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Abstract | We begin this review with an introduction and a discussion of 
Weyl fermions as emergent particles in condensed matter systems, and 
explain how high energy phenomena like the chiral anomaly can be seen 
in low energy experiments. We then explain the current interest in the 
field due to the recent discovery of real materials which behave like Weyl 
semi-metals. We then describe a simple lattice model of a topological 
insulator, which can be turned into a Weyl semi-metal on breaking either 
time-reversal or inversion symmetry, and show how flat bands or Fermi 
arcs develop. Finally, we describe some new phenomena which occur 
due to the chiral nature of the Weyl nodes and end with possible future 
prospects in the field, both in theory and experiment.

1  Introduction
In recent times, the Landau paradigm of 
classification of states through the principle of 
spontaneous symmetry breaking and local order 
parameters has been superseded by classification 
through topology or global properties of the many-
body ground state wave-function of the system.1 
These topological phases have some property to 
which an integer can be assigned, which is robust 
and depends only on global properties. They 
cannot be destroyed by local perturbations such 
as disorder and scattering, as long as the bulk 
gap is not closed, although they can have surface 
metallic states—in fact, surface metallic states are 
what distinguishes them from ordinary insulating 
phases.

The first, most famous example of a topological 
phase is the  integer quantum Hall effect.2 This 
was a system of electrons moving in two 
dimensions, with a strong perpendicular magnetic 
field (time-reversal broken system). This led to 
Landau levels and most importantly, to the 
quantisation of the transverse conductance with 
remarkable accuracy. It was soon realised that this 
effect had a topological explanation3–the physically 
measured transverse current was related to a 
topological invariant, the first Chern number, 
which is just the integral of the Berry curvature 
over the Brillouin zone. The topological phase on 
each plateau was protected by a bulk gap, and the 
current was carried by metallic surface or edge 
states.

Integer quantum Hall 
effect: This is a quantum 
mechanical version of the 
Hall effect, where a voltage is 
induced perpendicular to the 
direction of motion, when 
two dimensional electrons are 
subjected to a strong magnetic 
field. The conductance in the 
direction perpendicular to the 
applied voltage is found to 
be quantised in units of e2/h 
and this is called the integer 
quantum Hall effect.

However, for a long time, this did not have 
much impact on material science, because 
quantum Hall effect occurred at low temperatures 
and at very high magnetic fields. There was a lattice 
model proposed by Haldane4 which suggested 
that materials could have topologically nontrivial 
band structures, characterised by non-zero Chern 
numbers, even without an external magnetic field. 
But it is only in the last decade or so that it was 
realised that this could occur in realistic materials. 
Consequently, there has been an explosion of 
work on topological materials.5 The hallmark 
of these materials was that they were insulating 
in the bulk, but they could conduct electricity 
through metallic surface states, without magnetic 
field or breaking time-reversal invariance. Hence, 
unlike the quantum Hall phases, these materials 
had to have a pair of counter-propagating edge 
states due to time-reversal invariance. Also, unlike 
the quantum Hall phases, they could occur in 
three dimensions as well as in planar systems. 
Furthermore, in these systems, the edge or surface 
states had relativistic dispersions and hence, the 
physics of Dirac fermions became relevant in 
these materials.

But more recently, it has been realised that 
gaplessness is not an essential ingredient for 
topological protection. Band topology can be 
defined, even if the gap closes at some points in 
the Brillouin zone. A particular example of such 
a phase is the Weyl semi-metal phase,6 which was 
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first predicted in the pyrochlore iridates.7 It is a new 
state of matter, whose low energy excitations are 
Weyl fermions. Unlike the topological insulators, 
these materials have gapless states in the bulk as 
well as the boundary.

2 � Emergent Weyl Fermions in 
Condensed Matter Systems

The idea that particles with relativistic dispersion 
can be quasiparticles in condensed matter systems 
is not new and goes back to the early days of the 
study of Luttinger liquids,8 where it was realised 
that close to the Fermi energy, the dispersion 
could be linearised and obeyed relativistic energy-
momentum relations.

More recently, relativistic Dirac fermions 
came into prominence with the discovery of 
graphene9 in 2+1 dimensions. Graphene is a single 
sheet of carbon atoms arranged in a honeycomb 
lattice. Electrons moving around the carbon 
atoms interact with the periodic potential of the 
honeycomb lattice to give rise to a Fermi surface 
with six double cones where the valence and 
conductance bands touch each other. (Out of 
these six, only two are independent). Close to 
these nodes, the dispersion is linear and the 
Hamiltonian is given by the massless relativistic 
Dirac equation, with the speed of light replaced 
by the Fermi velocity and the spin replaced by the 
pseudo-spin of the sub-lattices —

H v p pF x x y y= +( ) .σ σ � (1)

The wave-functions are two component 
spinors with the spinor index refering to the 
sublattice index and real spin being an additional 
quantum number. v

F
 is the Fermi velocity in 

the solid, which replaces the speed of light in 
relativistic systems. The low energy excitations 
about the nodes are gapless (graphene is metallic). 
However, in principle, they can be gapped out 
by perturbations (mass terms) proportional 
to σ

z
. The stability of graphene comes from the 

extra symmetries under time-reversal and spatial 
inversion,10 which enforces the vanishing of terms 
proportional to σ

z
 and hence implies that no gap 

is induced, as long as perturbations do not break 
time-reversal and inversion symmetry.

