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Abstract | The first order phase transitions, like freezing of liquids, melting 
of solids, phase separation in alloys, vapor condensation, etc., start with 
nucleation, a process in which internal fluctuations of the parent phase 
lead to formation of small seeds of the new phase. Owing to different size 
dependence of (negative) volumetric and (positive) interfacial contributions 
to work of formation of such seeds, there is a critical size, at which the work 
of formation shows a maximum. Seeds that are smaller than the critical one 
decay with a high probability, while the larger ones have a good chance 
to grow further and reach a macroscopic size. Putting it in another way, 
to form the bulk new phase, the system needs to pass a thermodynamic 
barrier via thermal fluctuations. When the fluctuations of the parent phase 
alone lead to transition, the process is called homogeneous nucleation. 
Such a homogeneous process is, however, scarcely seen and requires 
very specific conditions in nature or in the laboratory. Usually, the parent 
phase resides in a container and/or it incorporates floating heterogeneities 
(solid particles, droplets, etc.). The respective foreign surfaces lead to 
ordering of the adjacent liquid layers, which in turn may assist the formation 
of the seeds, a process termed heterogeneous nucleation. Herein, we 
review how the phase-field techniques contributed to the understanding 
of various aspects of crystal nucleation in undercooled melts, and its 
role in microstructure evolution. We recall results achieved using both 
conventional phase-field techniques that rely on spatially averaged 
(coarse grained) order parameters in capturing the phase transition, as 
well as molecular scale phase-field approaches that employ time averaged 
fields, as happens in the classical density functional theories, including 
the recently developed phase-field crystal models.

1 Introduction
The crystalline freezing, ideally, of pure liquids 
cooled below their melting point starts with 
nucleation, a process during which crystal-like 
fluctuations appear, whose size exceeds a critical 
value, determined by the solid-liquid interface free 
energy (γ

SL
) and the thermodynamic driving force 

(∆ω) of crystallization. Those crystal-like 
fluctuations that are larger than the critical size tend 
to grow to a macroscopic size, whereas the smaller 

Driving force: It is the 
volumetric grand free energy 
difference between the 
crystal and the liquid, which 
is negative, ∆ω < 0, in the 
undercooled state.

ones decay with a high probability, although clusters 
momentarily on one of the sides of the maximum 
can move to the other via stochastically capturing/
releasing molecules. The critical size fluctuation of 
the new phase is termed nucleus.

Since the description of crystal nucleation has 
a long history, addressed in excellent reviews,1–3 
this review is limited to contributions from 
phase-field modeling. First, we briefly recall some 
essential notions, which can be easily introduced 
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in the framework of the classical nucleation theory 
(CNT).1

1.1 The classical nucleation theory
The classical nucleation theory relies on a 
simplified view of the critical fluctuation: it is 
assumed to be a small spherical domain of the 
bulk crystalline phase inside the bulk liquid phase, 
with a sharp interface in between. Predictions of 
theory are based on evaluation of the negative 
volumetric and positive interfacial energies that 
determine the total excess energy, i.e. the work of 
formation of the nucleus.

Homogeneous nucleation: Work of formation 
of a spherical crystalline domain is expressed as 
a sum of a negative volumetric and a positive 
interfacial term as W

hom
 = (4π/3)R3∆ω + 4πR2γ

SL
, 

where R is the radius of the sphere. For small 
sizes the positive surface term, while for the large 
ones the negative volumetric term dominates. 
Thus, the work of formation shows a maximum 
as a function of size, where W

hom
* = (16π/3) 

γ
SL

3/∆ω2 and R* = − 2γ
SL

/∆ω are the free energy 
and radius corresponding to this maximum, 
defining the critical fluctuation or nucleus. It is 
easy to see that R* decreases if the driving force 
(undercooling) increases. Since it is assumed 
that these “heterophase” fluctuations originate 
from the internal density/structural fluctuation 
of an ideally pure liquid, this process is known as 
homogeneous nucleation.

In the CNT, the formation rate of critical 
fluctuations is calculated considering single 
molecule attachment and detachment to the 
clusters. The master equations that describe the 
time evolution of the cluster population is written 
as follows:1

N a N a N
a N a Nn n n nn

1 2 2 1 1

1 11

= −
+ −( )

− +

−
−

+
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Here, N
n
 is the number of clusters that consist 

of n atoms/molecules, a
n

+ = O
n
Γexp{− (W

n+1
−W

n
)/ 

2kT} and a
n

− = O
n−1

Γexp{− (W
n−1

−W
n
)/2kT} are  

the molecule attachment and detachment 
frequencies, O

n
 = 4n2/3 the number of sites on 

the surface of the n-molecule cluster, to which a 
molecule can be attached, Γ = 6D/λ2 determines 
the time scale of molecule attachment/detachment, 
where D is the self-diffusion coefficient (often 
related to the viscosity via the Stokes-Einstein 
relationship), and λ the molecular jump 
distance. W

n
 is the free energy of formation of 

an n-molecule cluster, k is Boltzmann’s constant, 
and T the temperature. Solving these equations 
numerically, after a transient period of length τ ≈ 
Kλ2kT(n*)2/3/(Dv

m
∆ω), where K is a geometrical 

factor, n* the number of molecules in the critical 
fluctuation, and v

m
 the molecular volume, a 

steady state nucleation rate (net number of critical 
fluctuations formed in unit volume and unit 
time) of form

J
a N

J W kT

SS

n n eq n

=
( ){ } ≈

− ∗
=

+ −∞∑
exp{ / }

,

hom

1

1

1

0 s

 (2)

is established,1 where the equilibrium 
number density of n-molecule clusters is 
N

eq,n
 = ρ

0
exp{−W

n
/kT}, J

0
 = ρ

0
O

n*ΓZ is the 
pre-exponential factor of nucleation, ρ

0
 the 

number density of the monomers (molecules). 
Here Z = {|d2W

hom
/dn2|

n*/(2πkT)}1/2 is the 
Zeldovich factor that takes the dissolution 
of critical clusters into account. Experiments 
on oxide glasses indicate that the magnitude 
of the classical prefactor J

0
 is reasonable1,4,5, a 

conclusion also supported by comparison with 
advanced theory.6–8 A comparison with molecular 
dynamics simulations, however, indicates that J

0
 

might be too low by two orders of magnitude.9 
Extensions of the classical kinetic approach to 
cluster coagulation and splitting have also been 
explored.10,11

Heterogeneous nucleation: In practice, the 
formation of the crystallike fluctuations is assisted 
by various kinds of heterogeneities (e.g., container 
walls, floating particles, molecular impurities, etc.), 
which reduce the height of the nucleation barrier 
significantly (W

het
* < W

hom
*), making thus the 

appearance of nuclei easier. The spherical cap model 
captures this in the following manner: assume 
that the foreign particles are much larger than  
the nuclei, and are distributed homogeneously 
in the undercooled fluid and they are bound by 
flat walls. A flat solid-liquid interface can only be 
in equilibrium with the wall ifthe Young-Laplace 
equation holds: i.e., γ

