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Abstract | Phase field modelling, which is ideal for the study of the 
formation and evolution of microstructures, has been used extensively to  
study the effect of elastic stresses on microstructural instabilities. In this 
review, we focus primarily on four elastic stress driven instabilities, namely 
(i) Spinodal phase separation; (ii) Particle splitting; (iii) Rafting; and, 
(iv) Asaro-Tiller-Grinfeld (ATG) instabilities, and, review the phase field 
studies of these instabilities. The review begins with a brief description of 
some of the important and interesting experimental observations followed 
by a reasonably detailed description of the theoretical developments. 
Both the description of experimental observations and the theoretical 
developments are neither comprehensive nor complete; however, 
they are helpful in setting the stage for discussion of (and, in giving a 
perspective on) phase field modelling studies on elastic stress effects 
on instabilities. We conclude with a summary and indication of future 
directions.

1 Introduction
Microstructure (which, for the purposes of this 
article, defined as the sizes, shapes and distributions 
of interfaces in a material) is the key bridge between 
processing and properties. Hence, a study of the 
formation and evolution of microstructures is of 
great interest: see, for example,1 and references 
therein. Naturally, during the formation and 
evolution of microstructures, new interfaces may 
form and old ones might disappear; in addition, 
interfaces might merge or split.

Instabilities is one of the key phenomenon 
that leads to interesting microstructural features; 
for example, compositional instabilities in 
binary alloys aged inside the spinodal region of a 
miscibility gap leading to spinodal microstructures 
and dendritic microstructures result from the 
breaking up of planar solid-liquid interfaces 
during solidification. Martin, Doherty and Cantor, 
in their monograph on microstructural stability2 

give a fairly comprehensive list of microstructural 
instabilities and classify them as due to chemical 
energy, strain energy, interfacial energy and 
others (such as irradiation, magnetic, thermal and 
electric fields). Our interest in this review is on 
microstructural instabilities that are influenced by 
elastic stresses.

Elastic stress effects on microstructures are 
well known—see, for example the articles3–6 or 
the monographs of Mura7 and Khachaturyan.8 
Elastic stresses arise naturally during phase 
transformations (for example, lattice parameter 
mismatch in coherent precipitates), processing 
(for example, during the epitaxial growth of a 
thin film on a rigid substrate) and/or service and 
environmental conditions (for example, stressed 
minerals that are in contact with their solutions). 
Elastic stresses play two distinct roles in influencing 
microstructural instabilities—namely, promotion 
and suppression of instabilities; the Asaro-Tiller-

We dedicate this paper to the memory of John W Cahn. His immense contributions to the field of elastic stress induced microstructural 
instabilities are seen not only in his papers, but also in a large number of acknowledgements that we noticed during the preparation 
of this manuscript—such as the acknowledgement of Tien and Copley in their classic paper on rafting.
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Grinfeld (ATG) instabilities is a typical example 
of stress induced instability while the suppression 
of spinodal decomposition is a typical example of 
stress induced suppression.

Phase field models are ideal for the study of 
formation and evolution of microstructures. 
In these models, also known as diffuse interface 
models, the interfaces are not explicitly tracked. 
So, any topological singularity associated with the 
formation, merger, splitting and disappearance 
of interfaces can be handled smoothly. Further, 
interfaces are defects and hence have a positive 
excess free energy associated with them. In phase 
field models, this excess free energy associated with 
them can be incorporated and thus any interface 
related physics (such as Gibbs-Thomson effect, 
for example) can be automatically accounted for. 
Hence, phase field models have been extensively 
used in the past two decades for studying a variety 
of systems and their microstructures—see9–17 for 
some reviews.