A possible generalisation of this to 3+1 
dimensions is to write down the massless 3+1 
Dirac Hamiltonian given by

H
v

v
F

F

=
⋅

⋅






0

0




σ
σ

p

p
� (2)

This is equivalent to having two doubly 
degenerate Dirac cones at the same point in 

Dirac and Weyl fermions: 
In 3+1 dimensions, the 

standard spin 1/2 fermion 
which describes quarks and 

leptons are Dirac fermions. In 
general, they have a mass, have 

relativistic dispersions and 
are described by 4 component 
spinors which obey the Dirac 

equation. But when the mass is 
turned off, the Dirac equation 
splits into two Weyl equations, 

whose solutions in terms 
of two component spinors 

describe Weyl fermions. These 
are two massless particles that 

transform differently under 
the Poincare group and have 

their spins oppositely aligned 
to their directions of motion.

momentum space. This is what has been dubbed 
as a Dirac semi-metal.11 This semi-metal can 
also be gapped out easily by adding mass terms 
proportional to a diagonal 4×4 matrix (I

2×2
, − 

I
2×2

). However, the Dirac points can be protected 
by crystal symmetries, and provided that the 
perturbations or imperfections that exist do not 
break this symmetry, semi-metallic phases can be 
observed.

However, it is possible to split the degeneracy 
of the Dirac node in momentum space or energy 
space by breaking either time-reversal or inversion 
symmetry. This gives rise to two Weyl nodes with 
opposite chiralities (or helicities), whose 
dispersion is given by the massless Weyl 
Hamiltonian. The basic idea6 behind the existence 
and stability of these Weyl nodes is very simple. 
Close to the degeneracy points where two non-
degenerate bands touch each other and the energy 
is cone-like, the electronic excitations are described 
by the Weyl equation, simply because the effective 
Hamiltonian at that point has to have two 
dimensions, and besides the identity, there are 
only three anti-commuting σ matrices. More 
explicitly, the low energy Hamiltonian for a two 
band model is given by

H a= + ⋅( ) ( ),k b kσ � (3)

where σ = (σ
x
, σ

y
, σ

z
) are the three Pauli matrices. 

We can now expand the Hamiltonian around the 
touching or gapless points (k = k

0
) in the Brillouin 

zone to get

H
b

k
i

j

( ) ( )

( )
( )

k k b k

k k
k k

 0 0

0

0

const + ⋅

+ ⋅
∂
∂ − .

=

σ

σ � (4)

This is precisely the Weyl Hamiltonian (though 
offset and anisotropic) and the wave-functions are 
two component Weyl fermions with positive or 
negative chirality. These band-touching points or 
nodes can move around in the momentum space, 
by perturbations that change the Hamiltonian 
slightly, but the only way for them to gap out and 
disappear is if they meet another node with the 
opposite chirality. This is very different from what 
happens in graphene. In fact, a straighforward 
generalisation of the graphene Hamiltonian to 3+1 
dimensions can also be made simply by adding a 
term proportional to σ

z
 to obtain

H p p px x y y z z= + +σ σ σ , � (5)

which is just the isotropic form of the model given 
in Eq. 4 and is the familiar Weyl Hamiltonian 
in relativistic systems. Here, there is no fourth 
anti-commuting matrix to add a mass term. 

Chirality and helicity: 
Chirality essentially means 
asymmetry with respect to 

mirror reflection. In particle 
physics, massless fermions 

can either be left-handed 
or right-handed depending 
on how their wave-function 

transforms under the Poincare 
group. Helicity, on the other 

hand, is the sign of the 
projection of the spin along 

the direction of motion, which 
in principle can be changed, 
except for massless particles, 

where it becomes an attribute 
of the particle and is the same 

as the chirality.
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Perturbations can only move the nodes, but 
cannot gap them out. Hence, we have gapless 
fermions with a single chirality at each band 
touching point.

Surprisingly, it was found, initially through 
detailed calculations,7,12,13 that there are condensed 
matter materials, whose band structure shows 
nodes or points around which the excitations 
are Weyl fermions. These materials were dubbed 
Weyl semi-metals (WSM).14 They also have very 
unusual surface states called Fermi arcs, which 
terminate at the location of the bulk Weyl nodes, 
which we will discuss in detail later.

As was already mentioned, in a system with 
both inversion symmetry and time-reversal 
symmetry intact, one always gets Dirac nodes —  
both left and right handed chiral nodes, at the 
same point, in which case it is always possible to 
add a mass term using the fourth anti-commuting 
four component γ matrix and gap it out. So to 
get Weyl nodes in the condensed matter system, 
one needs to break either inversion symmetry or 
time-reversal symmetry.

