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Abstract | One of the most promising features of the time reversal symmetry 
protected two and three dimensional topological band insulators lies in the 
fact that their surface spectrum closely mimics the spectrum of massless 
Dirac fermions leading to a spin-momentum locked surface state. Hence, 
probing this property of topological insulators in a electrical transport 
set up is desirable. In this article we will review the possibility of probing 
the spin-momentum locked nature of the surface state spectrum via spin 
polarized tunneling probes. We will introduce a multi-terminal avatar of 
TMR measurement which could lead to a direct measurement of the spin 
momentum locking angle and the related spin texture of the surface state 
spectrum.

1  Introduction
Characterization of materials based on their 
electrical transport property are broadly classified 
into three types, namely metals, semi-conductors 
and insulators. Recently there has been a 
tremendous progress both on the theoretical 
and experimental front for discovery of new 
class of insulators (band insulators), which have 
metallic surface state owing to the nontrivial 
topological properties of their band structure.1,2 
These surface states are of particular interest both 
form theoretical and application point of view. 
The spectrum of the surface states closely mimics 
spectrum of massless Dirac fermions where the 
electron spin is locked to its momenta.

In this article we will review an idea pertaining 
to probing the spin momentum locked nature of 
the surface state spectrum in the ballistic limit 
by employing spin polarized tunneling probes. 
Motivated by the spin valve (SV) effect, spin 
polarized tunneling probes are something which 
naturally comes to our mind in the context of 
determining spin polarization state of the electron 
which lives on the surface of topological insulator 
(TI). We intend to employ the tunnel magneto 
resistance (TMR3) response between the TI surface 
state and a spin polarized tunneling probe to infer 
the spin momentum locking angle of the surface 
electrons. Though the dispersion of the surface 
state have nontrivial spin texture, they do not 

have a netspin polarization owing to time reversal 
symmetry, and hence a magneto resistance response 
is not expected, in general. Putting it differently, as 
the Fermi surface of the surface states of TI have no 
net spin polarization, the tunneling current injected 
form a magnetic electrode into the surface state 
will be independent of direction of magnetization 
of the tunneling probe. Hence, a simple minded 
spin polarized probe is not expected to fetch us 
any information regarding the spin momentum 
locking angle. The point to note here is the fact that 
a finite patch of the Fermi surface can have a net 
spin polarization due to spin texturing of the Fermi 
surface, but it is only the total Fermi surface whose 
net spin polarization must be zero. This in terns 
implies that the current injected form the magnetic 
probe into the momentum states belonging to 
finite patch of the Fermi surface will be sensitive to 
relative angle between the magnetization direction 
of the probe and the net spin polarization direction 
of the finite patch of the Fermi surface hence leading 
to a finite TMR  response. Therefore, measuring 
the magnetoresistance response of the finite patch 
of the Fermi surface can lead, to possibilities of 
measurement of the spin orientation and hence 
the spin momentum locking angle of the surface 
states.

Now the final hurdle lies in finding a way to 
measure the current carried by electrons, which 
are injected form the tunneling probe into a 
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finite patch of the Fermi surface of the surface 
state. This calls of a multi terminal current 
measurement. To understand this point let us 
consider the case of two dimensional TIs that host 
an one dimensional surface state (edge state). The 
edge state is described by a spectrum that mimics 
a one dimensional massless Dirac fermion with 
has a perfect spin momentum locking. The Fermi 
surface of this systems comprises two points, the 
left Fermi point (left movers) and the right Fermi 
points (right movers).

The spin polarization associate with the states 
at left and right Fermi point are exactly opposite 
of each other as demanded by time reversal 
symmetry. Individually both the state at the two 
Fermi points have finite spin polarization, but the 
net spin polarization of total Fermi sea is zero. 
When spin polarized current is injected locally 
into the edge state at small bias (linear response 
limit), these electron go and occupy states that 
are close to these two Fermi points. Hence, the 
total injected current can be thought of as sum 
of current carried by states belonging to left and 
right Fermi points.