This review is on the phase field modelling 
studies in elastic stress effects on microstructural 
instabilities. We will focus primarily on four elastic 
stress driven instabilities:

1. Spinodal phase separation;
2. Particle splitting;
3. Rafting; and,
4. Asaro-Tiller-Grinfeld (ATG) instabilities

In systems that undergo elastic stress driven 
microstructural instabilities, the different 
constituent phase might have different moduli 
(that is, the system is elastically inhomogeneous); 
(coherency driven) eigenstrains might be present; 
and, there might be applied traction (or imposed 
strains) on the system. Even though all these three 
might be present in all these four problems, for the 
instability to occur, one (or more) of these is (are) 
essential. For example, elastic inhomogeneity along 
with imposed strains/applied stresses is sufficient 
to produce ATG instabilities; rafting requires all 
three—namely, eigenstrain, elastic inhomogeneity 
and applied stresses, and in the absence of any 
of these it will not occur; and, suppression of 
spinodal and particle splitting can take place in 
the presence of eigenstrains (even if there are no 
applied stresses, or imposed strains and/or elastic 
moduli mismatch).

There are several other microstructural 
instabilities, such as dendritic formation 
during solid-solid phase transformations,18–20 
buckling and wrinkling of soft films21 and liquid 
crystal elastomers,22 twinning,23–25 dissolution-

precipitation creep at grain boundaries in 
minerals,26 phase inversion,27–28 dynamic brittle 
fracture29 and branching instability, cracking of 
surfaces,30 dissolution driven crack growth,31 surface 
roughening instability during dynamic fracture,32 
step instabilities (bunching and undulation) 
on stressed surface,33 stress driven roughening 
of solid-solid interfaces,34 the destabilization of 
solidification and melting fronts due to stress,35 
dynamical instabilities of dislocation patterning 
in fatigued metals,36 crystals growing on curved 
surfaces,37 stress induced boundary motion,38 
martensitic transformations,39 microstructural 
evolution in systems with cracks and voids40–43 and 
so on. In many of these instabilities elastic stresses 
might play an important role. However, in this 
review, we do not discuss them.

This review is organised as follows: in Section 2, 
we briefly describe some of the important and 
interesting experimental observations on elastic 
stress effects on microstructural instabilities; 
in Section 3, we describe, in reasonable detail, 
the theoretical developments in understanding 
the effects of elastic stress on microstructural 
instabilities in solids. Section 2 and 3 are neither 
comprehensive nor complete; however, they are 
helpful in setting the stage for discussion of (and, 
in giving a perspective on) phase field modelling 
studies that will be discussed in Section 4. In 
Section 5, we conclude with a summary and 
indication of future directions.

2 Experimental Observations
The elastic stress driven microstructural 
instabilities are of great practical importance; the 
stress-corrosion cracking of minerals in earth’s 
mantle, instabilities during the growth of thin films, 
formation of quantum dots, particle splitting and 
rafting in Ni-base superalloys, and suppression of 
spinodal decomposition are but some of the well-
known stress driven microstructural instabilities 
of relevance. In this section, as noted earlier, 
we very briefly indicate some of the important 
experimental observations—in order to set the 
stage for a detailed discussion of the theoretical 
and phase field studies. The description here 
is neither complete nor comprehensive; the 
interested reader is referred to references2–6 for 
more information.

2.1  Spinodal phase separation: 
Suppression and promotion

It is fairly well known that elastic stresses can 
suppress microstructural instabilities; for example, 
such suppression is reported in Al-Zn,44–45 Au-Pt 

Spinodal phase separation: 
spontaneous phase separation 

of a homogeneous phase 
into a mechanical mixture 

of two phases.
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alloys46 alkali feldspars (specifically, sanidine-high 
albite systems),47 semiconductors doped with 
transition metals,48 Ci-Ni(Fe) nanolaminates49 
and pyroxenes.50

On the other hand, self-assembled quantum 
dots and wires in epitaxially grown thin films 
are produced using spinodal decomposition 
mechanism; see51 (and, some of the references 
therein).52–61 However, in some of these systems, 
the effect of epitaxial strain on spinodal instability 
is asymmetric—for example, compressive stresses 
might promote phase separation54,61 while tensile 
stresses suppress the same.62,63

2.2 Particle splitting
Elastic stress induced splitting instability of 
misfitting precipitates have been reported64–71 
in several Ni-base systems. The particle splitting 
instability is the opposite of coarsening; as the 
size becomes larger than some critical value, the 
precipitate splits into doublets, quartets or octets; 
see,72 for an example of the wide variety of split 
structures that are observed.