WL
 = γ

WS
 + γ

SL
 cos(ψ), where 

γ
WL

 and γ
WS

 are the wall-liquid and wall-solid 
interface free energies, respectively, whileψ is the 
equilibrium contact angle or wetting angle. In 
the presence of such a wall, the classical theory 
predicts a critical fluctuation that has the shape of 
a spherical cap (that fraction of the homogeneous 
nucleus, which realizes the contact angle; see 
Fig. 1). Accordingly, the free energy of formation is 
W

het
* = W

hom
*f(ψ), where f(ψ) = ¼ [2+cos(ψ)]{1 − 

cos(ψ)}2 is the catalytic potency factor. For small 
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contact angles (good wetting), f(ψ) can be small, 
lowering the nucleation barrier significantly. On 
the surface of the spherical cap in contact with the 
liquid, the number of sites to which molecules can 
be attached is O

n
 = 2{1 − cos(ψ)}n2/3. Considering 

that only those molecules can take part in 
heterogeneous nucleation that are adsorbed on 
the surface of the heterogeneities, the steady state 
nucleation rate may be expressed as J

SS,het
 = x

A
 ½{1 

− cos(ψ)}/f(ψ)1/2 J
0
 exp { −W

hom
*f(ψ)/kT}.12,13 Here, 

x
A
 is the fraction of molecules adsorbed on the 

surface of heterogeneities. This approach has been 
modified for cases of various substrate geometries 
including spherical particles, rough surfaces, 
nucleation in depressions, etc.14

1.2  Free growth limited mode of particle 
induced freezing

Greer and coworkers proposed a simple but rather 
successful model for describing particle induced 
solidification in undercooled liquids.15,16 The 
foreign particles are assumed to be of cylindrical 
form of radius R, with ideally wetting circular 
faces (ψ = 0), and non-wetting sides (ψ = π). These 
idealized particles remain dormant until a critical 
undercooling is reached, where the R*, radius 
of the homogeneous nucleus, is equal to R. This 
critical undercooling is ∆T

c
 ≈ 2γ

SL
/(∆s

f
R). Here 

∆s
f
 is the volumetric entropy of fusion. For larger 

undercoolings free growth sets in. This approach 
has been worked out for various shapes of the 
foreign particles.17 This simple concept proved 
highly successful in various branches of science 
ranging from materials science to cryobiology,1 
where particle induced freezing occurs.

1.3 Problems with the classical theory
While the pre-exponential factor for the 
nucleation rate, the classical theory predicts, is 
reasonably accurate for vapor condensation and 
crystal nucleation, the sharp interface assumption 
used in the droplet model is reasonable only for 
nuclei that are much larger than the interface 
thickness. Under typical conditions the droplet 
model fails.18 Molecular dynamics indicate that 
the interface thickness is in the range of about 
3 molecular diameters.19,20 Since at practically 
achievable largest undercoolings, where one 
might expect homogeneous nucleation, the 
critical size is comparable to this, it is probable 
that there are no bulk crystal properties at the 
center of the nuclei. Furthermore, it appears that 
even homogeneous nucleation is often a two-step 
process:21–23 the first appearing “precursor” state 
differs from the stable crystalline phase; it may be 
another crystalline structure (bcc9,23,24), a dense 
liquid,25–27 or amorphous/disordered solid.28–32 
The formation of the stable crystalline phase is 
assisted by the first forming precursor structures. 
In the case of heterogeneous nucleation, 
molecular scale studies indicate that the structure 
of the substrate plays an essential role.33–37 These 
complexities cannot be easily incorporated into 
the CNT.

In the following sections, phase-field models 
are reviewed that offer solutions to some of these 
problems.

2 Conventional Phase-Field Models
Van der Waals/Cahn-Hilliard/Ginzburg-Landau 
type continuum models38–40 have been used to 
model nucleation for a long time. These models are 
the earliest/simplest phase-field type approaches 
(they are also called simple classical density 
functional theories41). More complex approaches 
have been developed for describing solidification 
in multi-component/multi-phase/multi-domain 
problems.42–48

2.1 Homogeneous nucleation
We start with illustrating the basic concepts of 
phase-field modeling of nucleation in a simple 
case, where a single structural order parameter 
φ monitors the structural transition between the 
liquid and the crystal. (Such an order parameter 
can be easily defined, when the number density 
of molecules in the crystal is approximated by a 
sum of Gaussian peaks, an assumption termed the 
quasi-harmonic approximation. Then the Fourier 
amplitudes of the number density in the crystal 
become expressible as φ φi

k ki= 1
1

2( / ) .49 Here φ
I
 is 

the ith Fourier component, and k
i
 the respective 

Figure 1: The “spherical cap” approach used 
to describe heterogeneous nucleation on a flat 
substrate (dark gray). Imagine a sphere of radius 
R* that corresponds to the homogeneous nucleus. 
Position this sphere in a way that its intersection 
with the surface realizes the required contact angle 
ψ (determined by the Young-Laplace equation, 
see text). The heterogeneous nucleus is then the 
spherical cap (light gray) on top of the substrate.
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wave number. Accordingly, the dominant Fourier 
component φ

1
 can be used as a structural order 

parameter.) The free energy can be expressed 
in terms of this order parameter and its spatial 
derivatives. In the respective phenomenological 
approach, the free energy can be written as

F dV wg p f= + ( ) +











∇∫ ( ) ,

ε φ φ φ
2

2

2
∆  (3)

where the form g(φ) = ¼ φ2(1−φ)2 and 
p(φ) = φ3(10 − 15φ + 6φ2) are the double-well and 
interpolation functions (see Fig. 2), and ∆f is the 
thermodynamic driving force of crystallization. 
As usual, the order parameter is 0 in the liquid 
and 1 in the crystalline phase. [Note that g(φ) 
and p(φ) functions can be taken from the 
Landau theory, but are often deduced from other 
principles.] Here, the free energy has three model 
parameters, ε2, w, and ∆f. The latter is 0 at the 
melting point, whereas the free energy and the 
thickness of the solid-liquid interface can be 
related to the model parameters as: γ

SL
 = {ε2w/

(6√2)}1/2 and d
SL

 = 2⋅ln(9){2ε2/w}1/2. The latter 
refers to the interfacial layer defined by 0.1 ≤ φ ≤ 
0.9. All the model parameters can be expressed in 
terms of measurable quantities.