The important point to note here is the fact 
that a fraction of the total that is injected around 
the left Fermi point and the right Fermi point will 
individually depend on the relative angle between 
the magnetization direction of the tunneling 
probe and the direction of polarization of the 
spin of electronic states at the respective Fermi 
points. If we can measure the current carried by 
injected electrons at the left and the right Fermi 
point separately, then by studying the variation of 
these current as a function of the magnetization 
direction of the tunneling probe, we can infer 
the direction of polarization of spin of electronic 
state at the left and the right Fermi points. This 
essentially implies that we can measure the spin 
momentum locking angle for the surface state. 
Note that the current injected at the left Fermi 
point can be collected at contact that is placed 
on the left side of the point of injection and the 
current injected at the right Fermi point can 
be collect at a contact placed at the right side 
of the point of electron injection. Hence, the 
minimal requirement of measuring the spin-
momentum locking angle is a three terminal 
geometry, namely the magnetic tunneling 
contact form where current is to injected in to 
the surface state and the left contact and the 
right contact mentioned above. This idea can be 
straightforwardly extended to probe the surface 
state of three dimensional TI. In this article we 
first review the application of the idea discussed 
to edge states of two dimensional TIs in presence 

of electron-electron interaction.4 Then we extend 
the analysis to the case of three dimensional TIs, 
but we restrict ourselves to the case with no 
electron-electron interaction.5

2 � Probing Surface State of Two 
Dimensional TI

For a two-dimensional topological insulator, a 
pair of one-dimensional counter propagating 
modes appear on the edges,1,6 which are 
transformed into helical Luttinger liquids (HLL) 
due to inter-mode Coulomb interactions.7 The 
central point about the edge state lie in the fact 
that the spin orientation of the edge electrons 
is correlated with the direction of motion of 
the electron, i.e., opposite spin modes counter 
propagate. The existence of such edge channels 
have already been detected experimentally in 
a multi-terminal Hall bar setup.8 As discussed 
in the introduction, here we introduce a three 
terminal set up to probe the spin texture of these 
edge states.

2.1  Proposed set up and the model
We propose a three terminal junction as shown 
in Fig. 1. The spin of the electrons in the edge 
states are polarized in some direction depending 
on details of the spin-orbit interaction in the 
bulk. We use a coordinate system that has its 
Z -axis along the direction of orientation of 
the spin of the edge electrons and the plane 
containing the polarization direction of the 
edge electron and the tip electron is assumed to 
be the X Z −  plane (see Fig. 1). Note that here 
we have assumed that the edge is smooth and 
is along a straight line, so that there is a well 
defined quantization direction for the electron 
spin living on the edge.

The Hamiltonian for the HLL is given by

H v dx K K
L

L

x x0 2

2 2 1 2= ∂ + ∂ −
−∫ /

/
( ) ( ) ,Φ Θ � (1)

where Φ Θ= + = −↑ ↓ ↑ ↓( ) / , ( ) /φ φ φ φR L R L2 2  and  
the φR L↑ ↓/  are related to the up and down 
electron operators in the edge by the standard 
bosonization identity ψ

πζ
φ

R
ik x i x

x e eF R
↑ ∼ ↑( )

( )1
2

, 
ψ

πζ
φ

L
ik x i xx e eF L

↓
−∼ ↓( ) ( )1

2
. ζ and K are the short 

distance cut-off and the Luttinger parameter 
respectively. Unlike the standard LL, here the 
spin orientation is correlated with the direction 
of motion. We drop Klein factors as they are 
irrelevant for our computations.

The Hamiltonian for the STM is assumed to be 
that of a free electron in 1–D. The tunneling 
Hamiltonian between the tip and the helical edge 
at a position x = 0, x ′ = 0 is given by

STM: Physics of scanning 
tunneling microscopy (STM) 

is based up on the simple 
phenomenon of tunneling 
which is a purely quantum 

mechanical effect. This 
technique was developed by 

Gerd Binnig and Heinrich 
Rohrer to image the surfaces 

of various solids at atomic 
scales for which they got the 

Nobel prize in 1986.
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H t x xt i= = ′ = +[ ( ) ( ) .],ψ α
† 0 0χα h.c � (2)

where i = R, L denotes right and left movers 
and α denotes the spin index, ψ

iα and χα  
denote the electron destruction operator in 
the HLL and the STM respectively. Voltage bias 
in the tunneling operator can be introduced 
simply by replacing χ χα α( ) ( ) /x x e iVt→ −  . We 
will, henceforth, drop the index i, j denoting 
the direction of motion.