The stability of the Weyl nodes can also be 
connected to a topological quantum number, 
which is the conservation of the total charge of the 
Weyl nodes. As we said above, a single Weyl node 
cannot disappear by itself. It has to annihilate 
with a Weyl node of the opposite charge. This 
also means that for the Weyl nodes to have well-
defined coordinates, momentum has to be a good 
quantum number, so translational invariance has 
to be unbroken. So disorder has to be fairly weak.

Also, Weyl nodes can be thought of as 
monopoles in momentum space. The charge of 
the Weyl node can be related to the quantised 
Berry flux, which can be computed from the 
momentum space wave-functions of the filled 
states near the Weyl node. It turns out to be ±2πκ 
depending on the chirality of the node (positive 
or negative) and the ‘monopole’ charge κ.6 The 
topological stability of the Weyl node is thus 
related to the Gauss law, which keeps the total 
flux inside a given surface invariant. The Weyl 
node can only vanish when it annihilates with 
another Weyl node with opposite chirality. Also, 
since the net charge of all the Weyl nodes inside 
a Brilloiuin zone has to be zero, the Weyl nodes 
always come in pairs and the minimum number 
of Weyl nodes that one can have in any model is 
two.15

3  The ‘High Energy’ Connection
The distance between high energy physics and 
condensed matter physics has been decreasing in 
recent years, with the so-called (AdS-CFT) 

Anti-de Sitter- Conformal Field theory (or even 
AdS-CMT for condensed matter theory) 
connection.16 But in the field of Dirac materials, 
the connection is much more direct and the idea 
that quasiparticles can be relativistic fermions is 
quite old.8 Moreover, with the discovery of 
topological materials, there has been a possibility 
of seeing even Majorana modes (not exactly 
Majorana fermions, but related) and now Weyl 
fermions in low energy condensed matter settings. 
We will discuss the discovery of these Weyl 
fermions in the next section, but in this section, 
we will see how phenomena such as the chiral 
anomaly related to Weyl fermions get translated 
in the condensed matter context.

The basic idea of the chiral anomaly is that 
the conservation laws ∂µ j

µ = 0 and ∂ =µ
µj5 0

cannot be simultaneously satisifed. So if we take 
the conservation of current to be sacrosanct, the 
current of the left and right chirality fermions 
cannot be individually conserved. The Adler-Bell-
Jackiw anomaly equation17

∂ = /∗
µ

µ πj FF5
28 � (6)

thus leads to breaking of the chiral symmetry 
by the anomaly. In the Weyl semi-metal context, 
these equations can be rewritten as

∂
∂

+ = , ⇒
∂
∂

− ≠ ,

∂
∂

− = ± ⋅ ,

t
n n

t
n n

t
n n

e

h

R L R L

R L

( ) ( )

( )

0 0
2

2
E B � (7)

where n
R
 and n

L
 denote the number of fermions 

at the right and left chirality Weyl nodes. This 
implies that by applying parallel electric and 
magnetic fields, we can change the difference 
in their numbers, or if we have really have an 
isolated Weyl node, we can change the number 
of particles. This is essentially a quantum 
mechanical effect because the path integral for 
Weyl fermions coupled to an electromagnetic 
field is not invariant under independent gauge 
transformations of the left and right chiral fields. 
So single chirality fermions implies charge non-
conservation. However, in any real system, one 
always has total particle number conservation. 
Hence, Weyl nodes in any crystal always have 
to come in pairs. Due to the anomaly term, we 
can get charge pumping between the nodes—n

R
 

decreases and n
L
 increases or vice-versa, at a rate 

given by the anomaly. But the total number of 
particles remains the same. This is called the 
Nielsen-Ninomiya theorem.15

More formally, by coupling the Weyl fermions 
to an external electromagnetic field and computing 

Majorana fermions and 
Majorana modes: In particle 
physics, Majorana fermions are 
fundamental particles whose 
creation operator is the same 
as its annihilation operator. 
They are real fermions, as 
opposed to complex Dirac 
fermions. In the condensed 
matter context, they are 
hermitean operators satisfying 
the anti-commutation 
relations. However, they are 
not real fermions and obey 
non-abelian statistics under 
exchange.
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the effective action by integrating out the fermions, 
it can be shown that the time-reversal or parity 
breaking parameter in the model leads to an 
effective θ term in the action given by

S
e

d x x F Fθ
µναβ

µν αβπ
θ ε= ∫

2

2
4

32
( ) , � (8)

(we are using 4 vector notation here and µ runs 
from 0 to 3) where the axion field θ(x) = 2bµxµ = 
2b  ⋅  r − 2b

0
t and bµ = b

0
, b

i
 are parameters that 

break the parity (b
0
) and time-reversal (b

i
). The 

current can be computed from the effective action 
and is found to be

j
e

b A

j
e

b A

ν
µ

µναβ
α β

ν ναβ
α β

π
ε µ

π
ε

= ∂ , = , ,

= ∂ .

