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Abstract

The three-dumensional problem of drop breakage in stirred vessels can be successfully reduced to a single-
dimensional framework using Voigt clement, retaining the essential features of the breakage process
Recent models successfully employ it to predict the maximum stable drop diameter, d,..., for net only
rheologically complex dispersed phases, but also when surfactants or drag-reducing agents are present in
the continuous phase

The effect of the dispersed phase hold up on d,., shows trends contrary to expectation This can be
explamed only by invoking two new mechamsms of drop breakage, each giving its own dy.e The observed
d oy therefore is the minimum of the three d,,, values given by the three mechanisms.

A multistaged model, developed recently, explains the reducing influence of the dispersed phase viscos-
ity, pg, at high py values It also explains how the mterfacial tension continues to nfluence d.. under
these extreme conditions.

A new model for breakage frequency based on unequal breakage and eddy size distribution existing in the
vessel 1s able to predict not only the breakage frequency, but also the daughter droplet size distnibution.
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1. Introduction

Stirred vessels find extensive use in chermical industry, particularly in the manufacture
of high-value, low-volume fine chemicals. They permit continuous or batch operation
and can handle single or multiple phases. Though extensively employed, the quantita-
tive understanding of their performance is at a rudimentary stage even for the simple
case of their handling homogeneous reactions. The normal assumption made while
analysing single phases is that the mixing in the vessel is instantaneous and hence
the parameters of interest like temperature and concentration of the species are
uniform in the vessel. This approach-is quite satisfactory whi'~ analysing slow chem-
ical reactions. However, as the reactions become very fast, this approach fails and
large deviations from its predictions are observed experimentally. Bourne ef al', while
trying to demonstrate segregation in stirred vessels, used the following scheme of
reactions:
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A + B — R (fast reaction)
R + B — § (slow reaction)

where A is l-napthol, B sulphanilic acid, R, 4-(4'-suiphopheny! azo)-1-napthol
(monoazodye), and S, 2,4-bis(4'-sulphopheny! azo)-1-naphthol (bis azo dye).

The reaction velocity constant for reaction between A and B is 150 times higher
than that between R and B. As B is added to A and it mixes instantaneously, most
of the B will immediately react to form R and hence the amount of § formed would
be very small. This could be calculated in a straightforward way through the well-
mixed idealisation. However, a comparison between the observed concentrations of
§ with the calculated values showed that the observed concéntrations were orders of
magnitude higher than the calculated ones. When B is added to stirred vessel, already
containing A, the turbulence in the vessel breaks the lumps of B into smaller and
smaller lamps, and eventually B has to diffuse and react with A in the bulk. The
breakage of B into tiny fragments increases enormously the area available for diffu-
sion, but the final mixing occurs through molecular diffusion. It is only when the
characteristic time for diffusion is much lower than the characteristic time for reac-
tion, the well-mixed assumption can hold good. For fast reactions, the two become
either of the same order of magnitude or the characteristic reaction time becomes
much lower than the diffusion time. Under this condition the vessel contents have to
be assumed to be segregated and an analysis based on diffusion-reaction concept has
to be employed. A number of such models*™ are available in literature which try to
incorporate these concepts, and simultaneously bring out the complex nature of the
stirred vessel even for apparently simple homogencous systems.

When another immiscible phase is introduced in a stirred vessel already containing
a liquid, as in the case of a mixer-settler, the situation becomes much more complex.
The new phase has to break up and form the dispersed-phase droplets, which provide
the interfacial area across which the mass and heat transfer occur. Further, the drops
continuously coalesce with each other and break again. The mixing of the dispersed
phase is entirely decided by the processes of coalescence and re-dispersion, even
though the continuous phase could be assumed to be well mixed. It is necessary to
be able to predict the drop sizes as well as the coalescence and breakage phenomena
to be able to quantitatively explain the performance of such a stirred vessel contactor.
There are two approaches available to make such predictions. The conventional ap-
proach assumes that all the drops in the vessel are identical in size, temperature and
concentration and each has the same transfer coefficient. Thus, the processes of
breakage and coalescence are lumped together in defining average quantities. The
average drop diameter, called the ‘Sauter mean diameter’, is defined in a fashion
that the total interfacial area in the vessel is conserved. The area per unit volume of
the dispersion is related to the ‘Sauter mean diameter’, dy, by the expression:
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The ds; can be calculated rigorously, only if the complete drop-size distribution is
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known, which in turn involves the detailed knowledge of the breakage and coales-
cence rates. It has no simple theoretical basis. However, a large body of experimental
data shows that the largest stable drop diameter, dy,,, is 1-5 to 1-6 times the value
of dy. AS dpge has a simple theoretical basis, attempts have been made by many
investigators to develop models for predicting d,... and then obtaining ds, from it by
using the empirical factor cbtained from experiments. Though successful, in many
situations, the use of di, can lead to serious deviations from reality. Schumpe and
Deckwer’ have shown that averaging can lead to predictions which differ significantly
from experimental observations. Under these conditions it is necessary to predict the
drop size distribution by taking the coalescence and breakage phenomena into ac-
count through the framework of population balance equations®. These equations make
a number balance for particles of size between v and v + dv, by considering that
these numbers can change through various birth and death processes. For a stirred
vessel, the number balance equation is:
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The above equation is in terms of number density, but when multiplied by dv,
each term corresponds to the actual number of drops of size between v and v + dv,
being formed or removed. Term I corresponds to the rate of formation of these
drops by breakage of larger drops whereas the second term gives the death rate of
these drops due to breakage. Term III represents the formation due to coalescence
of drops of size (v — v') with those of size v’ whereas Term IV stands for their
removal due to their coalescence with the other drops. Terms V and VI signify the
input and escape rates, respectively. For batch-stirred vessels, these two terms vanish.
Equation (2) cannot be solved as it stands. It is necessary to have expressions for
the breakage frequency, I'(v), the daughter droplet distribution, B(v, v'), when a
drop breaks, the number of drops formed y(v") when a drop of size v’ breaks and
the coalescence frequency. These expressions meed to be incorporated in eqn (2)
before it can be solved. Even for predicting I'(v) and B(v, v'), it is necessary to be
able to predict d.,, as that is the size at which breakage frequency would become
zero and it would not yield any daughter droplets. Though coalescence is important,
the present work is concerned mainly with breakage both for prediction of ., and
for developing expressions for breakage frequency and daughter-droplet distribution.
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Fic. 1 A surred vessel with Rushton impeller.

