of 
the confining potential are: Lx = 3.5 µm, θ = 5∆/µm 
(blue line); Lx = 3.5 µm, θ = 2.5∆/µm (orange line); 
Lx = 6.5 µm, θ = 2.5∆/µm (dashed black line).
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trivial phase by reducing the slope of the confining 
potential.

As is evident from Fig. 5, the size of overlap is, 
in general, not a good criterion for distinguishing 
between the topological and the trivial regimes 
in finite systems (e.g., the orange curve in Fig. 5). 
Nonetheless, there is a clear feature associated 
with the topological quantum phase transition 
at Γ = Γ

c
, namely the sharp drop of Ω(Γ) at the 

critical field. This feature occurs because the 
overlap Ω contains information about the spatial 
profile of the effective MBSs. Unfortunately, this 
information cannot be captured by probes such 
as charge (or spin) tunneling into the end of the 
wire, which show no signature associated with 
the topological quantum phase transition, as is 
mentioned in Section 4.2.

We close this section with a comment 
concerning the topological quantum phase 
transition (TQPT) itself. The transition is 
associated with the vanishing of the bulk gap, as 
mentioned before. However, in a finite system the 
bulk gap never really closes. Again, we have to 
distinguish between an ideal TQPT, which 
corresponds to a point in parameter space (e.g., 
Zeeman field strength), where the bulk gap is 
exactly zero and can only take place in an infinite 
system, and effective TQPTs, which occur in finite 
topological superconductors and are associated 
with a minimum (rather than a zero) of the bulk 
gap. Strictly speaking, an effective TQPT is always 
a crossover, rather than a true phase transition. 
Nonetheless, in certain situations one can identify 
a natural energy scale that allows us to consider the 
bulk gap as “effectively” zero when it becomes 
smaller that this characteristic energy. In these 
cases we talk about an effective TQPT, rather than 
a crossover. Note, however, that having effective 
MBSs does not necessarily imply that the system 
has crossed an effective TQPT. These considerations 
are particularly relevant when studying non-
homogeneous superconductors, such as the 
superconducting wires with soft confinement 
discussed here or various proposed realizations of 
Majorana states in trapped ultracold atomic gases.

3.3  Coupling of Majorana bound states 
to external magnetic fields

Having discussed how the Majorana bound states 
can emerge in a superconductor wire, we return to 
our considerations of the concept of spin density 
associated with these states. We have defined 
the spin density of a MBS in two different ways: 
in terms of the full wave function [see Eq. (8)], 
which gives us a spin density S(i) that is identically 
zero, and in terms of the particle component of 

ideal: Majorana localized state 
for an infinite wire.

the wave function [see Eq. (9)], which gives us the 
nonzero quantity S ( )i . To clarify the meaning 
of these quantities, we couple the system to a 
local magnetic field in the x direction, which is 
applied to the left end of the wire and generates an 
additional Zeeman splitting of the form

δ δΓ Γ( ) ./x e x d= −
0  (13)

We choose d = 0.4 µm, so that the additional 
Zeeman field is significant only in the region 
where the leftmost MBS ψ

01
 is located. The 

energy of any quasiparticle that possesses a 
‘true’ spin polarization is expected to be shifted 
by an energy proportional to δΓ

0
, at least in the 

low perturbation limit. This is not the case for 
a Majorana bound state. For an ideal MBS, the 
energy remains unchanged, E

0
 = 0, showing that 

the bound state carries no spin, hence it does not 
couple toan external magnetic field. For an effective 
MBS, there is a small change in the energy due to 
induced coupling to higher energy states, but no 
direct coupling to the Zeeman field. As a result, 
the energy shift depends non-monotonically on 
δΓ

0
, and changes sign as function of the overall 

Zeeman field Γ, as illustrated in Fig. 4. There is 
no qualitative difference between the effective 
MBS emerging in the topological regime and the 
effective MBS generated in the trivial regime by the 
soft confinement. The amplitude of the splitting 
oscillations is not significantly affected by the 
local perturbation. These observations hold for 
local Zeeman fields with arbitrary spatial profiles 
and arbitrary orientations. We conclude that a 
Majorana bound state has no spin polarization 
and that its spin density is properly described by 
the quantity s(x) = 0.