2

2

2

2 0
0

2
1 2 3

2
and � (9)

The first equation above describes the 
anomalous Hall effect, with the Hall conductance 
proportional to the separation between the Weyl 
nodes

σ xy e h= / × | | .2 b � (10)

The second equation describes the chiral 
magnetic effect, which naively seems to imply 
equilibrium currents in the presence of a magnetic 
field.18,19 But the notion of the chiral anomaly 
in a condensed matter system is itself somewhat 
idealised, because unlike in the relativistic case 
where chiral symmetric is exact for massless 
fermions, here, even the relativistic dispersion 
for the Weyl fermions and chiral symmetry is 
only approximately true, close to the Weyl nodes. 
Hence, using the chiral anomaly directly to predict 
effects in the Weyl semi-metal is not a very good 
idea. More detailed calculations have shown 
that the first result can be rederived in different 
ways,20 but the second result involving the naive 
expectation of equilibrium currents is incorrect in 
the condensed matter context.21 As pointed out in 

Ref. 22, in a Weyl semi-metal, although there is a 
charge imbalance at the nodes due to the anomaly, 
there is also a return path for the charges via the 
Fermi arcs on the surfaces. Hence, one needs to be 
careful in applying relativistic ideas directly to the 
Weyl semi-metal system.

So the basic idea to look for effects of the 
anomaly, would be to apply parallel electric and 
magnetic fields to the system and see whether there 
are explicit effects due to the charge imbalance 
between the two chiral nodes in the condensed 
matter system itself. One would expect the results 

Time reversal symmetry: 
Time reversal symmetry 

implies a system which looks 
the same when you reverse 

the sign of time. In quantum 
mechanics, it is represented 

as an anti-unitary symmetry. 
For particles with 1/2 integer 

spin, this leads to the Kramer's 
theorem which states that all 
time-reversal invariant states 

are doubly degenerate.

Parity symmetry:  Parity 
symmetry implies a system 
which looks the same when 

you reverse the signs of all 
the spatial coordinates. It 

is distinct from symmetry 
under rotation. For instance, 

in two spatial dimensions, 
parity is defined as inversion 

of only one of the coordinates, 
because inverting both of 

them would be equivalent to 
a rotation.

to be highly anisotropic, because the effect depends 
on the angle between the applied electric field and 
the magnetic field, being maximum when E || B and 
minimum (vanishing) when E ⊥ B. In fact, there 
have been several works23,24 that have explicitly 
computed the physical effects of the chiral anomaly 
in Weyl semi-metals. They have shown that the 
chiral anomaly actually leads to large negative 
longitudinal magneto-resistance at weak fields, 
as expected from the anomaly equation. More 
recently, there has been work25 that has shown that 
the chiral anomaly generically leads to longitudinal 
magneto-resistance (LMR) in three dimensional 
chiral metals (not necessarily Weyl semi-metals 
and not necessarily even Dirac materials). In a 
Weyl semi-metal, the sign of the LMR depends on 
the kind impurities in the sample, and generically, 
with both ionic and neutral impurities, the LMR 
becomes negative initially and then becomes 
positive as a function of the magnetic field.

Other effects of the anomaly such as current 
induced by strain fields19, anisotropic non-local 
voltage drops26 and optical absorption27 due to the 
charge imbalance between the two nodes have also 
been studied. For inversion symmetry breaking semi-
metals, the chiral nodes are at two different energies, 
which leads to a chiral chemical potential between 
the nodes. This can give rise to measurable optical 
signals.28 Other effects include unusual plasmon 
modes29 in doped WSM. All these possibilities have 
spurred experimental activity in this field and in the 
last few months, there has been definite evidence for 
Weyl fermions in several materials.

4 � Current Excitement due to ‘Discovery’ 
of Weyl Fermions

The initial proposals for Weyl semi-metals included 
pyrochlore iridates,7 HgCr

2
Se

4
13 and topological 

insulator-normal insulator heterostructures,12 
but there is no experimental evidence for them 
yet. Negative magnetoresistance was observed 
experimentally30 when magnetic field was applied 
to BiSb tuned to its critical point (the Dirac point) 
between normal and topological insulator, but that 
by itself was not convincing enough to confirm the 
existence of Weyl fermions, particularly since it was 
realised that negative magneto-resistance is generic 
in three dimensional metals. However, in the last 
few months, there has been a lot of excitement31 
in the field, ever since the publication of direct 
evidence for not only the Weyl nodes, but also the 
Fermi arcs in the non-centrosymmetric material 
TaAs using ARPES (angle resolved photoemission 
spectroscopy) techniques, by the Princeton group32 
and a group from the Chinese Academy of Sciences.33 
They were able to show co-propagating Fermi arcs 
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terminating at the Weyl nodes with non-zero chiral 
charges of ±2. At the same time, Weyl nodes were 
also seen in a photonic crystal, which was ‘made to 
order’ to reproduce a desired band structure.34 Both 
these cases involved inversion symmetry breaking. 
In TaAs, the crystal structure itself lacked inversion 
symmetry and in the photonic crystal, inversion 
symmetry breaking was explicitly incorporated. 
The photonic crystal was made such that it 
realises 4 Weyl nodes (the minimum for inversion 
symmetry breaking Weyl semi-metals), whereas 
TaAS has 24 Weyl nodes. Fermi arcs have also been 
observed in Dirac semi-metals, such as Cd