2. Measurement and prediction of the maximum stable drop diameter, d,.,.
2.1. Measurement of dynax

A typical stirred vessel with a Rushton impeller is shown in Fig. 1. Though the
mechanism of drop breakage will not change with the nature of impeller, the numer-
ical values of the constants associated with turbulence will vary. Hence the work
discussed in the present paper is directly applicable to Rushton impellers whereas the
concepts are applicable to other impellers also. In order to experimentally determine
the d. value, the continuous phase is taken in the stirred vessel and the stirrer
speed adjusted to the desired rps value. The dispersed phase in the desired volume
fraction is then added and the stitrer permitted to run at the desired speed. Samples
of dispersed phase drops are scanned from the zome just outside the impeller and
Ao value is obtained. When d,,,, does not change as a function of time, that value
is taken to be the correct d,,, value. To be sure of the measurement, many inves-
tigators measure ds, values from the same region simultaneously and check if the
ratio of d,,, to ds, falls in the empirically obtained ratio of 1-5 to 1-6. For dispersed
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phases of hugh viscosity, this ratio is known not to hold. However, the simultaneous
measurement of both dy.., and dj, does help in ensuring that d,,,, is in the right range.

2.2. Prediction Of dpe for inviscid dispersed phases

The existence of dp, is based on the concept that drops deform and break due to
the action of turbulence velocity fluctuations across them which are also referred to
as drop-eddy mteractions, When a drop is interacted by a much larger eddy, it is
simply convected without resulting in breakage. When, however, an eddy of the
same size as the drop diameter interacts with it (pressure fluctuation across the diame-
ter of the drop), it imposes an inertial stress on the drop causing a deformation. As
the drops deform, the interfacial stress, also called elastic stress, comes into play
which tends to restore the drop to its original shape. The inertial stress increases as
the drop size increases, whereas the interfacial tension stress mcreases as the drop
size decreases. Thus, for a very large drop, the inertial stress is very high whercas
the interfacial tension stress is low This results in drop breakage. As the drop be-
comes smaller, the inertial stress decreases whereas the interfacial tension stress in-
creases. Thus, a drop size is finally reached, where the inertial stress is just unable
to fragment the drop, giving rise to the largest possible drop which is stable. The
actual drop has a flow field around it and this three-dimensional flow causes both
the flow inside the drop and its deformation. However, at the present stage of under-
standing of the phenomenon, it is not possible to analytically analyse this complex
situation in detail and predict the sizes of the fragments. Instead, first-generation
models are developed which capture the gross features of breakage phenomenon but
bypass the detailed flow fields both outside and inside the drop. Kolmogorov’ and
Hinze® were the earliest investigators to employ this concept for the prediction of
dmar- They considered that for a drop to break, the critical ratio between the kinetic

energy of the eddy, pu’(d)d®, and the surface energy of the drop od?, must exceed
a critical value. Data on turbulence characteristics in a stirred vessel using Rushton
impeller show that approximately 60% of the energy imparted by the impeller to the
liquid is dissipated in the vicinity of the impeller. The volume of this region is only
about 10% of the total volume of the total liquid. Thus, the region near the impeller
where the breakage phenomenon is predominant is a zone of high-turbulence inten-
sity. Data further show that the energy spectra here show a —5/3 slope in the higher
frequency range, leading to the conclusion that the turbulence can be considered
homogeneous and isotropic. This facilitates the application of the energy cascade
theory to estimate the energy contained in the eddies in the inertial range, which is
of relevance to drop breakage. Under these conditions the mean square velocity
fluctuations can be expressed as:

¥ (d) a € d*°. (©)]
For stirred vessels, e can be expressed in terms of stirrer and operating parameters as:

€ a N° D2 )
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Substitution of eqns (3) and (4) in Hinze’s criterion leads to:

G
% = constant We ™6 - )
D

Sprow’ has found the constant to vary between 0-126 and 0-15, whereas Lagisetty et
al®® found it to be 0-125. A number of investigators have employed eqn (5) or some
variation of it to explain their data. Coulaloglou and Tavlarides™ have discussed most
of the correlations, based on eqn (5) available in literature.