Since the tunneling conserves spin, using a 
fully polarized STM  with polarization direction 
tuned along the positive or negative direction of 
Z-axis will naturally allow for chiral injection i.e., 
injecting only right (↑) or left (↓) movers. In the 
absence of interactions in the HLL, the chirally 
injected electron will cause both charge current 
and spin current to flow only to the right or to the 
left lead, hence leading to a left-right asymmetry. 
In the presence of interactions in the HLL, due 
to Coulomb scattering between the right and left 
movers, the chirally injected charge and spin degrees 
of freedom of the electron get fractionalized and 
move in both directions; however, in general, the 
left-right asymmetry still survives.

Now, let us consider the fully polarized STM tip 
with the polarization direction making an arbitrary 
angle θ with respect to the spin of the HLL electron. 
In the quantization basis of the HLL spins, the tip 
spinor can be written as χ χθσ

rot
i Y

Te= − ⋅ ˆ / ,2  where 
χT  is the tip spinor in a basis where the spin 
quantization axis is along the STM  polarization 
direction i.e., χ χT = ↑( , )0 . So χ θ χrot ↑ ↑= cos( / )2  
and χ θ χrot ↓ ↑= sin( / )2 . In other words, the 
electron in the tip has both ↑ and ↓ spins, but the 
effective tunnel amplitudes are asymmetric (except 
when θ = π/2) and hence, the current asymmetry 
survives. As a function of the rotation angle θ, the 

chiral injection goes from being a pure right-mover 
at θ = 0 to a pure left mover at θ  = π.

2.2  Charge current
The tunneling Hamiltonian can now be rewritten 
in terms of χ↑ as

H t tt = + + ↑ ↑ ↑ ↓ ↓ ↑ψ χ ψ χ† † . ,h.c � (3)

where t↑ = t cos(θ/2) and t↓ = t sin(θ/2) can be 
tuned by tuning θ. The Boguliobov fields L R/

,φ
which move unhindered to right and left direction 
(henceforth we call them the right chiraland left 
chiral fields) are given by

φ φ φ↑ ↓ = ± + / ( ) ( ) .
1

2
1 1

K
K K

R L
 ∓  � (4)

Note that the total electron density on the 
HLL wire can be expressed in terms of the chiral 
fields as ρ π φ π φ( ) ( / ) ( / ) ,x K Kx R x L

= ∂ − ∂2 2 
thus defining the chiral right (left) densities and 
the corresponding number operators as

R L L

L

R L L

L

x R LN dx x
K

dx/ /

/

/ /

/

/
( ) ( ).  = = ± ∂

− −∫ ∫2

2

2

2

2
ρ

π
φ

� (5)

Next we define the operator corresponding to 
the chiral decomposition of the total charge current 
as I dN dt i N Ht tα α α= = − / [ , ], where we have set 
 = 1  and electron charge e = 1 and α  =  R/L. Using 
the standard commutation relations of chiral 
fields, [ ( ) ( )] ( )↑/↓ ↑/↓, ′ = ± − ′φ φ π x x i x xsgn  the 
chiral currents were found to be

I K I

K I
tR L t

t

/ = ± / =
+ / = .