3
As

2
35 

and Na
3
Bi.36 Other candidate materials include 

an inversion symmetry breaking stochiometric 
compound SrSi

2
37 that forms a WSM without spin-

orbit coupling and an exotic state with quadratic 
dispersion when spin-orbit coupling, is included, 
but this has not yet been confirmed. For a recent 
review of topological semi-metals predicted from 
first principle calculations, see.38

5 � Explicit Lattice Model and  
Phase Diagram

We will now study some features of the WSM in 
detail,39 using a simple tight-binding four-band 
lattice model21,40 for the topological insulator (TI) 
in three dimensions (3DTI), whose phases can 
describe strong and weak topological insulators, 
Weyl semi-metals and ordinary insulators 

depending on the values of the various parameters 
of the model. Many 3DTI materials, including 
the family belonging to the Bi

2
Se

3
 class, have an 

effective description in terms of the Hamiltonian 
given by H

0
 = H

C
 + H

SO
21 with

H t

H i
j

j x j
ij

i x j

j
j z x j y y

C

SO SO

h c

and

= − + . .

= −

∑ ∑
∑ +

ε ψ τ ψ ψ τ ψ

λ ψ τ σ ψ σ

† †

†
ˆ ψψ

λ ψ τ ψ

j x

z
j

j y j zi

+






++ + . .∑
ˆ

†
ˆ h c

� (11)

Here z is the direction of growth of the crystal, 
and σ and τ denote Pauli matrices in spin and 
orbital (parity) space respectively. ε and t denote 
the standard on-site and nearest neighbour 
hopping amplitudes. λ

SO
 and λ

z
 are the (possibly 

anisotropic) spin-orbit (SO) interaction strengths 
in the x-y plane and in the z direction respectively. 
i, j refer to site indices in all three dimensions. The 
topological invariants for the 3DTI, vµ = (v

0
; v

1
, v

2
, 

v
3
 can be easily obtained using parity invariance41 

and are given by39

( ) ( )( )( ) ( )

( ) (

− = − + − + ,
− = +







1 6 6 2 2

1 6

0 3 3ν

ν
ε ε ε ε
ε

sgn

sgn

t t t t

ti ))( )( )ε ε− + ,





2 2 2t t

for i = 1, 2, 3. Depending on the values of the 
invariants, we have the following phases:

Figure 1:  (Color online) Typical phase diagrams of our model system. The Weyl semi-metal (WSM) phase 
appears at the strong topological insulator (STI)/normal insulator (NI) (e = 6t) and strong topological insulator 
(STI)/weak topological insulator (WTI) (e = 2t) boundaries (shown by black lines) with broken time reversal 
(bz)/parity (b0) perturbations. The WSM phase extends with increasing perturbations in the filled regions. 
Parameters used here are lz = lSO.
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Figure 2:  (Color online) The dispersion for a WSM with 2 Weyl nodes at k0 = ±bx /lz is shown along kx and 
ky. The parameters used are b = (0.50t, 0, 0), λSO = λz = 0.50t. The dashed (red) lines denote the surface 
band.

Figure 3:  (Color online) The dispersion for a WSM with 2 Weyl nodes at ±k0. The blue and grey surfaces 
show the dispersions of the surface states on the top and bottom surfaces respectively. The cones represent 
the bulk states and the picture shows how the surface states merge into the bulk.

	

| |>| | = ; , ,
| |>| |>| | =

ε ν
ε ν

µ6 0 0 0 0

6 2 10

t

t t

( ) Ordinary Insulator

Stronng Topological Insulator STI

Weak Topo

( )

( )| |>| |> = ; , ,2 0 0 1 1 10t ε ν llogical Insulator WTI( )

� (12)

H b b

b b

E
j

j y z x x x

y x y z z j

= −(
+ + )

∑ψ τ σ τ σ

τ σ σ ψ

†

.

0

� (13)

Here b
0
 and b are parameters that break 

inversion and TR symmetry respectively and 

The Weyl semi-metal (WSM) phases arise 
close to the boundaries of the topological phase 
transitions, at ε ≈ ±6t, ±2t when either parity 
(inversion) or time reversal (TR) symmetry or 
both are broken. In other words, the Hamiltonian 
for the WSM is given by H

W
 = H

0
 + H

E
 where



Weyl Semi-Metals: A Short Review

Journal of the Indian Institute of Science  VOL 96:2  Apr.–Jun. 2016  journal.iisc.ernet.in 151

separate the Dirac point of the TI into two Weyl 
points, with the separation being in energy and 
in momentum space respectively.21 An arbitrary 
Hermitean term can be added to this Hamiltonian, 
whose effect will be to cause the Weyl nodes to move 
around. However, for small perturbations, it cannot 
remove the nodes. The nodes can only vanish if the 
perturbation is large enough to bring both the Weyl 
nodes together. The phase diagram of the different 
phases in this model is given in Fig. 1.39

The band structure of the WSM is given in 
Fig. 2.39 As can be seen from there, the cones that 
describe the Fermi surface around each of the nodes 
are independent for small enough doping (small 
values of the chemical potential or Fermi energy E

F
). 