2.3. Prediction of dyg for viscous and non-Newtonian dispersed phases

Equation (5) can be employed when the viscosity of the dispersed phase is very low,
as it does not involve any term containing the dispersed-phase viscosity. Experimen-
tally, however, the dispersed-phase viscosity has been found to have significant effect
on dye®>Y. All these authors find that d,,, increases with increase in dispersed-
phase viscosity. When a viscous drop is acted upon by an eddy, its deformation is
retarded not only by the shape-restoring interfacial stress but aiso by the flow-retard-
ing viscous stress. In the single-dimension framework, Arai et al'? tried to account
for these by considering the breakage process to be represented by a Voigt element.
Because of a series of assumptions made by them regarding the nature of the spring
and the periodic nature of turbulent fluctuations, they could not explain their data
with the model and used a semi-empirical expression. The model does not yield the
low-viscosity limit and cannot be employed for rheologically more complex fluids.

Lagisetty et al'’, while pointing out the various deficiencies in the model of Arai
et al*, considered the basic framework provided by Voigt element to be reasonable.
They, therefore, developed a model based on it. The Voigt element consisting of 2
spring and dashpot assembly is shown in Fig. 2. Unlike the earlier model, they con-
sidered that the breakage would occur within the life time of an eddy, during which
the inertial stress on the drops remains uniform. They further assumed that the inter-
facial tension stress passes through a maximum. This assumption was based on the
findings of Rallison’® who reported that near the breakage point the interfacial ten-
sicn aids rather than retarding the drop breakage. Thus, they assumed a nonlinear

I

spring 76(1 — 0) as one component of the Voigt element. This clearly gave a

physical description of the breakage process, as a drop having a deformation of unity

would not be able to retract and hence could be considered broken. They took a
. . do\"

general theological expression ('ro +K (—dT) ) for the dashpot. It is seen from

Fig.. 2 that the applied turbulent stress v, must be equal to the sum of the two
resisting stresses. Further, in a Voigt element, the deformation of the spring and the
dashpot at any time are equal. Thus,

o de\"
T,=—2-0(1—9)+10+K(E?-> . (6)
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7, is proportional to p. uXd). Use of eqns (3) and (4) in this expression yields
0= C pN? D¥? @2 . o)
Thus,
o do \"
C ooV D — my = Tt - 0) + k(D). ®
d dt
Equation (8) describes the deformation dynamics of the drop and can be solved
with the initial condition of zero deformation. The value of d,,, is then computed

so that the time required for deformation to reach unity is equal to the life time of
the eddy. Equation (8) can be expressed in the dimensionless form:

cw <d )5’3 P ('rod) <de>” 0
el —) — (8 — =
D T dn (

d Un

where m is the dimensionless time given by ¢/ (K—) . The initial condition in
I

dimensionless form becomes:

6=0atmn=0.

From the solution of eqn (9), m required to reach 0 = 1 is computed, and compared
with the dimensionless life time of the eddy. d,., is obtained when

T
T](e = 1) = —Ka'—”"— ‘ (10)
max
=)
The expression for Tis
_ 1 d 213
=55 - (D

Equation (9) has been solved by Lagisetty et al'’ for various values of n. The value
of C found by them from their experimental data works out to be 8 giving the
proportionality constant of 0-125 which is quite close to the value reported by Sprow’.
No extra coefficient is employed in their model while taking the rheology of the drop
phase into account. The solution of eqn (9) obtained by them for Newtonian liquids
is:

dm -13 ~

) = [/(de = DY tan™? [1/(4a — 1)1 (12)

ax
D

(Re/We) (
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where o is equal to 8We(d,,../D)™. The model correctly yields eqn (5) as the limiting
case for inviscid dispersed phases.

Lagisetty et al'® have tested this model for Newtonian liquids of different viscosities,
Bingham plastics as well as dispersed phases following power law rheology and found
1t to be satisfactory. Figure 3 presents a comparison of their model for Newtonian
liquids, with the data of Arai et al®. The points in the figure are experimental
whereas the lines are based on the model. The agreement in this range of viscosities
is excellent.

The basic framework has been successfully extended to predict d,.,, values when
the dispersed phase is mildly viscoelastic'”, or when surfactants™® or drag-reducing
agents™ are present in the continuous phase. However, the model could not predict
the behaviour of highly viscoelastic dispersed phases which tend to form globules and
strands rotating around the impeller without breakage.

The condition of breakage (6 = 1, during the life time of the eddy) is somewhat
arbitrary. The shear flow assumed inside the drop during deformation is also open
to criticism. Gandhi and Kumar® have developed an elongational flow framework in
which the drop elongates into a cylindrical jet on the application of the turbulent
stress. They applied the breakage condition based on the jet-stability analysis. The
maximum stable drop sizes predicted by them are the same as those predicted by the
model of Lagisetty et al’’. Hence, at present, it is not possible to comment conclu-
sively on the relative merits of the two models, even though the elongational flow
model uses more realistic condition for drop breakage.