The critical fluctuation (nucleus) is a saddle 
point of the free energy in the function space, 
therefore, its properties can be obtained by 
solving the Euler-Lagrange equation under the 
following boundary conditions: unperturbed 
undercooled liquid in the far field, while the field 
gradients are zero at the center due to symmetry 
reasons.50 For the sake of simplicity, an isotropic 
interface free energy is considered (a reasonable 
approximation for metals). The Euler-Lagrange 
equations boil down to ′′ ′+ ( ) = ∂ ∂φ φ φε2 21

r
f( / ) . 

Here stands for spatial differentiation (d/dr), while 
the boundary conditions take the form φ ′ = 0 at 
r = 0, and φ = 0 for r → ∞. Inserting the solution 
into the free energy and integrating the excess free 
energy density relative to the far field value (for 

typical solutions see Fig. 3), one obtains nucleation 
barrier W

hom
*, which can be then plugged into 

the classical expression to obtain the nucleation 
rate. An advantage of this approach relative to 
the droplet model is that it considers that the 
solid-liquid interface is diffused (as shown by MD 
simulations), and that the non-bulk properties 
and the curvature dependence of the interface free 
energy are automatically handled. Remarkably, 
even this simple model leads to a considerable 
improvement in estimation of nucleation rate, 
especially if the structure related g(φ) and p(φ) 
from the Landau theory are used, as in the case of 
the hard-sphere system,51,52 competition of bcc and 
fcc nucleation in the Fe-Ni system.53

2.2 Heterogeneous nucleation
To ensure heterogeneous nucleation, one needs 
to define a substrate within the framework of the 
phase-field model. There are two ways to do this: 
(a) a full phase-field representation of the substrate 
as a separate solid phase, which needs a detailed 
knowledge of the properties of the substrate (such 
as its free energy as a function of composition 
and temperature, solid-liquid and solid-solid the 
interfacial free energies, their anisotropies, the 
respective diffusion coefficients, etc.), and (b) if 
one has only the contact angle for the equilibrium 
trijunction, one may incorporate the respective 
substrate into the simulations via prescribing an 
appropriate boundary condition at its surface.

In fact, possibility (a) is automatically present 
in those phase-field models that consider the 
formation of two solid phases (e.g., eutectic or 
peritectic solidification), while nucleation of the 
phases is ensured by adding noise to the equations 
of motion. Examples for case (a) can be found 
in Refs. 54–58, though detailed analyses of the 
process is presented in Refs. 56–58, which explores 
the effect of fluid flow and anisotropy on the 
nucleation barrier.

Figure 2: The form of the usual double-well and 
interpolation functions.

Figure 3: Phase-field distribution for the nucleus 
in two dimensions.
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Since case (b) is of broader practical interest, 
we briefly present the technique for heterogeneous 
nucleation on a flat surface in a simple binary 
system.59 Accordingly, local state of the matter is 
described by a structural order parameter that 
monitors crystalline solidification [the phase 
field φ(r)] and the concentration field c(r) that 
represents the local composition. For the sake 
of simplicity, an isotropic solid-liquid interface 
is adopted again, which yields a cylindrically 
symmetric problem, i.e., the Euler-Lagrange 
equation is solved in cylindrical coordinates. 
Furthermore, no gradient term is assumed for the 
concentration in the free energy density. Under 
these circumstances, the Euler-Lagrange equation 
for the phase field reads as

φ ∆ φ φ
ε

∂φ ∂  + =  ∂
∂ φ
∂ ∂ 2

p'( ) f[ ,c] + g'( )wT
r

r r z T

2

2

1

2
 (4)

Owing to the absence of a |∇c|2 term in the free 
energy density, the Euler-Lagrange equation for 
the concentration field defines a c(φ) relationship. 
As a result, the driving force for crystallization 
takes the form ∆f[φ, c(φ)] = f[φ, c(φ)] − (∂f/∂c)
(c∞)[c(φ)−c∞] −f∞. Here, subscript ∞ denotes 
quantities referring to the initial liquid state. To 
ensure that in equilibrium (stable or unstable) 
the solid-liquid interface realizes a fixed contact 
angle ψ with the foreign wall placed at z = 0, we 
prescribe the following boundary condition at 
the wall54 (a generalization of Model A in Refs. 60 
and 61):

( )
[ , ( )]

cos( )n ⋅∇ =φ φ φ
ε

ψ2
2

∆f c

T
 (5)

Here, the unit vector n is the normal to the wall. 
This construction is easy to understand in the case 
of a stable triple junction, for which the contact 
angle is ψ. Owing to the presence of the wall, 
ordering takes place in a liquid layer of thickness 
d that extends to a few molecular layers (see e.g., 
Refs.62 and 63). Taking z = z

0
 > d, the equilibrium 

solid-liquid interface remains unperturbed by 
the wall (see Fig. 4). As a result, along the z = z

0
 

plane the phase-field and concentration profiles 
are related to the equilibrium profiles as in the 
equilibrium planar solid-liquid interface. Then, 
the following relationship holds

ε φ φ φ
2 2

2

T

n
f c

SL

∂
∂







= ∆ [ , ( )]  (6)

Here n
SL

 is a spatial coordinate normal to the  
solid-liquid interface, whereas the component 

of ∇φ normal to the substrate wall is 
(n⋅∇φ) = (∂φ/∂n

SL
)⋅cos(ψ) = [2∆f/(ε2T)]1/2⋅cos(ψ). 

This means, e.g., that in the case of the parabolic 
groove approximation by Folch and Plapp,45 one 
obtains ∆f[φ, c(φ)] = wTg(φ).63 Although Eq. (5) 
applies to the equilibrium trijunction, application 
of this approach for heterogeneous nuclei requires 
further considerations: The planar interface is 
not in equilibrium in the undercooled state, thus 
∆f[φ, c(φ)] is a tilted double well, and Eq. (6) is not 
valid. In the case of the nucleus (being in unstable 
equilibrium), the capillary pressure restores the 
uniform chemical potential inside the nucleus. 
While, in principle, it would be possible to solve the 
appropriate spherical Euler-Lagrange equation for 
the phase field, and employ the respective solution to 
obtain the normal component P

N
(φ) of the pressure 

tensor, which makes the chemical potential spatially 
uniform, it seems rather unpractical. However, a 
fairly good approximation can be obtained at least 
for large nuclei (small undercoolings) if Eq. (5) is 
used with ∆f ′ = ∆f − [1 −p(φ)]⋅∆f

0
, where ∆f

0
 is the 

driving force of solidification. The latter correction 
term mimics the effect of capillary pressure as in 
equilibrium ∆f

0
 = p

c
,64, turning ∆f into a double 

well of equal depths. Typical results obtained for 
heterogeneous nuclei in a binary system are shown 
in Fig. 5. Because of the relatively small undercooling 
applied here, the spherical cap model of the CNT is a 
good approximation for the height of the nucleation 
barrier.