There are also a few studies that question 
the interpretation of particle splitting; instead 
it is explained as a coalescence induced73–75 or 
compositional heterogeneity induced (albeit 
in Ir-Nb system)76 microstructural feature. As 
we discuss later, there is phase field modelling 
based evidence supporting both the splitting and 
coalescence mechanisms.

2.3 Rafting
In Ni-base superalloys consisting of γ ′ precipitates 
(with L1

2
, an ordered face centered cubic crystal 

structure) in nickel rich γ (disordered fcc) matrix 
(as well as others with a similar microstructure 
of coherent ordered precipitates in a disordered 
matrix), under an applied uniaxial stress, rafting 
(which is a preferential coarsening) is one of the 
instabilities seen: see, for example77–83 and the 
reviews of Chang and Allen84 and Kamaraj.85 During 
rafting, the γ ′ precipitates coarsen preferentially 
under the action of the applied load—either 
parallel or perpendicular to the direction of 
applied load if it is uniaxial; if the loading is not 
uniaxial, the rafting is more complex.80

Rafting leads to the destruction of an initially 
periodic arrangement of cuboids of precipitates 
during service, and leads to a microstructure 
consisting of wavy precipitates with very large aspect 
ratios. Depending on the type of microstructure 
that coarsening leads to, it can lead to either 
hardening or softening of the microstructure: see 
for example.86 In cases of practical importance, 

Rafting: preferential 
coarsening of precipitates 
under the action of applied 
traction.

the dislocation mediated plastic flow as well 
as twinning are known to play a crucial role in 
this instability: see for example.87–92 Dislocation 
activity is also known to help coalesce different 
variants of ordered precipitates by helping get 
rid of the anti-phase boundary during rafting.93 
However, phase field models have indicated (as 
discussed below) that purely elastic stress driven 
(diffusional) rafting is possible.

2.4  Asaro-Tiller-Grinfeld (ATG) and 
associated instabilities

The surface of any non-hydrostatically stressed 
solid, in contact with a more compliant phase 
(be it vapour, liquid or another solid), tends to 
develop undulations.94–97 This is broadly known as 
Asaro-Tiller-Grinfeld (ATG) instability (and will 
be discussed in some detail in the next section). 
ATG instabilities are reported in a wide variety of 
systems and conditions: for example, in Helium 
IV at the solid-liquid interface,98 at the surface 
of SiGe films grown on Si substrates,99 at the 
surfaces of polymeric thin films that undergo 
polymerization,100 at the interfaces of minerals in 
contact with their solution,101–103 on the surface 
of pure aluminium crystals that undergo cyclic 
loading104,105 and in multilayers of systems such as 
Si-Ge106,107 and Gadolinia-Silica.108 The schematic 
in Fig. 1 (based on)99 explains the physics behind 
the ATG instability: if the surface is planar, then, 
the imposed strains can not relax; however, if the 
surface develops undulations, then, the imposed 
strains on the film can relax at the peaks; on the 
other hand, the stresses at the troughs are more 
than the flat surface. Hence, the undulations keep 
growing. In case there is growth in the presence 
of such undulations, the chemical potentials are 
such that the atoms would preferentially attach to 
the peaks.

These instabilities can further be classified 
as of two types—namely, static and dynamic. 
In some cases, say, for example the case of 
minerals in contact with their solution, the 
ATG instability is static; that is, there is no 
growth induced movement of the mineral-
solution boundary. On the other hand, in the 
case of SiGe films on Si substrates, the ATG 
instability is dynamic; that is, ATG is concurrent 
with the growth of the film and the instability 
is enhanced by the growth processes.6 In the 
case of dynamic instabilities, there could be 
other elastic field mediated instabilities that 
are not of the ATG type: for example, Duport, 
Nozières and Villain109 report on a step-
bunching instability, which is because of elastic 
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interaction between adatoms and rest of the 
material during molecular beam epitaxy (and 
is different from ATG). In addition, it is known 
that in confined systems, the dynamics of ATG 
instabilities could be different.110

In the next two sections, we describe the 
theoretical framework and phase field models 
that capture several aspects of ATG instabilities. 
However, the literature on ATG instabilities is too 
vast to be summarised here. We refer the interested 
reader to the available monographs111–113 and 
reviews6,114–117 in the literature.