3. Alternative mechanisms of drep breakage

One of the tacit assurnptions made in the development of the models discussed above
is that the presence of dispersed phase does not influence the turbulence characteris-
tics existing in the vessel. Hence, the dispersed-phase hold up in the vessel does not
appear in the expressions described above. To keep the influence of the presence of
the dispersed phase on the turbulence characteristics in the vessel as small as possible,
most of the breakage experiments reported in literature employed very low hold-up
(< 0-05) values. However, such investigations, though highly useful from the point
of view of understanding the phenomenon, cannot be directly employed in mdustry
where high hold-up values are employed.

Thus attempts have been made by various investigators to predict d,,, 2s a function
of the dispersed-phase hold up, ¢. It has been experimentaily observed that dpg
increases with an increase in ¢. This is based on experiments conducted by raising
& up to a value of about 0-3. Empirical modifications of eqn (5) have been normally
employed The general form of the expression which has been used by many inves-
tigators®!

dm/D =C (1+ G ¢) We™S, (13)
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Lagisetty et al'® incorporated the effect of ¢ by using the correlation of Lats and
Frishman?' for dampening of turbulent intensity by the presence of another phase in
turbulent jets.

ufd) = (1 + 4¢)™ w*(d) - (14)
By incorporating the expression for u$(d) inte their model, they obtained the follow-
ing expression for d,,, for inviscid dispersed phases:

(da/ D) = 0:125 (1 + 40)12 We ™" - )

It is seen from this expression that d,,, increases monotonically with ¢, Kumar
et al” conducted experiments covering a higher range of &, Their results on d,,, for
toluene in water system are presented in Fig. 4. They used sodium dodecyl sulphate
(0-3 wt%) in the continuous phase to suppress coalescence and make the phenome-
non predominantly controlled by breakage. Along with the data points a line corres-
ponding to the predictions made through the model of Lagisetty er /' is also drawn
in the figure. It is seen that the existing model is able to explain the data up to a
& of about 0-4 very satisfactorily. However, at higher ¢ values, the model not only
fails to predict the data, but also the qualitative trends. Beyond a ¢ of approximately
0-4, the model continues to predict increasing d,.. values, whereas the experiments
show that the d,,,, decreases with ¢. A passing reference to the decrease of drop sizes
with ¢ had also been made by Grosso ef a/® who did not pursue the finding further.

As this unexpected behaviour cannot be explained by the existing concepts of drop
breakage through turbulent stresses, Kumar ef a/*? proposed two hitherto unidentified
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mechanisms which could also be responsible for drop breakage. These make use of
the flow on the impeller itself. They propesed that the fluid accelerates along the
impeller blade from its middie to the edge. At the middie of the blade it shows a
stagnation point. Thus, there is a zone at the impeller where the flow is predomin-
antly elongational. Similarly, at the impeller itself, there is a boundary layer where
the flow is essentially shear. The drop could also break either under elongational or
shear flow conditions, apart from the usually recognised breakage through the action
of turbulent stresses. As the actual flow is highly complex, they idealised it by assum-
ing two zones near the impeller having plane hyperbolic and plane shear flow, respec-
tively. Drop breakage under these idealised flow conditions had already been studied
by a number of investigators. As a result, they could test their hypothesis with the
existing expressions available in literature.

For drop breakage in plane hyperbolic flow, they used the findings of Taylor® who
found that the drop under this flow would break if the capillary number exceeded a
critical value. Thus,

G, (dmax) Pee =Ca, (16)
2¢

The critical capillary number is a function of the viscosity ratio of the continuous
and dispersed phases. As the continuous phase is an emulsion, they assumed that the
drop senses the emulsion as the continuous phase and used its viscosity. The elongational
strain rate G, is not directly available. Hence, they made approximations about it by
assuming the area occupied by flow to be half the area available between two adjacent
blades, and flow rate being available from the expressions available for pumping rates
given by a Rushton impeller. They thus obtained the following expression for G.:

G, = 5064 N - an

Substitution of eqn (17) in (16), and rearrangement yields the expression for
(drax)e, the maximum drop size obtainable through elongational mechanism:

Cao

e = e+
() 2532 N pe

(18)

They Afound that the residence time available in this zone is larger than the deforma-
tion time scale in their experiments by 50 to 450 times.

_At the impeller blade itself, there is a boundary layer, in which they assumed
simple shear flow. Here again, a critical capillary number has to be exceeded for
drop breakage to occur. Thus:

G )shte

2¢ = car 9
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Evaluating G, as (U/8), they obtained the final expression as:

02

Ca; o 1
(dmax)s = 11372 NLZP«E‘R Lz P ° (20)

The Ca, is a function of the ratio of the continuous and dispersed-phase viscosities.
This mechanism could be operational only if the boundary-layer thickness is much
higher than the drop diameter. This condition was found to be satisfied in their work.