( ) [( ) cos( ) ( )

( ) sin( ) ( )]

θ θ θ
θ θ π

1

2
1 2 0

1 2∓ � (6)

Figure 1:  A schematic of the geometry of the proposed setup. The direction of orientation of the electron 
spin in the HLL is along the Ẑ axis. The angle between direction of orientation of the spin of electrons in 
the edge and the majority spin in the STM tip is θ and they are assumed to lie in the X̂ - Ẑ plane. The Ŷ-axis 
points out of the plane of the paper. Here x and x ′ represent the intrinsic one dimensional coordinates of 
the STM tip and the wire.
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I
t
(q)  =  I

tL
(q)  +  I

tR
(q) is the total tunneling 

charge current operator for an arbitrary value of 
θ and I itt ( / ) ( )/ /

θ π χ ψ ψ χ= = −↑ ↑ ↓ ↑ ↓ ↑0 † † .

2.3  Results and conclusion
The expectation values of the currents operator 
in linear response is given by

I
i

d I Ht t t( ) [ ( , ), ( )] .θ τ θ τ τ= − =
−∞∫
0

0 � (7)

Since the HLL  Hamiltonian is left-right 
symmetric in the absence of the tip and the tip 
is fully polarised, the value is equal for θ = 0 and 
θ = π and given by I I It t( ) ( ) .θ θ π= = = =0 0

Using the well-known correlation function of 
LL liquid at finite temperature T, we find

I
e

h
t

T

v
V

F
0

2
2

2 1
=

+
×| |

( / )

( ) ( )
,

Λ
Γ

ν

ν
� (8)

where Λ is an ultra-violet cutoff and ν is the 
Luttinger tunneling exponent given by ν = −1 + 
(K + K−1)/2. Here we have assumed that T T

L
, 

T
V
, where T

L
 is the temperature equivalent of 

the length of the wire defined by ν/L = k
B
T and 

T
V
 = eV/k

B
, is the temperature equivalent of bias 

voltage.
Using these values, we now obtain the  

current heading to the right and left ends of the 
wire as

I
K

ItR L, ( )
( cos )

.θ θ
=

±1

2 0
� (9)

Note that even though the left and right 
chiral currents that are measured at the right 
and left contact depend on θ, the total tunneling 
current I I It tL tR( ) ( ) ( )θ θ θ= +  is independent 
of θ. Thus, we show that unlike the two terminal 
tunnel current, the three terminal current is 
clearly not independent of θ. This fact tells us 
that indeed the current measured at the right 
and left contact shows a TMR  type response as 
a function of θ. Further, note that percentage 
asymmetry in the left and right current given  
by A I I I ItL tR tL tR= − +( )( ) ( ) ) / ( ( ) ( )θ θ θ θ = 
K  cos q is independent of I

0
, which carry all the 

details of tunnel junction. Hence, measuring this 
quantity as a function of θ can provide a direct 
information regarding the exact orientation of the 
spin of the electron associated with the right and 
left moving states. Lastly, it is worth mentioning 
that our strategy of using a spin polarized 
tunneling probe for detecting the spin momentum 
locking nature of the edge spectrum works even 
in presence of electron-electron interactions as is 

evident form the above results. Next we consider 
surface state of three dimensional TIs where 
we only focus on the case of non-interacting 
electrons.

3 � Probing Surface State of Three 
Dimensional TI

The two popular probes used to scan the surface 
states of1,2 3-D TIs are spin polarised ARPES or 
STM. Spin polarised ARPES seems to have an 
edge over the STM as it couples more directly 
to the spin texture of the Fermi surface. Here we 
propose a multi-terminal set up involving spin-
polarised STM (SPSTM)9 which directly couples 
to the spin texture of the Fermi surface leading 
its straightforward read readout. This read out is 
theoretically understood in terms of a new kind of 
TMR response between the magnetized STM and 
the non-magnetic TI surface which relies crucially 
on its multi-terminal character as described 
below.

3.1  Proposed set up
The proposed set up comprises two contact pads 
placed diametrically opposite to each other on 
the surface of the TI while electrons are injected 
from the SPSTM  placed at the centre of the 
sample as shown in Fig.  2. The surface can be 
imagined to be divided into two halves by a line 
through the centre of the sample perpendicular 
to the direction joining the two contacts, (for 
future reference, we mention that the angle 
made by this partitioning line with the x-axis is 
denoted by γ, see Fig. 2). Each contact measures 
the current flowing in the surface in its own 
half. We show that the total current I

0
 = I

L
 + I

R
 is 

insensitive to current anisotropy discussed above 
owing to zero magnetisation of Fermi surface, 
but ∆I = I

L
 – I

R
 is very sensitive to the current 

anisotropy and leads to a finite TMR  response 
with the spin polarised STM which oscillates as a 
function of γ. Note that γ can be changed simply 
by rotating the sample with respect to the tip 
about z-axis.