In this context, we note that although a local 
Zeeman field does not affect significantly (or at all, 
in the ideal case) the energy of a MBS, it can modify 
its wave function by coupling it to higher energy 
states. If ψ

01
 is the unperturbed wave function of 

the MBS and ′ψ 01  its wave function in the presence 
of the local perturbation (13), we define the change 
in the Majorana wave function as

δψ ψ ψ ψ ψ01 01 01 01 01= − ′ | − ′ .  (14)

Based on second-order perturbation theory, 
one would expect this quantity to depend linearly 
on the strength δ Γ

0
 of the perturbation (in the 

small perturbation limit), with a slope that is 
inversely proportional to the energy of the finite 
energy state that couples to the MBS. This is 
confirmed by the numerical results shown in Fig. 6. 
It can again be seen that there is no qualitative 
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difference between the topological and the trivial 
regimes. Also the slopes of the curves shown 
in Fig. 6 are very similar and are not correlated 
with the (inverse) bulk gap shown in Fig. 1. This 
is due to the fact that the MBS does not couple 
effectively to most of the bulk states, which have 
negligible amplitudes in the vicinity of the left end 
of the wire. Instead, ψ

01
 coupled to certain modes 

have a weak dependence on the Zeeman field (in 
the relevant range) and can be identified as nearly 
horizontal, finite energy lines in Fig. 1.

4  Signatures of Majorana bound States 
in Spin-Resolved Tunneling

Based on the (lack of) coupling to an external 
magnetic field, we concluded that Majorana 
bound states have no spin polarization. Similar 
considerations involving a local electrostatic 
potential support the fact that Majorana states carry 
no charge, henceare characterized by an identically 
zero charge density. However, a Majorana bound 
state can be probed by tunneling charge into the 
end of the wire, the characteristic signature being a 
zero-bias conductance peak. Similarly, one would 
expect a nontrivialsignature when tunneling spin-
polarized electrons into a superconducting wire 
that host MBSs. Below, we briefly discuss these 
signatures and whether or not they can help to 
distinguish between the topological and the trivial 
superconducting regimes.

4.1  Spin polarization and spin-resolved 
STM measurements

In the low-tunneling limit, the spin-resolved 
differential conductance for tunneling into a 
specific small region of the wire is proportional to 
the spin-resolved local density of states (LDOS). If 
we focus on the zero-energy spin-resolved LDOS, 
this is a quantity proportional to spin density 
S ( )x  defined by Eq. (9).23–26 Hence, a spin-

resolved STM measurement of the smoothly-
confined wire with the energy spectrum shown in 
Fig. 1 and the low-energy states represented in 
Figs. 2 and 3 will generate zero-bias spatial profiles 
similar to the spin density shown in Fig. 7. Note 
that in the topologically-trivial regime (γ = 2∆), 
the MBSs have opposite spin polarizations 
along the x direction (‘spin’ defined with only 
particle components of the wave function). This is 
a consequence of the fact that the two MBSs are 
associated with different spin-polarized sub bands 
of the semiconductor wire. Asimple intuitive 
picture in terms of band bending due to the 
smooth confinement corresponds to the two spin 
sub-bands crossing the chemical potential at 
different locations along the wire, which roughly 
correspond to the locations of the MBSs. By 
contrast, in the topological regime the two MBSs 
have the same spin polarization, revealing the fact 
that they correspond to a single spin sub-band 

MBS: Majorana bound state.

Figure 7: Spin density of zero-energy states 
as defined by Eq. (9). In the topologically-trivial 
regime (upper panel) the two Majorana bound 
states have x-components of the spin density 
with opposite signs, revealing the fact that two 
Majoranas are associated with different spin-split 
sub-bands. By contrast, the Majorana bound 
states that emerge in the topological regime (lower 
panel) are associated with a single sub-band and 
have similar spin polarizations.

Figure 6: Dependence of the change in the 
Majorana wave function ψ01 (see Fig. 3) on the 
additional local magnetic field. The change is due 
to the lowest energy bound state hybridizing with 
finite energy states that have significant amplitude 
near the left end of the wire. For small values of 
the perturbation the slope is inversely proportional 
to the characteristic energy of these states. Note 
the similar slopes associated with different values 
of Γ, which indicate that ψ01 hybridizes with finite 
energy states that depend weakly on the Zeeman 
field (see the nearly horizontal modes in Fig. 1).
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crossing the chemical potential at the opposite 
ends of the wire.

We conclude that spin-resolved STM can 
distinguish between effective MBSs emerging in 
the topological and the trivial superconducting 
regimes. However, the key to this in not so much 
the information associated with the spin degree of 
freedom, but the information associated with the 
spatial dependence of the measured quantity. 
A standard STM measurement could also 
distinguish between a double-peak bound state 
localized near the left end of the wire (topologically 
trivial regime) and two bound states localized near 
the opposite ends of the system (topologically 
non-trivial regime). Moreover, tunneling into the 
bulk of the wire would also provide a clear signature 
associated with the closing of the bulk gap at Γ

c
. 