Thus the work of Kumar et al”? shows that three d,,,, values are possible in the
vessel. They result from the turbulent stresses, elongational flow and shear flow. The
measured d,,,, value would correspond to the minimum of these three. Actual calcu-
lations showed that at low-dispersed-phase hold-up values, the turbulent mechanism
gave the lowest values. As & is increased, the turbulent mechanism yields increased
drop size whereas the other two mechanisms yield lowering d,n,, values. Thus, there
is a crossover point, where one of the other two mechanisms yields the same d,,,, as
given by the turbulent mechanism. At ¢ values higher than that, the turbulent
mechanism no longer decides the d,, which is decided by one of the other two
mechanisms. This is shown in Fig. 5 where d,,, is plotted versus ¢ for various rps
values. Solid lines are drawn corresponding to the minimum of the de values calcu-
lated by the three mechanisms. Up to a ¢ of about 0-4, the turbulent mechanism
gave the lowest d,,, whereas above that the shear mechanism gave the lowest values.
There is a discontinuity of slope in each curve where the d,, values calculated by
turbulent and shear mechanisms are equal.

Though the work of Kumar et a/?? clearly brings out the other mechanisms of drop
breakage in a stirred vessel, their model is not rigorous and can be used for making
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approximate calculations These approximations arise out of the drastic assumptions
made both with regard to the 1dealisation of fow and the evaluation of the elonga-
tional strain rates and shear rates.

4. Drop breakage for highly viscons dispersed phases

The model of Lagisctty «f al'" discussed earlier can be used with confidence up to a
dispersed-phase viscosity of approximately 1 Pa.s. Their model predicts that as viscos-
ity is raised to very high values, the interfacial tension stress becomes negligible when
compared to the viscous stress. As a result, d,,, becomes independent of interfacial
tension. Further, d,... would then vary as p, raised to the power 3/4. Calabrese e
al® found that their high-viscosity data show much less dependence on g than given
by the 3/4th power. They empirically correlated their data by:

38

Qg <H~d> oy
=C|—] - Nx)*- 21
D e e @y

This correlation shows a 3/8th power dependence on the dispersed-phase viscosity.
Thus, as the viscosity of the dispersed phase increases, the dependence of d,,, on
tq decreases from power 3/4 to lower values. Similar differences between theoretical
predictions and experimental values are also observed with respect to the influence
of interfacial tension. When the dispersed-phase viscosity is high, even low values of
interfacial tension show strong influence on d,,,,. This is under the conditions where
the model of Lagisetty et o/’ predicts zero influence of interfacial tension.

To quantitatively account for these differences, Kumar et al*® developed a model
that permité drop breakage in multiple steps. Hitherto, the whole vessel was consi-
dered as a single unit, even though it was recognised that breakage occurred near
the impeller, whereas coalescence could occur in the rest of the vessel. These authors
delineated the role of the two zones by considering that breakage occurs in the zone
near the jmpellers whereas the rest of the vessel not only permits coalescence but
also recirculation of the drop. They name these two zones as deformation and rela-
xation zones. Their idealisation of the stirred vessel is shown in Fig. 6. Unlike the
earlier models, they do not assume that the breakage process has to be completed
during a single eddy-drop interaction. Instead, they permit partial deformation in the
zone rear the impeller, under the influence of an eddy. The partially deformed drop
enters the relaxation zone where the turbulent intensity is too low to add to its
deformation and can hence be considered negligible. In this zone, therefore, there is
no external stress acting on it and the drop tends to relax back to the original shape
under the shape-restoring stress due to interfacial tension, and resisted by the viscous
stress. The process of relaxation continues during the residence time of the deformed
drop in this zone. If the drop does not completely retract back to its original shape,
a partially deformed drop enters the deformation zone. As an initial deformation is
already available, its deformation gets increased during its interaction with an eddy.
Thus, an undeformed drop entering the deformation zone may require a number of
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F1G. 6. Deformation and relaxation zone idealisation of the stirred vessel.

cycles for breakage. In each cycle, it may get increasingly deformed. Its final
deformation in the nth cycle in the relaxation zone forms the starting condition for
the deformation zone of (n + 1)st cycle. Alternatively, it may reach a situation where
its incremental deformation in the breakage zone is exactly equal to its retraction in

the relaxation zone. Then the drop would not break.

As the mechanism of deformation is the same as proposed by Lagisetty et al'’, the
basic equation governing deformation remains the same. However, the initial condi-
tion will depend on the number of cycles. The deformation equation for the nth cycle

for a Newtonian dispersed phase (n = 1, K = u,) can be obtained from eqn (9):
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d84(n)

d 53 ,
L - ww. (5) ~ (04ln) — 63() ) @)

In eqn (22), the actual value of C (= 8) of eqn (9) has been incorporated. The
expression for the dimensionless life time of the eddy is:

(2"

Thus, if the initial deformation for the nth cycle, 8,(n), is specified, the final
deformatioh, 8,4(n), reached at the end of the life time of the eddy, w,, can be
computed from the solution of eqn (22). For each cycle, the initial conditions of
deformation are obtained at the end of relaxation zone for the previous cycle.

In the relaxation zone the equation of Lagisetty et al’® is still applicable but
without the turbulent stress as the turbulent intensity in this zone is very small.
Under these conditions, the relaxation equation for the nth cycle becomes:

LA ) — - 9
dn
The time spent in the relaxation zone is evaluated from the circulation time. Based
on the assumption that 90% of the liquid volume constitutes the relaxation zone and
using the expression for circulation time for Rushton turbines”’ having D/T = 0-5,
they expressed the circulation time as,

-298Re<d)~1 25
n = Y’V?B (25)

Thus, if 8,(n) is known, 8,(n), the final state reached by the drop at m, can be
obtained by solving eqn (24).