We show that ∆I measured as a function of γ 
leads to a direct reconstruction of in-plane spin 
texture in the momentum space, i.e., we can 
extract the angle of spin-momentum locking (θ

L
) 

and the chirality; left chiral or right chiral from 
this study.

3.2  The model
We start with the generic Hamiltonian for the 
3D TI surface state given by

HTI F
k

TI z TIv k k k= ×∑
   


Ψ Ψ† ( )( ) ( ),σ � (10)
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where 
φ θ+Ψ =
 

 ( )
( ) 1/ 2(1, ) ˆLk

i T
kTI k e c  and 

kĉ
is the annihilation operator with momentum 
k . φ

k y xk k= −tan ( / )1  is the polar angle of 
the momentum vector. For Eq.  (10), the 
spin-momentum locking angle θ

L
 is π/2, 

consistent with popularly known TI  materials. 
Assuming a flat density of states, a model 
Hamiltonian for a fully spin-polarised STM  tip 
is written as ε ↑↑= ∑  H †

STM ,,
ˆ ˆ

kk kk d d , where the 
STM electron annihilation operator in real space 

is given by ΨSTM STM( ) (cos( / ),
   
r dkeik r= ∫ ⋅ θ 2  

φθ ↑


,
ˆsin( / 2) )STMi T

STM ke d  and ε 


k
v k= STM | |, 

where vSTM  is the Fermi velocity of the STM and 
θ φSTM( ) is the polar (azimuthal) angle of the STM 
spin. The STM tip is assumed to be weakly coupled 
to the TI  surface by a tunnelling Hamiltonian, 

= Ψ = Ψ = + 
H †

tunn TI STM( ( 0) ( 0) h.c.),J r r  which  
upon Fourier transforming gives H

tunn
  =

↑′′
+∑    †

,,
ˆ h.c.ˆ kk kk k

J z c d , where

z i e
k

STM STM i STM k


= − −











1

2 2 2
cos sin ,

( )θ θ φ φ
� (11)

has the information about the overlap of 
the STM  spinor and the TI  spinor for each 
momentum mode 


k  which ultimately 

decides how much injection happens in 
each 


k , and hence the current anisotropy 

discussed above. The current operator is 
defined as ˆ ˆ / [ , ˆ ],I dN dt H NSTM

i
STM= =   where  

↑↑= ∫ 


†
STM ,,

ˆ ˆˆ
kk

dkN d d  and H H H H= + +TI STM tunn. 
The expectation value of the current at some time 
t is given by −= H Hˆ( ) i t i tI t G e I e G , where G
is the ground state of H in presence of a chemical 
potential bias (µ µSTM TI≠ ) between STM and 
TI. Treating Htunn  perturbatively, we get

I
i

dt g H t I g( ) [ ( ), ( )] ,0 0
0

= ′ ′
−∞∫ tunn,I I � (12)

where the I in the subscript stands for the 
interaction picture and g g g= ⊗

TI STM
is the non-interacting ground state with 
Htunn treated as interaction. Decomposing 
the current in momentum space we obtain, 

I dk dk z k ke
k k k

= ′ ′ −∫ ∫ , ′
  

   
| | ( ( ) ( ))2 χ δ ε εSTM TI , 

where | |z
k
 2  (Eq. (11)) has the information of the  

spinor overlaps, χ τ τ 
 

k k
d G k k

,
Im[ ( , ; , )′ =

−∞

∞
∫ TI 0  

G k kSTM( , ; , )]
 
′ ′τ 0  has the Green’s functions, where 

G denotes the standard time ordered Fermionic 
Green’s functions and the delta function ensures 
energy conservation. Hence, we obtain a 
momentum resolved current given by