3 Theory and Models
Solids, unlike fluids, can support non-hydrostatic 
stresses. Hence, the effect of such stresses on 
the thermodynamics (especially, with specific 
reference to phase transformations) is of great 
interest.

As early as 1876, Gibbs118 alluded to this in his 
classic work on the equilibrium of heterogeneous 
substances with one of the sections named as:

The conditions of internal and external 
equilibrium for solids in contact with fluids 
with regards to all possible states of strain of 
the solids.

However, even four decades after Gibbs, that 
there was no substantial progress on this problem 
is clear from the following sentences of Bridgman 
(written in 1916)—quoted from:119

Figure 1: Schematic explaining how the stressed film (due to the lattice parameter of the substrate (red) 
being imposed on the film (blue)) can relax the stresses at the peaks. However, the stress concentration at 
the troughs increases. Hence, once the undulation is set-up, it continues to grow.

The question at issue was: What is the 
effect on a transition (or melting) point of 
unknown extra stresses not hydrostatic in 
nature? It was a surprise to me, after a careful 
search, to find that this problem has received 
very meager attention, ...

By 1950s, the contribution of surface stresses 
to interfacial free energy was recognized.120 About 
45 years after Bridgman’s observation, Cahn121 
introduced the idea of coherent spinodal—namely, 
the suppression of spinodal region due to the elastic 
stress effects. Larche and Cahn122 studied the question 
of equilibrium in stressed solids with specific 
reference to their interaction with composition in 
crystalline solids in early 1970s; at around the same 
time, Asaro and Tiller94 addressed the question of 
the equilibrium of a non-hydrostatically stressed 
solid in contact with its melt.

Around 1984, Johnson and Cahn123 
introduced the idea of elastic stress induced 
shape bifurcations. Though Asaro and Tiller 
addressed this question using a perturbation 
analysis, Grinfeld,95 independently, in 1986, 
showed that the question can be posed as an 
equilibrium problem and answered it using 
variational analysis; more specifically, Grinfeld 
showed that the surface of a non-hydrostatically 
stressed solid (however small the stress be) 
in contact with its melt will be unstable with 
respect to fluctuations of any wavelength (in the 
absence of interfacial energy) and that the lower 
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wavelength limit of the fluctuations is set by the 
interfacial energy.

In this section, we discuss the theoretical concepts 
and formulations in some detail. The rationale 
behind such a detailed exposition is as follows:

• The complete derivation of elastic stress 
induced promotion of spinodal is not available 
in the literature in detail and is being presented 
here for the first time;

• There are similarities and differences between 
the approaches; for example, both stress 
induced suppression of spinodal and ATG 
instability can be studied using linear stability 
analyses; ATG instability itself can be studied 
using both perturbative variational analyses; 
the Eshelby energy-momentum tensor plays 
a crucial role in understanding both ATG 
instabilities and rafting; and so on. Having 
all the models described in one place helps us 
gain a perspective which is otherwise missing; 
and,

• The theoretical concepts and formulations 
are also important from phase field modelling 
point of view.

 −  The theoretical studies play a foundational 
role in helping us formulate the phase field 
models and checking for their correctness;

 −  The theoretical studies, since they give 
analytical solutions under certain simplifying 
assumptions and approximations, are helpful 
in benchmarking the implementations of 
the phase field models; and,

 −  The phase field models can be used to 
systematically relax the constraints imposed 
or assumptions and approximations made in 
the theoretical studies; thus, the theoretical 
studies are helpful in setting the agenda 
for development of phase field models. 
Occasionally, phase field models do help in 
formulating new theoretical models.