Any cycle begins with the deformation zone and ends with the relaxation zone.
For the first cycle:
n =0, 6,1 =0 (26}

In general, the deformation at the end of {n—1)th cycle is the state of entry into
the deformation zone for the nth cycle, and the state of exit from this zone then
forms the initial condition for the relaxation zone of the same cycle. Thus:

04(n) = Bp(n — 1) = 8,(m) 27
and

Gn(n) = ﬂdf(n) = Gf(n)' (28)
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Thus, if the initial condition at the time of entry into the deformation zone for the

first cycle is defined, the entire history of the drop can be traced.
The solution of the differential equations for both the zones are:

Deformation zone:

2 o (SO0 (GO

®/2) (®12)
81(1) = 8;
d 53
p = (————) -1
where @
d*
and Z_ = 0-125 We™®0 .

Relaxation zone:

6(n + 1) _ 8n)

oo s D - 16 PO

@9
(30)

(31

(32

(33

The way a drop breaks following eqns (29) and (33) has been presented by Kumar
et al®® through the use of phase portraits. One of the possible phase portraits is
shown in Fig 7. Curve A represents 84rn) values attained at the end of deformation

drop breakup

curve A \ 90004
...... Lagisatty et al.(1986]
L P P?vg;.:nlyu'od-f { )
N ¥ sec
LN D 01582 m
[ curve B ~ £000

A,éz

Dmex (M

3000 -

81 o1 ! e (Pa.s)
6 ~ FIG. 8. Effect of py on duma: companson of the

i0

models with experimental data of Wang and Cala-

FIG. 7. Phase portrait for multistage drop breakage.  brese'.
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period for any 9{n) with which the drop enters the deformation zone. Similarly,
curve B represents the residual deformation at the exit of relaxation zone 6,(n) when
it has entered the zone with a deformation given by 8;(n — 1). In this figure, curves
A and B do not intersect. The history of drop defermation can now be traced in this
figure by moving vertically and horizontally until 8 reaches wnity corresponding to
breakage. Thus, this figure clearly demonstrates how a drop, which cannot be broken
by a single eddy, can be broken by multiple interactions. A situation might arise for
a drop, where curves A and B intersect at two points. In such a figure, if an unde-
formed drop is made the starting point, it will not be broken. For large drops, curves
A and B do not intersect and hence they are broken, whereas for very small drops
curves A and B invariably intersect at two points which cannot result in breakage.
When drop size is slowly decreased, curves A and B, initially non-intersecting, move
towards each other until, for a specific drop size, they intersect at just one point.
This drop size corresponds 10 dp., as a smaller drop will result in curves A and B
imtersecting at two points thus not resulting in breakage whereas a slightly larger
drop will result in separation of the two curves indicating breakage. The d,.. there-
fore is the largest size drop which can have infinite number of recirculations in the
vessel without breakage. Mathematically, the concept of two curves intersecting at
one point can be expressed as:

8(n) =0, (n + 1). (34)
Further, the slopes of the curves at this point will be the same. Hence,

don)  dofn)
dofn)  d8fn + 1)

(35)

Thus dp,, is that value of the drop diameter for which two steady states (the two
intersecting points) of the curves A and B collapse into one.

Kumar er al®® have tested their mode} with the existing data both with respect to

viscosity and interfacial tension. Figure 8 shows the experimental data of Calabrese
et al”® on the effect of wy on dyg, along with the predictions made by the model of
Kumar ef al®® and that of Lagisetty et al®®, whose predictions are similar to those
made by the correlation of Calabrese et al®. It is seen that up to a viscosity ot 1
Pa.s. predictions made by different models are in reasonable agreement, whereas at
higher w; values, only the model of Kumar et al”® is able to predict reasonably well.
Though the agreement is not excelient, the trends predicted are far different from
those of earlier investigators. In fact, this model correctly predicts the decreasing
dependence of d,.,, on u, from 3/4th power.

Kumar e al®® have also derived the limiting case when . tends to infinity. Their

final expression for this limiting case is :

Ao { 2:08\" o
D\ a2 o N&T D ) (36)
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The above equation shows that even though d,... becomes independent of pa at
very high values of g, it still remains a function of the interfacial tension. The
interfacial tension effect at high . values essentially arises out of the relaxation
zone, where it influences the relaxation of the drop to the original shape. As this
process is driven by the interfacial tensiom, this variable continues to have reasonably
strong effect at high p, values also.

Thus, prediction of dy,, cannot always be analysed through one eddy interactipn,
but can be the result of not only multiple interactions but also the alternative
mechanisms of drop breakage.