I k
e

z
k k

( ) | | ,



 = 2 χ � (13)

where χ χ δ ε ε  
  

k k k
dk k k= −

−∞

+∞ ′ ′∫ ′,
( ( ) ( ))STM TI . The  

total tunnelling current is just a sum over I k( )


 
for all possible 


k  living in the bias window. The 

angular distribution of the injected current in 
real space is same as the angular distribution 
of momentum resolved current about the 
tunnelling point. As a consistency check for this, 
we evaluate the expectation value of the current  
vector operator for a pristine TI surface    ˆ

( ) ( ( ), ( ))j r r ry x= −σ σ  at 

r = 0 perturbatively to 

second order in tunnel Hamiltonian and obtain   
 ˆ

( ) ( ) ˆ ,j r I k nk k= = ∑0  which reconfirms our  
interpretations of I k( )


 being the real space 

angular distribution of current about the injection 
point. Here 

kn̂  is a unit vector pointing along k


. 
Owing to the azimuthally symmetric (in k – space) 
Fermi surface, I k( )


, turns out to be separable in its 

dependence on | |

k  and φ

k
 as I k I I

k k
( )

| |




= φ with

I
k kφ θ φ φ

= + −1 sin sin( ).STM STM � (14)

It is clear from the above result that the total 
injected current that is obtained by summing over 
all possible momenta in the bias window leads to 

Figure 2:  A schematic of the setup. The colour density shows the current density profile on the surface of 
the TI consistent with the polarisation direction of the tip shown by red arrow pointing along y-axis and the 
spin-momentum locking angle, θL = π/2. Dotted curve is a polar plot of the tunnelling current amplitude at the 
point of injection showing the profile of the current anisotropy. IL/R are the current (in arbitrary units) carried 
by the left and right contact.
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a current, which is independent of the direction 
of STM tip magnetization. This fact is consistent 
with our observation for the case of edge state 
of two dimensional TI  studied in the previous 
section. But the current asymmetry defined as 

∆I I I d I k d k IL R k kk
= − = −( )+

+

+
∫ ∫ ∫

γ

γ π

γ π

γ π
φφ

2
 



 
| | | | ,

| |

which could be measured directly in the set up 
depicted in Fig. 2 shows a finite TMR as function 
of γ given by

∆I
eJ

v vf

= −
4 2

4 2 STM
STM STMF cos( )sin ,φ γ θ � (15)

where F = −( )
−∞

+∞
∫ dE E n nF

TI
F
STM  is obtained 

from the | |

k  integral by appropriately putting in 

the density of states, where nF( )E T, ,µ  denotes 
the Fermi function.

3.3  Reconstructing spin texture
We will now demonstrate that the above expression 
can be directly exploited to uniquely identify the 
spin-momentum locking angle and the chirality. 
At this point it is important to note that all the 
in-plane angles like γ and φSTM  are measured 
with respect to the positive direction of x-axis 
along the anti-clock wise direction. For the case 
of φ πSTM = /2  observing a zero in ∆I at γ  = 0 
(see Fig. (3)), implies that the momentum modes 
pointing towards the left and right contact starting 
from the tip position have a locked-spin which is 
pointing perpendicular to the STM polarisation 
pointing along y-axis (see Fig.  2) so that the 
injected current gets symmetrically distributed 
between left and right contact. Assuming a planar 
spin texture, it directly tells us that the spin 
momentum locking angle | | /θ πL = 2 . Of course 
this conclusion relies on the assumption that the 
Fermi-surface is circular in shape so that spin 

on each half can be added up symmetrically. 
Now we are left with two possibilities; the two 
oppositely directed momentum modes discussed 
above pointing towards left and right contact 
have a locked-spin either pointing parallel and 
anti-parallel to the x–axis or the other way round 
respectively. And this information is nothing but 
the spin chirality of the Fermi surface. To settle 
the chirality, we observe that ∆I is maximally 
negative for γ = π/2. This implies that maximal 
share of the injected current is flowing to the 
right contact (as depicted in Fig.  2) implying 
that the momentum mode pointing towards 
right starting from the tip position has a locked-
spin which is parallel to the tip magnetisation 
direction. Hence, the study of ∆I also implies 
that the momentum mode pointing along x-axis 
has a locked-spin pointing along y-direction; 
therefore reading out the spin chirality of the 
Fermi surface in hand. Consequently, its leads to 
the conclusion that spin-momentum locked spin 
is uniquely given by < > = −