3.1  Some basics of thermodynamics  
and mechanics

As noted, starting from Gibbs, there have 
been continuous attempts to understand the 
thermodynamics of stressed solids; the theories 
are obviously based on the notions of elastic 
energy, the minimization of free energy, and 
interfacial energy (since, in general, during the 
minimization of elastic energy, it is the interfacial 
energy that tends to increase); in addition, in cases 
where the understanding of kinetics is attempted, 
the notion of chemical potential also becomes 
important.124

There are two broad approaches taken in the 
literature; one is based on the classical variational 
approach—used by Gibbs and Grinfeld and 
extended by Larche and Cahn; and, the other is 
based on the concept of generalised forces (called 
accretive forces or configurational forces)—used 
by Eshelby125,126 and others: see for example.127–132 
In this review, we will primarily focus on the 
variational approach (though the widespread use 
of Eshelby energy-momentum tensor is common 
even in variational approach and is described in 
the next section). We refer the interested reader 
to the monographs of Maugin133 and Gurtin134 for 
detailed exposition of configurational force based 
formulations.

Norris,124 in a very nice exposition on the 
notion of chemical potential in elastically stressed 
solids (based on122,135–141), has drawn attention to 
several important and subtle ideas and notions 
that need very careful consideration. They can be 
summarised as follows:

• As noted in the ATG instability case above, in 
all of elastic stress induced microstructural 
instabilities, we have to consider two cases: 
one in which diffusional processes redistribute 
existing material (denoted as static by us) and 
the other in which material is transferred 
from the surrounding (denoted as dynamic 
by us);

• In continuum mechanics, usually, there are two 
approaches that are taken to define quantities 
of interest, namely, the Lagrangian or material 
coordinate and, the Eulerian or current 
coordinate. The expressions for chemical 
potential in these two approaches, though 
formally equivalent, are not symmetric, and 
hence are to be used with care;

• The distinction in the coordinate frames for 
description can also be taken further; there 
are two surface energy descriptions, namely, 
Herring (based on Lagrangian) and Laplace 
(based on Eulerian); and,

• If a variational approach is taken to the 
minimization of energy, then, in the case of 
(crystalline) solids, allowed variations are to be 
defined with great care.

The papers on the thermodynamics of stressed 
solids are huge in number: see for example.142–153 
However, as seen in some of these recent 
attempts154–156 the quest for the formulation of 
thermodynamically consistent phase field models 
that obey relevant principles and laws of mechanics 
is far from complete.
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3.2 Eshelby energy-momentum tensor
Eshelby introduced the notion of elastic energy-
momentum tensor126 defined as follows:

P W uT= − ∇1 σ  (1)

where W is the strain energy density, σ is the 
stress and u is the displacement. The integral of 
the normal component of the energy-momentum 
tensor over a surface gives the force acting on 
the defects and inhomogeneities enclosed by the 
surface. The introduction of such a force (called 
accretive or configurational force, as noted above) 
acting on a defect or inhomogeneity in an elastic 
continuum is very useful; once such a force is 
known, the change in elastic potential due to 
the size and shape changes of the defect (as in 
rafting and ATG instabilities, for example) can be 
calculated, as we discuss below.

3.3  Equivalent eigenstrain and 
homogenisation problem

The elastic inhomogeneity plays a key role in 
some of the elastic stress induced instabilities; 
for example, for both ATG instability and 
rafting, elastic instability is necessary; in 
elastically homogeneous systems, there will be 
neither rafting nor ATG instability. Further, the 
elastic inhomogeneity can lead to surprising 
results as in the case of coherent spinodal 
discussed below. When it comes to dealing with 
elastically inhomogeneous systems, there are two 
approaches. In the first one, pioneered by Eshelby, 
the inhomogeneous problem is replaced by a 
homogeneous problem by defining an equivalent 
eigenstrain. On the other hand, the approach 
taken in the composites literature is to come up 
with a homogeneous effective moduli of the two 
phase mixture. As we see below, while the method 
of equivalent eigenstrain is useful in deriving 
analytical solutions, the majority of phase field 
models that we will describe in this review are 
based on the idea of homogenisation.