5. Breakage frequency and daughter droplet size distribution

For prediction of drop-size distribution in a stirred vessel, under predominantly break-
age-dominated conditions, it is necessary to be able to predict breakage frequency
and the daughter droplet size distribution. There have appeared two models for
breakage frequency, I'(v), but none for the daughter droplet distribution, p(v, v)-
Further, these models can be applied to only inviscid dispersed phases and cannot
be used for viscous or rheologically complex dispersed phases. As all the models
assume equal breakage of drops, the drop size distribution predicted by them natur-
ally is concentrated near the d,,,. Experimental measurements, however, show large
number of much smaller drops existing in the stirred vessel.

Nambiar et al”® have recently proposed a model where the breakage of a drop into
unequal parts is examined. The basic mechanism assumed by them is shown in Fig. 9:
Normally, it has been the practice to consider inertial stress to be applied across the

Eddy of length
scaLe i

9=0 6 <1 8=t

Fi. 9. Unequal breakage of a drop by eddies smaller than its diameter,
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diameter of the drop, as the eddy of this size has the highest energy and the longest
life time. These authors considered the application of smalier eddies of length scale,
{, across the chords of equal length but smailler than the diameter of the drop and
found that drops much larger than d,,, can indeed break by this mechanism. They
modified the equations of Lagisetty e al' to adjust for the interfacial tension stress
across the chord so that it reduced to the existing model when the chord became
equal to the diameter of the drop. Their governing equation for unequal breakage is:

553

d9 - C(i/d) We(d) —0 -0 @37

an G P

where the turbulent stress is given by Cp N°D**F° and the nondimensional time 7
gets modified to:

oG, 38)
n=—t;
dpy
N NE:)
5 )
v v
G=t T (39)

21/3

On breakage, the new droplet formed is given by
R e
where
x=1Ud. @“n
Equation (37) is solved with the initial condition
86=0atm=0- (42

The dimensionless breakage time to reach 6 = 1, obtained by solving eqn (37), is:

1
=l =1)= tan”™! 43)
o 2Va
where
_ca” av® o1
«= (5 -7 4
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G —
As the drop has to break within the life time, ;— T, of the eddy, it puts a
Pea
constraint of finding [ < 4, that satisfies the following:

-3 23

N —

Their calcuiations show that extremely small values of [ do not satisfy the above
constraint. However, for drops larger than d,.,. there is a range of eddy sizes, for
which the constraint is satisfied. The drop can be broken from a smaller eddy, Jyumn,
to the eddy of the size of the drop itself. The range of eddy sizes capable of drop
breakage diminishes rapidly as the drop size comes closer to d,, and reaches to a
limit of a single value at d,. Thus, drops of size d,, only can undergo equal
breakage, but they do not break. All drops larger than d,,,. will invariably break into
unequal parts. This finding is in complete contrast to the earlier assumption of equal
breakage, which is, however, reasonable for predicting d,,,, as this model shows that
near dy,,, the drops do tend to break into equal parts. Combining the unequal break-
age concept with the eddy-sized distribution existing in the vessel, these authors have
proposed a new model which simultaneously predicts both the breakage frequency
and the distribution of the daughter droplets. Breakage frequency is viewed as the
number of times a droplet of given size will break in a unit time, when placed in
the stirred vessel. This naturally must depend on the frequency with which it interacts
with eddies of the right size. Thus, before it loses its identity through breakage it
may interact with a number of eddies of different sizes. Nambiar ez al*® assumed the
interactions to occur sequentially. A typical sequence of interactions is shown in
Fig. 10. In this figure, the drop first interacts with an eddy of size below [,.(d)
during its life time but does not break. It is then interacted on by a much larger
eddy which merely convects it. It repeats the cycle once more before it interacts with
an eddy in size range (J... (d), d). This eddy breaks the drop as it falls in the right
size. This model of interaction is employed to obtain an expression for the expected
survival time of the drop.

Expected Expected number  Expected life time  Expected breakage
survival = of ineffective X of an ineffective + time with' the final
time eddies eddy eddy
D D
p=2 [ TOFU ¢Chns ) dll +f w(l, &) f (L € (bun, )AL (46)
P Ly Ly
where

D dl - (€Y

‘rain

s
It
N
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Fic. 10. Drop interaction pattern with turbulent size.
eddies in the vessel.

It is necessary to obtain an expression for f(I) to be able to use egn (46). At fully
developed turbulence, the stirred vessel is populated with eddies from size D down
to the Kolmogorov-scale eddies L. In these lowest-scale eddies, energy dissipation
occurs, whereas in the large-scale eddies, dissipation is negligible. The value of Lg
can be obtained by

4

Le= (—”i) : )

€

The eddies of size range (Lk, D) derive the energy from mean flow at the upper
end of the eddy size which is then cascaded down to smaller and smaller eddies
without any significant attenuation. If /° is taken as the measure of the volume of
the eddy, then the eddy-size distribution has the form:

) = %— : 49

The normalisation constant C; is obtained by using the basic requirement of f(}), i.e.,

D

J fhdi=1- (50)

Lg

The G then works out to be:
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(BLY

Gy b

Cf=2

The breakage frequency is directly obtained as the reciprocal of the expected time
of survival. Thus,

(52)

o =

A set of typical curves of breakage frequency are shown in Fig. 11, where breakage
frequency calculated through egn (52} is plotted versus drop volume non-dimen-
sionalised With vy pq,. It is seen that at d.., the breakage frequency is zero, but rises
sharply thereafter. This picture is thus consistent with the notion that drops of size
A Will not break. Further, calculations for two viscosities show that the breakage
frequency falls as the dispersed-phase viscosity is raised. Similarly, lowering of fre-
quency was also found with increase inm interfacial tension. These trends are qualita-
tively cxpected as increase in p, or ¢ makes the breakage process more difficult.