 
 σ φ φ( ) ( sin , cos ).k
k k

 
Hence, our claim of reconstructing the Fermi-
surface spin texture using the proposed three-
terminal TMR  data is clearly demonstrated. For 
an arbitrary spin-momentum locking angle 
θ

L
, ∆I ∼ − +sin( )γ φ θSTM L ; the maxima in its 

magnitude occurs at γ φ θ π= − +STM L / ,2  and 
hence the spin-momentum locking angle can be 
extracted. The sign of the first maxima of ∆I as we 
increase γ  from zero gives the chirality.

3.4  Result and discussion
Now we recast I

L/R
 or equivalently ∆I in an explicit 

TMR form,3 which puts our idea on a firm footing 
and adds further transparency to the discussion 
above. Note that a net spin polarisation vector 
can be obtained by performing a vector sum of 
spin polarisations of each momentum mode 

Figure 3:  Left: The angular profile of the current as obtained from Eq. (14) for θSTM  = p/2 and different 
values of φSTM as mentioned in the legend. Right: The resulting current asymmetries as function of g as 
obtained from Eq. (15).
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living on half of the Fermi surface of TI  surface 
states, where the Fermi surface bipartition is 
done along the line defining γ. This quantity 
for each half of the Fermi Surface is given by 

µγ µ ρ π γ γ= +


∓ TI
, /

ˆ ˆ( , ) ( / )(cos sin ),half L R x yS  which 
sums to zero due to TRS. Here, ρ πµµ

TI = 2 2/( )vF

is the density of states (DOS) of TI  at chemical 
potential µ where µ is measured from the 
neutrality point. Then, by extending Eq.  (15) to 
include finite polarisation of the STM tip, in linear 
response limit we obtain,

I
J e

h

p
S S VL R

TI STM

half STM/ = , ⋅





π ρ ρ
π

γ µµ
2 2

1
2
∓ ˆ ( ) ˆ

� (16)

where ρSTM  is the spin averaged DOS  of the 
tip, p is the polarisation of the tip given by 
( )/( )ρ ρ ρ ρ↑ ↓ ↑ ↓− +STM STM STM STM  and V is the 
applied voltage bias between tip and TI. halfŜ  
and STMŜ  are unit vectors along halfS


 and 

magnetisation direction of the tip. We see that 
indeed the left and right contacts shows a standard 
TMR response3 having opposite signs (due to TRS) 
with the magnetised STM and the pure magnetic 
response can be extracted from it simply by taking 
an anti-symmetric combination of the two, which 
is nothing but ∆I. Hence, spin-momentum locking 
together with multi-terminal set up leads to this 
exotic situation where large TMR  response is 
extracted out of a non-magnetic material that is 
shown to be useful for characterizing the material 
itself. This results actually provide a solid platform 
to apply the idea of multi-terminal TMR to more 
complicated surface state, which can exist on the 
surface of 3-D TI surfaces. For example TI materials 
like Bi

2
Se

3
, Bi

2
Te

3
 and Sb

2
Te

3
, the planar surface states 

are distinct from one another with regard to their 
spectrum and the associated spin texture for each 
angle θ, which the normal to the surface makes with 
the crystal growth axis. A detailed study partaining 

to these surface state can be found in Ref. [10] and 
application of our idea of multi-terminal magneto 
resistance for probing these surface state can be 
found in Ref.  [11]. In general it is expected that 
the surface states may also host a variety of surface 
potentials that can distort the spin texture of the 
pristine TI surface state. Out idea of multi-terminal 
magnetoresistance probing can also be applied to 
identify and characterize these surface potentials.12
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