Combined with the observation that the overlap 
Ω, another quantity that contains information 
about the spatial profiles of the MBSs, show a clear 
signature associated with the TQPT, hence 
conclude that some information about the spatial 
profiles of the Majorana bound states is absolutely 
necessary to unambiguously identify them as 
quasiparticles emerging in a topological 
superconducting phase.

4.2  Spin-resolved differential tunneling 
conductance

The most common experimental method used 
so far in the search for Majorana bound states is 
charge tunneling into the end of a superconducting 
wire. Unfortunately, this probe does not provide 
any information about the spatial profile of the 
MBS and, consequently, cannot clearly distinguish 
between the trivial and topological regimes. 
The simplest way to incorporate some spatial 
information is to perform tunneling measurements 
at both ends of the wire and observe correlated 
splitting oscillations.34 The question that we address 
here is whether or not performing a spin-resolved 
measurement can provide additional information.

To answer this question, we take the 
superconducting wire with soft confinement 
described above and couple it at the left end 
to a normal lead, which is also modeled as a set 
of N

y
 coupled chains. A potential barrier with a 

Gaussian profile is includedbetween the wire and 
the normal lead and the differential conduactance 
is calculated numerically for different values of the 
Zeeman field.

First, we consider standard charge tunneling. 
The results are shown in Fig. 8. A clear zero-bias 
peak can be observed for Γ ≥ 2∆, but, as expected, 
there is no characteristic signature associated 
with the TQPT at Γ

c
. In other words, in the case 

STM: Scanning tunneling 
microscopy.

of wire with soft confinement, there is a serious 
danger of misinterpreting the meaning of the 
zero-bias peak. If in a two-terminal experiment no 
correlated splitting oscillations are observed, the 
zero-bias peak is likely associated with an effective 
MBS that is part of a trivial nearly-zero energy 
state. We note that strongly dispersing peaks in 
Fig. 8 marked by green arrows are associated with 
a bound state localized on the Gaussian tunnel 
barrier. The energy of this Andreev bound state 
can be modified by tuning the barrier height and 
its profile.

Second, we consider spin-polarized tunneling. 
Specifically, we inject electrons with spin oriented 
parallel or anti-parallel to the Zeeman field Γ, 
i.e. along the x direction. The results are shown 
in Fig. 9. Again, there is no signature associated 
with the TQPT, i.e. no possibility of distinguishing 
between the topological and trivial regimes. 
However, there is a sharp difference between two 
spin orientations. A spin orientation consistent 
with the spin polarization of the state ψ

01
 shown 

in Fig. 7 generates a clearly visible zero-bias peak. 
By contrast, tunneling electrons with the opposite 
spin generates no zero-bias peak. Hence, the spin 

Figure 8: Differential conductance as a function 
of the bias potential for different values of the 
Zeeman field ranging from Γ = 0 (lowest curve) to 
Γ = 3.25∆ (top curve) in steps of 0.25∆. The curves 
have been shifted for clarity. The red-filled curve 
corresponds to Γ = 2.75∆ ≈ ∆c; note the absence 
of any signature associated with the closing of the 
bulk gap and the emergence of a zero-bias peak 
for Γ < ∆c (i.e. in the topologically-trivial regime).
The peaks marked by blue arrows, which merge 
into the zero-bias peak, correspond to the lowest 
energy mode (red line) in Fig. 1, while the peaks 
marked by green arrows are associated with an 
Andreev bound states localized inside the potential 
barrier region.
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density defined by Eq. (9) and the corresponding 
spin polarization are the relevant quantities 
in the context of spin-resolved tunneling 
measurements.

As a final remark, we note that the finite-energy 
states with dominant contribution to dI/dV are 
those states that have significant amplitudes at the 
left end of the wire. As evident from Figs. 8 and 9, 
these states are weakly dependent on the applied 
Zeeman field, consistent with our observation 
related to Fig. 6 about the ‘horizontal modes’ that 
couple to the Majorana bound state ψ

01
.