3.4 Equation of mechanical equilbrium
As noted above, elastic inhomogeneity in systems 
with coherency driven eigenstrains and imposed 
strains or applied tractions is the key problem in 
elastic stress driven microstructural instabilities. 
Thus, obtaining the stress and strain fields in such 
systems is at the heart of the phase field models. 
The stress and strain fields are obtained by solving 
the equation of mechanical equilibrium, namely,

∇⋅ =
∂
∂

= .σσ el ij
el

jr
in

σ
0 Ω  (2)

Configurational force:  
force acting on defects  

and inhomogeneities  
in an elastic continuum.

Eigenstrain: stress-free 
strain such as thermal and 

transformational strain.

where σel is the elastic stress.
Let the computational domain consists of two 

phases, namely, a matrix (m) and a precipitate (p). 
Let us assume that both the m and p phases are 
Hookean (that is, linearly elastic):

σσkl
el

ijkl ij
el= ,C ε  (3)

where εel be the elastic strain and C
ijkl

 is the 
composition (and hence, position) dependent 
elastic modulus tensor; that is, the solid is 
elastically inhomogeneous.

The elastic strain is derivable from the total 
strain ε:

ε ε εij
el

ij ij= − ,0
 (4)

with ε0 being the position dependent eigenstrain 
(misfit strain) tensor field. The total strain ε

ij
 

is compatible; that is, it is derivable from the 
displacement field u as follows:

εij
T i

j

j

i

u u
u

r

u

r
= + =

∂
∂

+
∂
∂












.

1

2

1

2
( )∇∇ ∇∇  (5)

Using the symmetry properties of the moduli 
tensor, the equation of mechanical equilibrium 
can be written as:

∂
∂

∂
∂

− = .












r

C
u

r
in

j
ijkl

i

k
jlε 0 0 Ω  (6)

In this partial differential equation, the 
coefficients are composition (and hence position) 
dependent. Such partial differential equations 
with varying coefficients require the technique 
of homogenisation for their solution.157,158 In 
the next section, we discuss the homogenisation 
technique.

3.5 Homogenisation
Let us assume the following composition 
dependence:

ε β ε δij
T

ijc c0( ) ( )= ,  (7)

where, εT is a constant that determines the strength 
of the eigenstrain, δ

ij
 is the Kronecker delta, and 

β(c) is a scalar function of composition; and,

C c C c Cijkl ijkl
eff

ijkl( ) ( )= + ∆ ,α  (8)

where α(c) is a scalar function of composition, and,

∆ = −C C Cijkl ijkl
p

ijkl
m

 (9)
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where, Cijkl
p  and Cijkl

m  are the elastic moduli tensor 
of the p and m phases respectively, and Cijkl

eff  is an 
“effective” modulus.

With these composition dependence for the 
eigenstrains and elastic moduli, we want to solve 
the Eq. 6. The computational domain is assumed 
to be a representative volume element; that is, we 
will assume the composition field to be periodic 
on the domain. This implies that some of the 
fields that are derived from composition such as 
eigenstrains and elastic moduli are also periodic; 
on the other hand, applied tractions will have 
to be anti-periodic. Thus, Eq. 6 has to be solved 
with such periodic and anti-periodic boundary 
conditions. In addition, there are also boundary 
conditions of either applied traction or imposed 
strains. The imposition of these boundary 
conditions is achieved using ‘homogenisation’: 
that is, we define the mean strain and stress in 
the computational domain as follows:

{ }εij ijE= ,  (10)

where ε is the total strain, and the symbol {⋅} is 
defined as follows:

{} {}⋅ = ⋅ ,∫
1

V
d

Ω
Ω

 
 (11)

where V is the volume of the representative 
domain Ω; and,

{ }σ σij
el

ij
el

V
d= .∫

1
Ω

Ω  (12)

The mean stress thus calculated should equal 
the applied stress σ A.40,159,160 This conclusion 
namely, that the mean stress should equal the 
applied stress, is arrived at using homogenisation 
assumption by some authors159,160 while Jin et al.40 
used a variational approach.