Other methods have been worked out to 
ensure the contact angles, which rely on assuming 
a constant phase field or phase-field gradient at 

Figure 4: Typical cross-sectional phase-field 
map of a heterogeneous nucleus (computation 
performed with Model B of Refs. 60 and 61). Note 
the boundary layers between the wall and the bulk 
solid (φ = 0 at the surface of the nucleus), and 
between the wall and the bulk liquid phase (φ = 1 at 
the surface of the substrate). The crystal becomes 
disordered at the wall, whereas ordering of the 
liquid takes place at the wall. Above z = z0 the solid 
liquid interface remains essentially unperturbed by 
the presence of the wall. In the case of a stable 
tri-junction, the solid-liquid interface is planar (not 
curved as here for the nucleus).
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the surface of the substrate (Models B and C in 
Refs. 60 and 61). Both of these approaches yields 
a surface spinodal, i.e., a critical undercooling 
beyond which free growth starts from the surface 
of the substrate.

2.3 Non-classical prefactor
While the pre-exponential factor the CNT 
predicts is reasonably accurate, efforts have 
been made to derive it from more fundamental 
theory.65 A hydrodynamic theory of nucleation 
has been developed for vapor condensation6 and 
crystallization.27 In both cases, the results appear 
to be rather close to the predictions of the classical 
theory.

2.4 Phase-field simulations of nucleation
One can perform phase-field simulations for 
nucleation, via adding a noise ζ  to the equation 
of motion (EOM) as shown in Eq. (4), where 
noise needs to satisfy the fluctuation-dissipation 
theorem.

∂
∂

= − +
φ δ

δφ
ζφ φt

M
F

.   (7)

Here δF/δφ is the functional derivative  
of the free energy with respect to the phase-field, 
while the noise is assumed to have the correlator 

ζ ζ δ δφt t M kT t t, , ( )r r r r( ) ′ ′( ) = −( ) − ′′2 . An  
example of such phase-field simulations that 
illustrates the free growth limited mechanism 
mentioned above is shown in Fig. 6. Here the  
contact angles have been set via appropriate 
boundary conditions at the surfaces of the 
substrate.

2.5 Nucleation vs microstructure
Another important problem is, how one should 
incorporate homogeneous/heterogeneous 
nucleation into phase-field simulations. A 
possible solution is to add noise that satisfies 
the fluctuation-dissipation theorem to the 
equations of motion of the phase-field model 
as often done in the case of the time-dependent 
Ginzburg-Landau approach.50,54–57 This is 
another way to treat nucleation on the basis of 
the free energy functional. The major advantage 
of this approach is that nucleation happens 
automatically while considering the dynamics 
of the system. It is worth mentioning, however, 
that the addition of noise influences the position 
and depth of the free energy minima, and the 
magnitude of the interfacial free energy (via the 
capillary waves), etc.66 If one wishes to retain 
the position of the minima and the interfacial 
free energy, a renormalization of the model 
parameters is needed. Another problem is that 

Figure 5: On the left: Phase-field (upper row) and concentration field (lower row) distributions for 
heterogeneous nuclei obtained solving numerically the Euler-Lagrange equations using the properties of a 
Cu-Ni alloy at 1574 K, while varying the contact angle, ψ. The computations were performed in a 100 nm × 
150 nm window. The contour lines (in upper row) denote phase field levels of φ = 0.1, 0.3, 0.5, 0.7, and 0.9. 
The parabolic groove approximation by Folch and Plapp45 was used to approximate the free energy. The 
model parameters were chosen so that the interface thickness is dSL = 1.76 nm, whereas the solid-liquid 
interfacial free energy is γSL = 0.3623 J/m2. On the right: The ratio of the barrier heights for the heterogeneous 
and homogeneous nuclei (termed as catalytic potency factor) is shown for the classical spherical cap 
model (black) and for the phase-field theory (red). The agreement between CNT and the phase-field results 
follows from the large size of nuclei (R » dSL), where R the radius of curvature for the spherical cap.
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sub-nanometer resolution is required for this 
kind of simulations. It restricts the simulations 
to nanometer scale and very short times, in other 
words, to large undercoolings. Indeed, three 
dimensional simulations with sub-nanometer 
resolution are troublesome even for the largest 
supercomputers. To avoid this limitation for 
crystal growth for size scales that are much larger 
than the nuclei, a broad interface and large spatial 
steps have been adopted, while introducing 
appropriate choice for the interpolating 
functions and the ‘anti-trapping currents’, which 
remove the artifacts associated with the broad 
interfaces, including the overestimated solute 
trapping.67,68 Unfortunately, this cannot help 
nucleation, since normally the optimum size 
of the simulation cells for growth is orders of 
magnitude larger than the nuclei. To circumvent 
these practical problems, various techniques have 
been adopted. A possibility is to place randomly 
supercritical (larger than critical) clusters into 
the simulation window so that they realize the 
required nucleation rate. Details of this approach 
is described in Ref. 69.

2.5.1 Accelerating noise induced nucleation: 
One may compute the nucleus and the  
nucleation rate by solving the Euler-Lagrange 
equation.50 The nuclei can be placed spatially 
randomly in the simulation window with the 
appropriate statistics to realize required nucleation 
rate. The rest happens automatically: adding 
noise to the equation of motion a fraction of the  
nuclei decay, while the others grow as decided  
by the interplay of the local phase-field 
fluctuations.

2.5.2 Quantitative phase-field simulations: 
One of the major problems of phase-field 
modeling is that a sub-nanometer resolution is 
needed in the interface, whereas micrometers 
or even mm size objects need to be described 
in three dimensions, while the time scale of 
the processes to be addressed might be in 
the minute/hour range. Unfortunately, the 
respective numerical problem cannot be 
solved even with the largest supercomputers: 
Taking equidistant Angstrom scale resolution 
in only a 1 µm3 volume yields 1012 grid points. 
Advanced numerical methods such as adaptive 
mesh, can reduce the required computational 
resources significantly,70 yet noise induced 
nucleation (requiring sub-nanometer resolution 
throughout the liquid domain) and micrometer 
scale dendrites cannot be realized in the same 
simulation. In the case of crystal growth Karma 
and coworkers worked out an efficient practical 
solution:67,68 one may use an enhanced interface 
thickness, and thus, large spatial and time 
steps in the computations and correct for the 
consequences, so that the solution of the sharp 
interface problem is recovered accurately. Such 
quantitative phase-field simulations reproduced 
the behavior of thermal dendrites in pure Ni.71 
The spatial steps may be typically of the order 
of a tenth of a micrometer. Normally, the nuclei 
cannot be resolved on this scale. To incorporate 
nucleation into such quantitative phase-field 
simulation, one needs to compute first the 
nucleation rate consistently with the free energy 
functional [using the nucleation barrier from 
solving the Euler-Lagrange equation(s)50 and 
the classical pre-exponential factor], then insert 
small crystal seeds of supercritical size (that are 
able to grow) randomly in space and time with 
the corresponding frequency.