The daughter droplet distribution is obtained directly from the eddy-size distribu-
tion as the knowledge of the scale of drop-breaking eddy is directly related to the
volume v’ of the daughter droplet. Thus:

1 fllm=i=4d

V) = — . 53
BV = S D] ©3)
av’

T 1 can be evaluated using the geometric relationship between ! and v'. Profiles

of B(v, v') computed for different values are presented in Fig. 12. It is seen that the
distribution is symmetric about v'/2, as expected from binary breakage. It is also seen
that asymmetric breakage is preferred.

As the breakage frequency and daughter droplet distributions cannot be directly
measured, the models for them are tested by solving the population balance equations
and comparing the predicted drop size distributions with the ones obtained experi-
mentally. Such a comparison is shown in Fig. 13, where the calculated distributions
are compared with the experimental results of Calabrese et al®. It is seen that the
new model is able to explain these resuits well.

6. Conclusions

Though the drop breakage in stirred vessel is a three-dimensional problem, it can be
successfully reduced to a singie-dimensional framework through the use of a Voigt
element. This framework captures the basic features of the breakage phenomenon,
and can be used for predictive purposes for obtaining d,,. values for not only a
variety of dispersed-phase rheologics but also when surfactants or drag-reducing
agents are present in the continuous phase.
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model of Nambiar er al’ with the existing data.

The unexpected behaviour of d,,,, with increase in ¢ cannot be explained by turbu-
lent mechanism. Alternative mechanisms involving clongaticnal and shear flows have
to be invoked to explain these results. A large number of simplifications regarding
the flow have to be made to make the analysis tractable. Hence these models, though
able to explain the qualitative trends, can at best be used to make order of magnitude
estimates. More work needs to be done in defining the flow field with more rigour
and also for obtaining drop breakage conditions under complex flow fields.

The new model of breakage frequency and daughter droplet distribution, based on
unequal breakage, though still through a single-dimensional framework, is able to
satisfactorily explain quite a few of the experimental results available in literature.
However, it may require fine-tuning, particularly regarding breakage near d-

At present no models are available for breakage frequency based on either alterna-
tive or multistage breakage mechanisms. These models need to be developed and
verified.

Nomenclatare

a interfacial area per unit volume of the dispersion, m™!
b defined in the text (eqn 31)

Cy, Cy constants

G defined in the text (eqn 51)

Ca,, Ca, critical capillary numbers for elongatioral and shear-flow breakage
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drop size, m

maximum stable drop diameter through turbulent mechanism, m
maximum stable drop diameters through elongational and shear
mechanisms respectively, m

defined in the text (eqn 32)

diameter of the impelier, m

escape rate of drops, s~

strain rate, s~!

strain rate for elongational flow, s™*

shear rate, 57

constant in power law model, N m™ s

length scale of the eddy, m

size of smallest eddy capable of breaking a drop of diameter d, m
blade length, m

Kolomogorov length scale, m

power law index

revolutions per second of the stirrer, 5~
number of droplets in the size range (v, v + dv) at time ¢ in a unit
volume of dispersion, m™3

number feed rate of drops in the size range (v, v + dv) per unit
volume of the dispersion, m™3 s~

tank Reynolds number, p.D?N/p.

probability of the eddy interacting with the drop being of a size that
can cause breakage of the drop

frequency of coalescence between drops of size v and v/, m’ s~
Reynolds number, D* (NDY*™" p/[K 2*7° (3 + 1/n)"]

time, s

characteristic breakage time, s

circulation time, s

1

i

expected survival time, s
mean Jife time of the eddy, s

mean square velocity fluctuation across length scale 4, m? s™2

mean square velocity fluctuation across d for liquid hold up ¢, m? s~

Weber number, p,N*D*/o
defined in the text (eqn 41)
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Greek letters

o dimensionless quantity defined in the text (eqn 44)
[ dispersed phase hold-up
Bv, v)dv fraction of daughter droplets in size range (v, v + dv) when a drop of
size v’ breaks
€ power dissipation per unit mass, m’s ™
T'(») preakage frequency, s~
¥{v) number of daughter droplets formed per breakage
Pes Pe continuous phase and emulsion density, respectively, kg m™?
7 mean turbulent stress, N m™>
T, yield stress, N m™2
interfacial tension, N m™!
7 dimensionless time
e dimensionless eddy life time
e dimensionless residence time in relaxation zone
Pe continuous phase viscosity, Pa.s
e dispersed phase viscosity, Pa.s
e emulsion viscosity, Pa.s
] dimensionless drop deformation
[ initial deformation at the beginning of the first cycle (normally zero)
84(n) deformation in nth cycle in the deformation zone
6,{n) deformation in nth cycle in the relaxation zone
8,(n) deformation at the beginning of deformation cycle for the nth cycle
8rthe (n) deformation at the end of deformation zone for the nth cycle
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