The Eq. (8) is written assuming that in spite of 
the inhomogeneities at the microscopic scale, the 
domain Ω behaves as if it is a single homogeneous 
block with an “effective” elastic modulus Cijkl

eff ; 
the local microscopic perturbations in the elastic 
moduli (with respect to Cijkl

eff ) are described using 
the difference between the elastic constants of 
the p and m phases (∆C

ijkl
). As noted, the relevant 

boundary conditions are imposed strains or 
applied traction; since we will be using a spectral 
technique, we assume that the domain is periodic; 
hence, if macroscopic system is subjected to a 
homogeneous stress state σA, then, the applied 
traction on the boundaries of the domain Ω will 

be anti-periodic; i.e., σ ⋅ n, is opposite on opposite 
sides of ∂Ω with n being the unit normal to the 
boundary.159,160

The definition of periodic strain is again 
a result of homogenisation. By the imposed 
periodic boundary condition, the solution to the 
equilibrium equation (Eqn. (2)) will be such that 
the strain field ε(r) is periodic on Ω. However, 
we have posed the equation of mechanical 
equilibrium in terms of the displacement field. 
Since the strains are derived from displacements 
by differentiation, the displacement field u(r), 
which gives rise to such periodic strain fields can 
always be written as follows:159

u E r u= ⋅ + ,  (13)

where, u* is a displacement field that is periodic 
on Ω and E is a constant, homogeneous strain 
tensor. E can be assumed to be symmetric 
(without loss of generality) since the 
antisymmetric part corresponds to a rigid 
rotation of the cell. The ‘homogenisation’ 
implies159 that E is the mean strain tensor of the 
cell (see Appendix D in161).

Let ε* be the periodic strain; then, the strain 
we derive from the displacement equation (13) 
becomes (see Appendix D in161),

ε εij ij ijE= + ,  (14)

where,

εij
i

j

j

i

u

r

u

r


 

=
∂
∂

+
∂
∂












,

1

2  (15)

and the equation of mechanical equilibrium (2) is

∂
∂

+ − = .
r

C E
j

ijkl kl kl kl{ ( )}ε ε 0 0  (16)

Using the mean stress equation, it is easy to 
show that

E Sij ijkl kl
A

kl kl= + −( ).σ σ σ{ } { }0   (17)

where,

S C C

C

ijkl ijkl ij ijkl kl

ij ijkl kl

= ( ) =

=

−
{ } , { } { } ,

{ } { }

1

0 0

σ ε
σ ε

 

and ..
 (18)

and, ε0 is the composition (and hence) dependent 
eigenstrain and ε* is the periodic strain.

So, we obtain
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σ ε εij
A

ijkl kl kl klV
C E d= + − .∫

1 0

Ω
Ω( )

 (19)

Thus, using homogenisation, the equation 
of mechanical equilibrium can be restated as 
follows:

Given a periodic composition field c on Ω, 
solve the equation of mechanical equilibrium

∂
∂

+ − = ,
r

C E
j

ijkl kl kl kl{ ( )}ε ε 0 0 on Ω  (20)

with the constraint

E Sij ijkl kl
A

kl kl= + −( )σ σ σ{ } { }0   (21)

and the boundary condition

εkl
 is periodic on Ω.  (22)

In this formulation, now it is easy to implement 
an overall prescribed strain (E

ij
 ≠ 0). It is also 

possible to prescribe overall stress using the same 
quantity; this approach of stress control is known 
as “stress-control based on strain-control” and is 
described in.160

Substituting for C
ijkl

, and εkl
0  in terms of 

composition, and εkl
  in terms of the displacement 

field in Eqn. (20), and using the symmetry 
properties of the elastic constants and strains, we 
obtain

 

∂

∂
+

∂

∂
−+ ∆ 








r

E
u

r
c

j

kl

l

k

T

klC c Cijkl
eff

ijklα ε δ β( )
( )

( )


r








= 0.