2.5.3 Free growth limited model: This 
mechanism (see Section 1.2) can also be 
implemented similarly for sub-∆x particles: assign 

Figure 6: Free growth limited mode of particle 
induced crystallization as predicted by the phase-
field theory for pure Ni.60 The foreign particles were 
assumed to have a cylindrical shape of diameter 
d = 20 nm, whereas the contact angles on the 
horizontal and vertical surfaces were of 45º and 
175º. Upper row: ∆T = 26 K < ∆Tc. Central row: ∆T 
= 27 K > ∆Tc. Time elapses from left to right. Bottom 
row: ∆Tc vs particle diameter d. Original theory — 
solid line; phase-field simulation — dashed line. 
The reduced ∆Tc observed in the simulations 
is due to the thermal fluctuations considered. 
(Reprinted with permission from L. Gránásy et al., 
Phys. Rev. Lett. 98, Art. no. 035703 (2007) © 
2007 American Physical Society).
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particles of given size distribution randomly to 
the pixels/voxels of the simulation, compute the 
respective critical undercoolings considering the 
local temperature and composition, and compare 
it with the actual undercooling. Once the latter 
becomes larger than the critical undercooling for 
the given particle, flip the phase-field from 0 to 1. 
As ∆x is usually much larger than the critical 
size, this will initiate growth. Results from such a 
procedure are shown in Fig. 7.72 Kim’s model46 was 
used for an Al-Ti alloy. The thermodynamic data 
were taken from a refined assessment performed 
during the IMPRESS project.72 The material was 
made to move with a constant velocity v

x
 = –V

0
 

from right to left in the simulation window, while 
a constant temperature gradient Q was prescribed 
along the horizontal axis. Periodic boundary 
condition was applied along the horizontal 
boundaries, whereas liquid of fixed temperature 
and composition entered the box on the right, and 
the matter of the actual composition distribution 
left the box on the left side. In quantitative 
agreement with Hunt’ theory, nucleation 
controlled equiaxed morphology appeared in the 
upper eight panels of Fig. 7, whereas columnar 
dendritic morphology formed in the lower eight 
panels.

A more detailed strategy for modeling the 
free growth limited mechanism is also possible 
that considers growth from the size of the foreign 
particle to the size of the pixel/voxel and the 
respective heat release.73–76

2.5.4 Modeling growth front nucleation: 
Complex polycrystalline solidification 
morphologies, such as spherulites, crystal  
sheaves, and axialites, form via a process termed 
Growth Front Nucleation (GFN): i.e., by the 
appearance of new grains at the propagating 
solidification front.77 Essential features of this 
phenomenon has been captured by phase-

Figure 7: Columnar to equiaxed transition in an Al-Ti alloy as predicted by the phase-field theory.72 (a) The 
maps of concentration and (b) the maps of crystallographic orientation are shown for 16 simulations: From 
left to right: the temperature gradient is Q = (5, 10, 20 and 40) × 104 K/m, respectively. From bottom to top: 
The pulling velocity is V0 = (4, 8, 16, and 32) × 10−4 m/s. A rectangular grid of size 1500 × 300 (corresponding 
to 0.75 mm × 0.15 mm) was used in the simulations (only half of the window is shown). At every instance 
about 200 nanoparticles were present in the simulation box, which had a Gaussian size distribution of 
average 20 nm, and standard deviation of 4 nm.

Figure 8: Orientation map from a phase-field 
model of spherulitic solidification relying on an 
orientation field.78,79 The formation of orientation 
defects at the solid-liquid interface is shown that 
initiate new grains. Different colors correspond 
to different crystallographic orientations. Sharp 
changes in color stand for grain boundaries 
(coherent dislocation lines), whereas the 
orientation defects can be interpreted as bundles 
of dislocations. The liquid domain is black.

Figure 9: Transition from needle crystal to 
spherulite while varying the supersaturation in 
phase-field modeling.80 The supersaturation 
increases from left to right and from top to bottom.
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field methods relying on orientation fields, 
which describe the local crystallographic 
orientation.47,78–80 In these models, the new 
grains form either by quenching orientational 
defects (interpreted as bundles of dislocations) 
into the crystal (see Fig. 8),78 or via branching in 
directions of low grain-boundary energies.79 The 
orientation field models became fairly successful 
in capturing complex polycrystalline growth 
structures (Fig. 9).47,78–80 Although these models 
have implications regarding the microscopic events 
taking place during GFN, direct information on 
such miscroscopic aspects is scarce, and further 
studies are warranted.

3  Phase-Field Crystal Modeling 
of Nucleation

The phase field models mentioned in the previous 
section can provide only a coarse grained view of 
the nuclei, and their role in determining the 
microstructure. However, the molecular scale 
structural aspects of crystal nucleation can be best 
investigated within microscopic approaches. For 
example, important pieces of information were 
obtained from molecular dynamics/Monte Carlo 
simulations.23,26,28,31–38,81,82 A complementary 
approach, which is able to address larger systems 
and longer times on the molecular scale is the 
Phase-Field Crystal (PFC) model.83–87 (For a recent 
review on the application of the PFC model to 
condensed-matter phase transitions see Ref. 88.) It 
is a simple dynamical density functional theory of 
classical particles, in which the local state of matter  
is characterized by a time averaged particle (singlet) 
density,Ψ(r, t). Recently, the PFC method was 
applied to model crystal nucleation89–94 and growth 
under various conditions.84–88 This approach 
automatically includes several competing crystalline 
phases (bcc, hcp, and fcc),89,95 besides the 
homogeneous liquid and the glass phases.94,95 
Recent versions of the PFC model are able to 
include other crystalline structures.86,87 In the early 
versions,83–96 the time evolution of the system is 
described by overdamped conservative (diffusive) 
dynamics, which is appropriate for modeling 
colloidal crystalline aggregation. Advantages of the 
PFC models are that they can address solidification 
and solid state transitions on a diffusive time 
scale,83–96 and are able to handle millions of particles 
relatively easily.88,89 To address the freezing of 
ordinary liquids, a hydrodynamic theory of 
solidification based on the PFC approach has been 
put forward.98 It is termed here the HPFC theory. 
Other approaches that combine PFC with fluid 
flow99,100 have not yet been used to address crystal 
nucleation.

Molecular dynamics: A 
computer simulation method 
that explores the motion of 
atoms or molecules while they 
interact with each other. For 
more see: Ref. 81. 

Monte Carlo simulations: 
A stochastic method for 
the evaluation of mainly 
equilibrium averages by 
efficient sampling of the 
configuration space of the 
system. For more see Ref. 82. 