But for larger values of the chemical potential, they 
merge into a single Fermi surface. For sufficiently 
large system size, the dispersion is flat between the 
two Weyl nodes along the k

x
 direction, and is linear 

along k
y
 (for k

x
 values between the Weyl nodes). 

These are the surface states (in momentum space) 
and are shown in Figs. 2 and 3.

6 � Characteristics of Surface States 
and Fermi Arcs

The existence of surface states for TI is well-
established. They are isolated from the bulk 
states, since the bulk is gapped, and they are spin-
momentum locked–i.e., the spin is tied to the 
direction of motion, and opposite spins travel in 
opposite directions. This has been explicitly seen 
in many experiments42 using scanning tunneling 
microscopy. Surface states also exist for the WSM. 
This is more unexpected because one does not 
expect well-separated surface states in a gapless 
model, since they are expected to merge with 
the bulk states. So the first question that one has 
to answer is why surface states exist at all. It is 
because the system (to a good approximation) is 
translationally invariant. Hence, momentum is a 
good quantum number and it is possible to have 
surface states at momenta where there are no bulk 
states–ie., between the Weyl nodes.

It is also found that the surface states at the 
Fermi energy in WSM form an arc and not a 
full Fermi surface. These Fermi arcs end at the 
projection of the Weyl nodes onto the surface, 
where the surface mode is no longer well-defined, 
because it merges into the bulk modes. What does 
this mean? An intuitive picture14 to understand 
Fermi arcs is to start with a very thin sample of 
Weyl semi-metal and slowly increase the thickness 
so that the two surfaces are pulled apart. To start 
with, we have a complete Fermi surface, but as 
the thickness increases, complementary parts of 
the Fermi surface get attached to the two surfaces 

and they get connected to one another through 
the Weyl nodes in the bulk. A picture of how the 
surface states at the two opposite surfaces with 
opposite chiralities get connected through the 
bulk states is given in Fig. 3. This is essentially the 
same dispersion that is shown in Fig. 2 separately 
along the k

x
 axis and k

y
 axis.

We now study the surface states for both the 
TI and WSM phases in the specific four band 
(finite-size) model that we have studied in the 
previous section where TR is broken. For strong 
topological insulators, surface states exist on each 
surface as mid-gap states5 in the band structure, 
whereas in weak topological insulators, surface 
states arise only on particular surfaces depending 
on the values of v

i
 (i = 1, 2, 3).43 For Weyl semi-

metals, in our model, inversion symmetry 
breaking does not give rise to surface states. 
Surface states arise only when TR is broken at the 
phase boundary between the normal and the 
topological insulator. For instance, if we choose 
the TR symmetry to be broken by b = b xx ˆ, then 
each Dirac point yields a pair of Weyl nodes with 
a separation of b xx z/λ ˆ in momentum space, and 
we note that away from the Weyl nodes, there is a 
gap in the spectrum. If we put the chemical 
potential at the energy of the Weyl nodes, we can 
consider the state obtained by filling all the 
negative energy states. By studying how this state 
evolves as a function of the crystal momentum, 
we define the Berry phase and the Berry flux 
B A( ) ( )k kk= ∇ × . The Weyl nodes here are the 
sources of this flux ∇ = ± − ±B( ) ( )k k kδ 3 .

Since the Weyl nodes can be thought of as sources 
and sinks of Berry phase monopoles, there is a flux 
penetrating all the two-dimensional layers between 
the nodes. All these layers have non-zero Chern 
number, whereas two-dimensional planes not 
between the nodes have zero Chern number. So the 
two-dimensional planes between the nodes are like 
quantum Hall planes, and they all exhibit integer 
quantum Hall effect and have edge states. In other 
words, for each value of k

x
 between the Weyl nodes, 

we have a Chern insulator. This is precisely the reason 
that there is an anomalous Hall effect as shown in 
Eq. 10 proportional to the separation between the 
Weyl nodes. The Fermi arc is just the line that one 
gets by stringing the edge states of the Chern 
insulator together and clearly these states only exist 
between the Weyl nodes. This is illustrated in Fig. 4. 
It also clear from the figure that surface states can 
only exist on the x-y and x-z planes. No surface states 
exist on the y-z planes since the separation between 
the Weyl nodes is along the x-axis.

Now, let us look at the surface states of this 
model in detail. The first surprise is that there are 

Berry phase and Berry 
curvature: The Berry 
phase or geometric phase 
or Pancharatnam-Berry 
phase is the phase acquired 
over a closed cycle when 
the parameters of a system 
are slowly (adiabatically) 
changed and brought back to 
themselves. This can be non-
trivial if the space spanned 
is not simply connected. The 
Berry phase can be expressed 
in terms of a connection or 
Berry potential and the anti-
symmetric second-rank tensor 
derived from it is called the 
Berry curvature.