5 Conclusions
We discuss the concept of spin polarization of 
a Majorana bound state in condensed matter 
systems by clearly distinguishing between the 
average of the spin operator calculated with respect 
to the full Majorana fermion wave function (s

0
(i) 

definedin Eq. (8)), and the same average calculated 
with respect to only the particle component of the 
wave function (〈S〉(i) given in Eq. (9)). We show 
that s

0
(i), like its charge density counterpart, is 

identically zero for a MBS. We emphasize that these 
are local (rather than global) properties: not only 
the total spin and charge of the Majorana bound 

state vanish, but the corresponding densities are 
also identically zero everywhere. Since it is this 
quantity that couples to an externally applied 
magnetic field, we show that neither the MBS 
energy eigenvalue nor the MBS wave function 
are affected by the external field (in a realistic 
system such as a semiconductor-superconductor 
heterostructure the change in the Majorana wave 
function by an applied magnetic field occurs via 
hybridization with the higher energy excited states, 
and thus disappears for a truly ‘stand-alone’ MBS 
with large enough gap to the excited states).

By an abuse of language, however, if ‘spin’ of a 
MBS is defined by Eq. (9) (i.e., only with respect 
to the particle (or hole) components of the wave 
function), we show that this quantity does have a 
non-zero spatial profile along certain directions 
in spin-space. Interestingly, it is this quantity that 
appears in spin-resolved local density of states23–26, 
and thus it can be probed in spin-resolved 
tunneling experiments. The question of spin of 
a MBS, therefore, is similar to the question of 
its charge: although absence of coupling to local 
electrostatic potential supports the well-known 
fact that Majorana bound states carry no charge, 
and hence are characterized by an identically zero 
charge density, a Majorana bound state can, in fact, 
be probed by tunneling charge into the topological 
superconducting wire, the characteristic signature 
being a zero-bias conductance peak. By detailed 
numerical calculations on the semiconductor-
superconductor heterostructure platform, we show 
that no extra information can be gleaned by spin-
resolved tunneling in topological superconductors 
(beyond what is gained by spin-unresolved 
tunneling) that can help us discriminate between 
MBSs in the topological regime and accidental zero 
energy states in the topologically trivial regime in 
the parameter space.

As an interesting byproduct of this work we 
also show that, in spatially inhomogeneous systems, 
MBSs can appear with increasing Zeeman field 
even in the absence of a topological quantum phase 
transition. When the system is still topologically 
trivial, a regular low energy subgap state near a soft 
boundary can nucleate two spatially separated zero 
energy states which (for all practical purposes) 
behave as Majorana zero modes. So long as the 
system remains topologically trivial, these Majorana 
bound states are localized inside the smooth 
confinement region, while in the topologically 
non-trivial superconducting phase (i.e., with 
Zeeman field larger than the critical field required 
for TQPT), the two Majorana states are localized 
near the ends of the wire. These issues are 
particularly important for non-homogeneous 

Figure 9: Differential conductance for spin-
resolved tunneling into the end of the wire. The 
Zeeman field ranges from Γ = 1.5∆ (lowest curves) 
to Γ = 3.25∆ (top curves) in steps of 0.25∆. Panel A 
corresponds to the tunneling of electrons with spin 
parallel to the applied Zeeman field, while panel B 
shows the differential conductance corresponding 
to the opposite spin orientation. Note that that the 
zero bias peak is absent when tunneling electrons 
with a spin-orientation oppositeto the spin 
polarization of the leftmost Majorana bound state 
ψ01 (see Fig. 7).

Differential conductance: 
Technique to measure the bias 
dependent density of states of 
a system.
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topological superconductors, such as systems with 
a soft confinement as discussed here or various 
schemes for creating topological superfluid phases 
in cold atom systems. In the light of these 
considerations, demonstrating the nonlocal 
character of the topologically-protected Majorana 
pair and its emergence after the system undergoes 
a TQPT, become critical tasks for the ongoing 
experimental search for Majorana bound states in 
solid statestructures. In particular, we conjecture 
that observing a zero-bias conductance peak (of 
height ∼2e2/h) that sticks to zero energy for a 
certain (possibly large) range of Zeeman fields does 
not represent a unique signature of the topologically 
protected Majorana bound states, because such a 
signature can also appear in the topologically 
trivial phase in spatially inhomogeneous systems 
(see Fig. 8). Ensuring the homogeneity of the 
chemical potential throughout the wire on an 
energy scale lower than the induced gap, which 
may be a challenging task in a setup involving 
multiple back-gates that control different segments 
of the wire, represents a critical condition for  
the successful realization and unambiguous 
demonstration of a topological superconducting 
phase that supports a single pair of Majorana 
bound states localized near the ends of the wire.
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