Classical Density Functional 
Theory (CDFT): Statistical 
physical description of phase 
transitions relying on time 
averaged particle density in 
describing the local state of 
matter. For a review on the 
application of CDFT for 
crystallization see Ref. 41. 

Since the PFC studies addressing homogeneous 
and heterogeneous nucleation have been reviewed 
recently,94 we present only a few examples, in 
which the PFC model contributed to a better 
understanding of nucleation phenomena in 
undecooled/supersaturated liquids: In agreement 
with theoretical predictions,26,27 molecular scale 
simulations,31 and experiments on colloidal 
systems,28–30 simulations based on the PFC model 
indicate that crystal nucleation is a two-step 
process at large supersaturations/undercoolings: 
an amorphous precursor assists the formation of 
the crystalline phase.89,91,94 Utilizing the VΨ term in 
Eq. (8) for including crystalline substrates into the 
simulations, heterogeneous nucleation occurring 
on crystalline particles, and flat- and complex 
shaped walls were investigated.89,92 For example, 
it was found that the free growth limited mode 
of particle induced crystallization (described in 
Section 1.2) works well for nanoparticles.

Finally, earlier efforts relying on the PFC 
model with diffusive dynamics without adding 
fluctuations to the EOM have shown that the 
creation of new grains at a propagating front, a 
phenomenon known as Growth Front Nucleation, 
was only possible at supersaturations beyond the 
stability limit of the liquid phase. Unfortunately, 
in the presence of fluctuations this phenomenon 
could not be observed, as copious nucleation 
occurring in the unstable liquid suppresses growth 
front nucleation. In contrast, recent work relying 
on the HPFC theory indicates the formation of 
new grains at the solidification front inside the 
metastable liquid domain.

Before presenting the results, we briefly recall 
the essential features of these models.

3.1 Free energy functional101

In the PFC-type models, the local state is 
characterized by a time-averaged single-particle 
density, ρ. The dimensionless free energy of the 
system measured relative to a homogeneous 
reference fluid (of density ρ

L,ref
) is written in the 

following form

∆F d V= − + + ∇( )





+ +











∫ r

Ψ Ψ Ψ Ψ
2

1
4

2 2 4

ε .  (8)

Here, Ψ∝ (ρ−ρ
L,ref

)/ρ
L,ref

 is the scaled density, 
ε the reduced temperature that can be related to 
physical properties such as the bulk moduli of 
the fluid and the crystalline phases taken at the 
reference density and temperature. To represent 
foreign crystals, a periodic potential V is 
introduced. The free energy expression for V = 0 
was deduced84,102 from the early perturbative 



Frigyes Podmaniczky, Gyula I. Tóth, Tamás Pusztai and László Gránásy

Journal of the Indian Institute of Science  VOL 96:3  Jul.–Sep. 2016  journal.iisc.ernet.in170

density functional theory of crystallization 
proposed by Ramakrishnan and Yussouff.103

3.2 The Euler-Lagrange equation
Utilizing that the nuclei represent a saddle point of 
the free energy, the corresponding particle density 
distribution can be found by solving the Euler-
Lagrange Equation (ELE)88,89,91,92,94

δ
δ

δ
δ

∆ ∆F F

Ψ Ψ Ψ
=

0

.

s
 (9)

Here δ∆F/δΨ stands for the functional 
derivative of the free energy with respect to the 
scaled particle density, and Ψ0  is the reduced 
particle density of the reference liquid. At the 
borders of the simulation box periodic boundary 
condition is assumed. Inserting the free energy 
into Eq. (9) and rearranging the terms, one 
obtains

− + + ∇( )





−( ) = − −( )ε 1 2 2

0
3

0
3Ψ Ψ Ψ Ψ .  (10)

In other works,90,93 a simplified string method 
was employed to find the nucleation barrier.

3.3 The diffusive equation of motion
In the PFC model83,84 the time evolution of 
the particle density distribution follows a 
conserved overdamped dynamics. The respective 
dimensionless Equation Of Motion (EOM) reads 
as

∂
∂

= ∇⋅ ∇ ∇ +








Ψ
Ψt

F
.

δ
δ

ξ  (11)

Here, ξ is a colored Gaussian flux noise of 
correlator104 〈ξ

i
(r, t),ξ

j
(r’t’)〉 = −α2δ

 ij
∇2g(|r−r’|, σ) 

δ
 
(t−t’), where α is the strength of the noise, 

whereas g(|r −r’|, σ) is a high frequency cutoff 
function, which removes wavelengths that are 
smaller than the interatomic spacing (σ).

3.4  Hydrodynamic theory of 
solidification

Recently, several approaches have been put 
forward combining a molecular scale theory 
with hydrodynamics that rely on different levels 
of approximations.98–100 However, so far, only the 
HPFC model proposed by Tóth et al.98 has been 
applied to nucleation problems. In developing the 
HPFC model, our starting point was fluctuating 

Functional, Euler-Lagrange 
equation, functional 

derivative: For these notions see 
calculus of variations, a branch 

of mathematics that works 
with functionals (‘function 

of functions’), applied in 
a broad range of physical 

problems, optimization, etc. 
See e.g. Ref. 101.

Noise correlator: A function 
that characterizes the spatio-
temporal correlations of the 

noise added to the equation of 
motion. See more in Ref. 104.

nonlinear hydrodynamics as formulated in Ref. 
105. In this approach, the momentum transport 
and mass continuity equations are written in the 
following form

∂
∂

+ ∇⋅ ⊗( ) =∇⋅ ( ) + ( ) + 
p

v p R D v S
t

ρ  (12)

∂
∂

+ ∇⋅ =
ρ
t

p 0  (13)

Here p(r, t) is the momentum, ρ(r, t) the mass 
density, and v = p/ρ the velocity. As shown by 
Salmon106 the reversible stress tensor can take the 
form ∇⋅R = −ρ∇{δ∆F[ρ]/δρ} ≈ −ρ

0
∇{δ∆F[ρ]/δρ}, 

while ρ
0
 a reference density, and D = µ

S
{(∇⊗v) 

+ (∇⊗v)T} + [µ
B
−(2/3)µ

S
](∇⋅v)I the dissipative 

stress tensor, while S is a stochastic momentum 
noise of correlator

S t S t kTij kl S

ik jl jk il
B

S

r r, , ,( ) ( ) = ( ) ×

( ) + −






′ ′

−

2

2

3

µ

δ δ δ δ µ
µ

δδ δ

δ δ

ij kl

t t











−( ) − ′( )′r r .
s
 (14)

Here µ
S
 and µ

B
 are the shear and bulk 

viscosities.
Since the hydrodynamic equations refer 

to coarse grained quantities, we apply coarse-
grained momentum and density in computing 
the velocity: J v = ˆ /p ρ s in the convective and 
dissipative terms. (For details see Ref. 98.)