Magnetic monopoles: A 
magnetic monopole is a 
hypothetical particle with a 
magnetic charge violating 
∇
→

⋅B = 0. In the condensed 
matter context, they are quasi-
particles and not sources of 
real magnetic field, but only 
some effective magnetic 
field. In that sense, they only 
resemble magnetic monopoles.
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surface states, because there is no gap. So, if we put 
the chemical potential at the position of the Weyl 
nodes, there are not only gapless surface states, 
but also gapless bulk states at the same chemical 
potential at the nodes. So we may think that the 
surface states should hybridise with the bulk 
states. But as we mentioned earlier, momentum 
conservation implies that it is possible to have 
surface states at momenta where there are no 
bulk states – ie., between the Weyl nodes. So at 
these values of the momentum, we will only have 
surface states and no bulk states, the material 
will appear like a topological insulator. When we 
look at the the local density of states of the real 
position-space surface of the three dimensional 
WSM as a function of the momentum, at the 
Fermi energy (tuned to the Weyl nodes), we find 
that they form an arc, (in this particular model, 
it forms a straight line) between the momenta k

0
 

and −k
0
, the positions of the Weyl nodes, instead 

of a closed curve. This is shown in Fig. 5. At the 
Weyl nodes, there is no distinction between the 
surface states and bulk states, and they merge into 
the bulk. But between the Weyl nodes, the surface 
states are well-defined. As discussed above, the 
surface states are essentially the edge states of the 
quantum Hall planes strung together.

There has also been a detailed study44 of the 
evolution of the surface states (Fermi arcs) to form 
a single Dirac cone as the parameters of a time-
reversal (TR) symmetric, but inversion symmetry 
broken WSM are changed to become a TI.

As we mentioned earlier, the excitement in this 
field has increased many-fold31 since the actual 
visualisation of the Fermi arcs by the Princeton 
and Chinese Academy of Sciences groups.32,33

7  New phenomena in Weyl semi-metals
Weyl semi-metals have bulk conducting states, and 
hence, are metallic. However, there are many ways 

Figure 4:  (Color online) The Berry phase monopoles of charge ±1 at the two Weyl nodes of opposite 
chirality. The two dimensional planes within the nodes are quantum Hall planes with non-zero Berry flux 
passing through it and hence non-zero Chern number. The Fermi arcs are the edge states of the quantum 
Hall planes strung together.

Figure 5:  (Color online) The local (surface) density of states (LDOS) for a WSM with 2 Weyl nodes at ±k0. 
The red line shows finite value for LDOS, whereas the yellow region denotes zero LDOS. Note that surface 
states appear on the x-y and x-z planes, but not along the y-z planes.
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in which their behaviour is different from the usual 
metals. The metallic states exist only for some 
values of momenta and at other values of momenta, 
there is a gap to excitations. The excitations at the 
nodes are chiral, and hence their spin is aligned to 
the direction of motion. All of this leads to new 
transport phenomenon, which exists only for Weyl 
semi-metals. In this section, we will discuss some 
new results that occur when Weyl semi-metals are 
placed in proximity with superconductors.

Motivated by the fact that the introduction of 
superconductivity via either proximity effect or by 
introducing a pairing ∆ term in the bulk leads to a 
new topological phase in the topological insulator, 
we studied39 what happens when a Weyl semi-metal 
is tunnel coupled to an s-wave superconductor. We 
started with the model described in Sec. (4) with 
two Weyl nodes separated by the time-reversal 
breaking parameter b in the x-direction. We took 
the model to be infinite in the y direction, so that 
k

y
 is a good quantum number and we took z to be 

finite, so that the surface states existed at the top and 
bottom in the z-direction. We coupled one of the 
surfaces of the WSM to an S-wave superconductor 
and then integrated out the superconducting 

degrees of freedom to obtain an effective action for 
the WSM. We then obtained the local density of 
states (LDOS) and the induced pairing in the WSM 
using a Green’s function technique as well as exact 
diagonalisation. We found that the flat band due to 
the Fermi arc states split into two when proximity 
coupled to the WSM, each carrying half the Chern 
number of the original surface state, but it does not 
gap out fully. The gap remains at the Weyl nodes. 
This is seen in Fig. 6,39 and can be understood as 
follows. The S-wave superconducting correlations 
couples the electrons at one node of a certain 
chirality to holes at the other node, but of the same 
chirality (because the two nodes have opposite 
chirality, but electrons and holes also have opposite 
chirality). Hence, no gap can open up, because a 
mass term requires fermions of opposite chirality.