3.5 Numerical solutions
In recent works, the Euler-Lagrange equation 
was solved numerically in 2D and 3D, using 
semi-spectral successive approximation scheme 
combined with the operator-splitting method. An 
efficient method to find the saddle point of the 
free energy surface is the simplified string method 
described in Refs. 90 and 93. Other possible 
methods for finding the saddle point are reviewed 
in Ref. 107. The diffusive equation of motion and 
the hydrodynamic equations can be solved using 
semi-implicit spectral scheme based on operator 
splitting.108

3.6  Examples for modeling nucleation 
within the PFC and HPFC models

3.6.1 Two-step homogeneous nucleation: It 
has been found that crystal nucleation takes place 
in two steps in the PFC model: First an amorphous 
precursor forms, which assists the appearance of 
the crystalline (bcc) phase.88,89,91,94 Besides colloids, 
this phenomenon appears to be relevant for simple 
model systems such as the Lennard-Jones25 and 
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hard-sphere31 fluids, implying that the presence of 
an amorphous precursor might be a general 
feature of crystal nucleation in highly undercooled 
or supersaturated fluids. Herein, we review the 
structural aspects of this process as predicted by 
the PFC model. We characterize the local structure 
using the bond order parameters q

i
 and –q

i
 as 

introduced by Steinhardt et al.109 and Lechner and 
Dellago,110 respectively. Of them, q

i
 is evaluated 

using the molecule positions in the first neighbor 
shell around the particles, whereas in computing 
–q

i
 the q

i
 in the first neighbor shell are considered.

A two-step nucleation process was observed 
(Fig. 10), when quenching instantaneously a 
homogeneous liquid of reduced particle density 
ψ

0
 = −0.25 from above the liquidus line (ε = 0.1336) 

to a highly undercooled state, ε = 0.1667. The noise 
strength employed was α = 0.42. In the upper 
row of Fig. 10, the density peaks are indicated by 
molecule-size spheres that are colored red if they 
have a bcc-like neighborhood, whereas the rest 
of the molecules qualify amorphous, which are 
colored white. The liquid phase is not shown. The 
images showing solidification indicate that it starts 
by the formation of amorphous clusters, whereas 
the bcc structure appears later. The associated 
structural changes are displayed in the second row 
of Fig. 10, where the respective q4  vs. J q6  bond 
order parameter maps are shown together with the 
points representing the ideal icosahedral, bcc, fcc, 
and hcp neighborhoods. The first appearing solid 
structure is an amorphous precursor represented 
by the blue halo appearing in the lower left corner. 
Its intensity (the amount of the amorphous 
neighborhoods) first increases with time, but 
reduces later as bcc crystallization takes over. 

Bond order parameters: They 
characterize the local structure 
around a given particle k. 
Steinhardt et al.109 introduced 
the rotationally invariant bond 
order parameters

q qlm
k

m l

l

l

k

l
=

=−
∑

+{ }4

2 1

2
1 2

π
/

.

Here

q n Ylm kj
j

nb
k

lm
k

b
k=

=
∑1

1
/ ( ),r

while Y
lm

 (r
kj
) are the spherical 

harmonic functions of degree 
l, and order m, and n

b
k is the 

number of the bonds of particle 
k. More recently, Lechner and 
Dellago110 introduced a coarse-
grained/average bond order 
parameter that is extended to 
the second neighbors:

q
l

k

l
qlm

k

m l

l
=

+ =−
∑{ }4

2 1

2
1 2

π
/

,

and

qlm
k

Nb
k

qlm
j

j

Nb
k

=
=
∑1

0
/ .

Here, the sum for j runs for 
all neighbors N

b
k of particle 

k including the particle itself. 
Thus, in computing the 
average ql

m
 for particle k, one 

uses the local orientational 
order vectors averaged over 
particle k and its surroundings. 
While ql

k
 relies on structural 

information from the first 
shell around particle k, in its 
averaged version ql

k
 structural 

information from the second 
shell is also taken into account. 
The spatial averaging has a 
tremendous significance in 
detecting local ordering with 
high sensitivity: Separation 
of the crystal structures is 
far more pronounced when 
using the average bond order 
parameters.

Apparently, remnants of the amorphous structure 
stay at the grain boundaries even for rather long 
times. A comparison of the q6  vs. q4  bond-order 
parameter maps indicate that the structure of the 
amorphous precursor is similar to that of the bulk 
liquid observed in the Lennard-Jones system (see 
Fig. 11).

3.6.2 Heterogeneous nucleation on flat walls 
and particles: Utilizing the periodic potential 
term in Eq. 8, crystallization on various substrate 
geometries has been investigated in 2D and 3D. 
In the case of flat substrates of square lattice 
of varying lattice constant indicated that the 
contact angle and the nucleation barrier are non-
monotonic functions of the lattice mismatch 
(Fig. 12).92 It was also shown that the free growth 

Figure 10: Two-step nucleation as predicted by the PFC model at ε = 0.1684 and ψ0 = −0.25. Snapshots 
taken at dimensionless times t = 20, 40, 60, 80, and 200, respectively are shown. Upper row: The density 
peaks are denoted by spheres colored to show the neighborhood: red (bbc-like neighborhood) −q4 ∈ 
[0.02, 0.07] and q6 ∈ [0.48, 0.52]; white (amorphous)—the remaining particles. The liquid phase is made 
transparent. Bottom row: –q4 vs. –q6 bond-order parameter maps, as defined by Lechner and Dellago.110 
These bond order parameters consider the first and second neighbors. The circles colored yellow, black, 
green, and red indicate the ideal icosahedral, bcc, hcp, and fcc structures, respectively.) These results 
imply that nucleation of amorphous domains initiate crystalline freezing.

Figure 11: Comparison of the q4  vs. q6  bond-
order parameter maps obtained (a) from molecular 
dynamics simulations for the liquid phase in the 
Lennard-Jones system (reproduced with permission 
from Ref. 110 © American Institute of Physics) and 
(b) for the solidifying PFC system (central panels of 
Fig. 1). Note the points for the ideal crystal structures 
in panel (b) fall higher than the ones obtained with 
thermal fluctuations in panel (a). Apparently, the 
structure of the amorphous precursor observed in 
the PFC model is close to the structure of the bulk 
liquid in the Lennard-Jones system.



Frigyes Podmaniczky, Gyula I. Tóth, Tamás Pusztai and László Gránásy

Journal of the Indian Institute of Science  VOL 96:3  Jul.–Sep. 2016  journal.iisc.ernet.in172

limited model of particle induced nucleation is 
qualitatively valid for non-faceted crystals, small 
undercoolings, and large substrates. It was found, 
however, that the stable shape at the critical 
undercooling depends on the size of the foreign 
particle: in the case of a cubic substrate of simple 
cubic crystal structure it was found that for small 
nanoparticles (e.g., L = 16a, where a is the lattice 
constant of the bcc structure) pyramids form on 
the faces of the cube. For twice of this linear size, 
spherical caps evolve on the cube faces, whereas 
for larger sizes the shape computed using a surface 
solver17 applies (Fig. 13).

3.6.3 Modeling growth front nucleation: 
Here, we review recent results concerning the 
formation of new grains at the solid-liquid 
interface within the framework of molecular 
scale approaches such as the PFC and HPFC 

models.The first attempts to model GFN on the 
nanoscale were made using the original PFC 
model. Omitting noise, while working beyond the 
linear stability limit of the homogeneous liquid 
[ψ > ψ

c
 = − (ε/3)1/2], single crystal seeds evolved 

into symmetric polycrystalline structures 
(Fig. 14). Beyond the stability limit, the solid-
liquid interface becomes broader: the growing 
crystal is surrounded by concentric density 
waves, which initiate crystallization accordingly. 
In six directions these waves assist the growth of 
the original crystallographic orientation. In other 
directions, however, a large number of defects 
form and new orientations appear that fit locally  
to the density waves (Fig. 14). Although this 
might be viewed as an elementary process 
for GFN, in this regime the liquid is unstable: 
adding noise to the EOM, these phenomena are 
suppressed by copious crystallization taking 
place in the unstable liquid domain. Inside the 
metastable liquid domain, we were unable to 
find GFN.

In contrast, in the case of the HPFC model, we 
were able to grow polycrystalline domains from a 

Figure 12: Heterogeneous crystal nucleation on a 
flat wall in 2D from solving ELE for a square lattice 
substrate.92 (a),(b) Typical non faceted nuclei 
occurring at small reduced temperatures. The 
lattice mismatch for the two panels are as/σ = 1.49 
and 2.0, respectively. Here as is the lattice constant 
of the substrate, whereas σ is the lattice constant 
of the nucleating crystal. (c) Contact angle versus 
the lattice mismatch. (d),(e) Faceted nuclei 
obtained far from the critical point, at as/σ = √3 
and 1.0. (f) Free energy of formation of faceted 
nuclei normalized by the value for homogeneous 
nucleation, W*hom.

Figure 13: Size dependence of the stable crystal 
shape that precedes free growth on square-
shaped square-lattice substrates. From left to 
right: Ls = 16σ, Ls = 32σ, and theoretical shape for 
infinite size.17

Figure 14: Formation of defects and new 
crystallographic orientations beyond the linear 
stability limit of the liquid in the original PFC model. 
Here noise was omitted (α = 0), the average density 
and the reduced temperature were ψ0 = −0.45 and 
ε = 0.75, respectively, whereas the stability limit 
was ψc = −0.57.
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single-crystal seed as shown in Fig. 15. (Materials 
properties given in Ref. 98 were used.)Other 
conditions applied were: reduced temperature 
ε = −0.0923 and initial density ψ

0
 = ψ

c
− 0.11∆, 

where ∆ = ψ
c
−ψ

L
 = 0.0028, whereas the densities 

corresponding to the liquidus and the stability 
limit were ψ

L
 = − 0.1982 and ψ

c
 = − 0.1754, 

respectively. The dynamic equations were solved 
on a 40962 rectangular grid, while prescribing 
periodic boundary conditions on all sides. A 
complex order parameter g

6
 = ∑

j
exp{6iθ

j
} was 

used for the structural analysis. The summation 
went for the nearest neighbors; here θ

j
 stands 

for the angle of the vector pointing to the jth 
neighbor in the laboratory frame. The magnitude 
of g

6
 represents the degree of crystalline order 

in the neighborhood of the molecule, whereas 
the phase indicates the local crystallographic 
orientation. Orientation maps are shown in 
the upper row of Fig. 13. Voronoi analysis of 
the crystal was also performed (se bottom row 
in Fig. 13). The following coloring scheme was 
employed: Voronoi cells for particles with 4, 
5, 6, and 7 neighbors were painted grey, blue, 
yellow, and red, respectively. The simulation 
was performed in the presence of noise in the 
metastable liquid domain. It was found that 
the crystal seed grows first as a single crystal, 
but gradually new orientations appear via two 
distinct mechanisms of GFN: (1) Dislocations 
enter the hexagonal crystal along its perimeter. 
These are probably misfit dislocations, however, 
further work is needed to prove this. (2) Small 
crystallites nucleate in the neighborhood of the 
solid-liquid interface, which emerge from the 
interference of differently oriented density waves 

emanating from the solid-liquid interface. Work 
is underway to quantify these phenomena.

A possible explanation for the failure of the 
PFC model in producing GFN is that, in this 
case, a fast growth mode is present, characterized 
by a wide solid-liquid interface, in which 
healing of the dislocations can be relatively easy, 
avoiding, thus, the formation of dislocations at 
the perimeter of the growing crystal, thereby 
preventing GFN.

4 Summary
We have presented a limited review that 
concentrates on different aspects of phase-field 
modeling of homogeneous and heterogeneous 
crystal nucleation. It covers the following main 
areas:

i. coarse grained phase-field models:
 – homogeneous nucleation
 –  heterogeneous nucleation with given contact 

angle
 – particle induced solidification
 –  nucleation in large scale phase-field 

simulation
 – nucleation vs. microstructures
 – growth front nucleation
ii. molecular scale phase-field models:
 – amorphous precursor assisted nucleation
 – nucleation on a flat substrate
 – particle induced solidification
 – growth front nucleation

While this paper is, by no means, a full 
review of the area, it provides a fairly broad 
view of the results, possibilities, and the 

Figure 15: Polycrystalline growth from a single-crystal seed in a metastable liquid in the presence 
of momentum noise as predicted by the HPFC model. The dynamic equation were solved on a 40962 
rectangular grid assuming periodic boundary condition at the borders of the simulation box. Snapshots 
taken at dimensionless times t = 2000, 2500, 3000, 3500, 4000, and 4500 are shown. The orientation maps 
are shown in the upper row. (Here different colors correspond to different orientations.) Results of the Voronoi 
polyhedral analysis are displayed in the bottom row: the polyhedra are colored blue, yellow, or red, if the 
number of nearest neighbors is 5, 6, or 7, respectively. Note the dislocations/grain boundaries built of blue-
red pairs. Two types of GFN can be recognized: (i) the formation of dislocations at the corners and at the 
center of edges of the initially hexagonal crystal, and (ii) nucleation of differently oriented crystallites near 
the solid-liquid interface (emerging from the interference of the density waves at the interfaces).
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techniques involved. It is expected to be useful 
for researchers working in various branches of 
natural sciences where crystal nucleation plays 
an important role.
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