We have also studied45 the reflection and 
Andreev reflection (the phenomenon where an 
electron incident on a superconductor bounces 
back as a hole and two electrons (a Cooper pair) 
goes into the superconductor) that takes place at 
the junction between a Weyl semi-metal and a 
superconductor. A scattering approach46 showed 
that the differential conductance depended on the 

Andreev reflection: This is a 
process by which an electron 
gets reflected as a hole at the 
interface between a normal 
metal and a superconductor 
and a charge 2e is transferred 
into the superconductor as 
a Cooper pair. This happens 
below the superconducting 
gap, because there is no 
possibility for single particle 
transmission into the 
superconductor.

Figure 6:  (Color online) The effect of the proximity induced superconductivity in the surface bands of the 
WSM with momenta (a) kx and (b) ky where the Weyl nodes lie along kx. The blue (gray) high density lines 
are the modified bands in the system with proximity to the superconductor obtained from the LDOS at z = 0 
using a Green’s function technique, while the red (darker) solid line is the surface band at z = 0 via exact 
diagonalization. The induced gap vanishes at the Weyl nodes for a large enough system size, but the 
surface band splits. Various parameters used for the LDOS are λSO = λz = 0.5t, D = 0.7t, λS = 0.9t, e = 6t, 
b = (0.5t, 0, 0) and number of sites in z is 20. We have used ky = 0 for (a) and kx = 0 for (b).
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angle between the current and the vector 
connecting the two Weyl points. For the simplest 
model of a time-reversal breaking Weyl semimetal 
with two nodes, we showed that both normal and 
Andreev reflection change chirality—see Fig. 7.45 
We also showed that the existence of a new 
momentum scale introduced by the time-reversal 
leads to the non-vanishing of normal reflection, 
unlike in graphene, where at low energies close to 
Fermi energy, the current is purely due to Andreev 
reflection and normal reflection vanishes.

We also showed that when the Weyl semi-
metal is sandwiched between two superconductors, 
the Josephson current shows unexpected 
oscillations as a function of the time-reversal 
breaking parameter as shown in Fig. 8. For normal 
metals, the current is expected to be independent 
of the length L for short ballistic Josephson 
junctions. For graphene, which is a Dirac metal, it 
was shown that the critical current has diffusion-
like scaling proportional to 1/L at the Dirac point, 
but without any impurity scattering.47 But for the 
Weyl semi-metal, apart from the 2π periodicity in 
ϕ (which is the phase difference between the two 
superconductors), we also find a periodicity in the 
length L with period π/k

0
. This is shown in Fig. 8.45 

Moreover, we also find the zero-pi transition48  
of the Josephson current characteristic of 
superconductor-ferromagnet-superconductor 
junctions, which is perhaps not surprising, since 
the WSM that we studied violated time-reversal 
invariance. Here the Josephson current was 
computed for the lattice model of the WSM 

Josephson current: Josephson 
current is the current that 

flows across a device called the 
Josephson junction which is 

made of two superconductors 
with a phase difference φ 

separated by an insulator, metal 
or just a tunneling junction.

studied in Sec. (5) through its Green’s function, 
g(ω) = [(ω + iδ)  − H

0
]−1, which was coupled to 

two superconductors on either side of it, through 
an onsite self-energy39

Σ
∆

∆i
x i xt

e i( ) ( )[ ] .ω
ω

τ ω ζτ ζ
ϕ

σ=
−

+ −


2 2
I I I

� (14)

Here ζ acted on the particle-hole degree of 
freedom of the model defined in the Nambu basis 
and S

i
 was defined only on the sites in contact with 

the ith superconductor. ∆ denoted the S-wave pair 
potential in the superconductor. Then writing the 
full Green’s function as G(ω) = (g−1(ω) − S

L
(ω) − 

S
R
(ω))−1, we computed the Josephson current.45

8  Future Challenges and Opportunities
The experimental discovery of Weyl semi-metals 
may lead to new and unexpected spintronic 
applications. Weyl fermions are gapless and hence 
have high mobility and can travel with very little 
resistance.They have topological protection because 
once a Weyl node is formed, it can only annihilate if 
there is another Weyl node of opposte chirality and 
they are brought together. They are also chiral and 
their spin is aligned to the direction of motion.

In the next few years, there is considerable 
scope in the experimental front for discovering 
new candidate materials for Weyl semi-metals, 
particularly with time-reversal symmetry breaking, 
which has not yet been seen. On the theoretical 
front, massless Weyl fermions had been studied 

Figure 7:  (Color online) Both reflection (R) and Andreev reflection (AR) in a WSM occur from one chiral 
node to another. The chiralities of the nodes are denoted as +ve and −ve, whereas the solid and the 
dashed lines show dispersions of the fermions at the two Weyl nodes with positive and negative velocities  
(=dE/dk). The spins of the bands (denoted by arrows) and the need to conserve spin accounts for the 
change of chirality for both normal and Andreev reflection.
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for many years in high energy physics as a possible 
candidate of neutrinos, before the mass for 
neutrinos was discovered. It would be of interest 
to see whether any of the more exotic effects like 
neutrino oscillations have possible manifestations 
in the condensed matter context. The study and 
classification of gapless topological materials is 
also far from complete and will also probably gain 
centre-stage in the next few years.
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