 (23)
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∂

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
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
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


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

=

2

α( ) ( ) r

jjkl
eff T

kl
j

ijkl kl
j

ijkl
T

kl

c

r
C E

c

r

C
c

ε δ β α

ε δ α β

∂
∂

− ∆
∂

∂

+ ∆
∂

( ) ( )

{ ( ) (cc

rj

)}

∂
.  (24)

3.6  Fourier transform based iterative 
solution to the equation of 
mechanical equilibrium

The equation of mechanical equilibrium is 
typically solved using finite element technique. 
However, the finite element method requires 
meshing of the domain with denser mesh close 
to the interfaces. In phase field models, this cost 

of meshing can be too high; for example, in a 
system undergoing spinodal decomposition, 
the entire domain, at least in the early stages of 
decomposition, consists only of interfaces (albeit 
at various stages of formation). In addition, as the 
microstructure evolves the interfaces continuously 
merge and split, and new interfaces appear while 
old ones disappear. Hence, in the phase field 
literature, an alternate iterative method based 
on spectral techniques is widely used for solving 
the equation of mechanical equilibrium; in this 
section, we describe the method. The disadvantage 
with this method, is, of course that it is iterative 
(though there are methods proposed, based on 
FFT to tackle these situations also: see162). So, when 
the ‘contrast’ (that is, the ratio of elastic moduli 
of the two phases) is too high, the iterations take 
much longer to converge making finite element 
implementations (which solve the problem in 
one step) competitive. The spectral techniques 
are based on Fourier transform; hence the use 
of numerically efficient Fast Fourier Transform 
codes (such as FFTW163) is widespread in the 
implementations of this method.

The iterative technique for solving the 
equation of mechanical equilibrium using 
Fourier transforms is well known:40,159,160,164–168 
our description below is based on.161 Since we 
are using the Fourier transform based technique, 
in the computational domain Ω the fields are 
either periodic (for example, the composition, 
and the moduli and eigenstrains that follow the 
composition) or anti-periodic (for example, the 
applied traction). As noted in the previous section, 
the assumption of periodicity of computational 
domain is also justified physically since the domain 
is the representative volume element.

3.6.1 Zeroth order approximation: Assume  
∆C

ijkl
 = 0; the equation of mechanical 

equilibrium (2) simplifies to

C
u

r r
C

c

rijkl
eff l

j k
ijkl
eff T

kl
j

∂
∂ ∂

=
∂

∂
.

2  ( ) ( )r
ε δ β

 (25)

Let σ ε δij
T

ijkl
eff T

klC= :

C
u

r r

c

rijkl
eff l

j k
ij
T

j

∂
∂ ∂

=
∂

∂
.

2  ( ) ( )r
σ β  (26)

Let Gil
−1  as C

ijkl 
g

j 
g

k
 (where g is the vector in the 

Fourier space). Then the solution (in the Fourier 
space) for the equation above is161

g g( ) { ( )}u JG g cl il ij
T

j
 0{ } = − ,σ β  (27)
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where the superscript on uk
  denotes the order of 

approximation, and J is ( )−1 .

3.6.2 Higher order approximations: The 
zeroth order approximation can be refined to 
obtain the first order solution. This process can be 
continued to higher orders; knowing the (n − 1)
th order solution, the nth order refined solution 
as follows:

{( ) }u JG gl
n

il ij
n

j


g = − ,−Λ 1
 (28)

where

Λij
n

ij
T

ijmn mn
n

ijmn
T

mn

c C E c

C c

− −= − ∆

+ ∆

1 1σ β α

ε δ α

{ ( )} { ( )}

{ [ ( )]

g g

r ββ

α

[ ( )]}

[ ( )]
( ) ( )

c

C c
u

rijmn
m

n
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r

r
r

g

g

− ∆
∂

∂












− 1

 (29)

3.7  Spinodal phase separation: 
Suppression and promotion

The elastic field induced suppression of spinodal 
decomposition is very well known.169 However, that 
elastic strains can promote spinodal decomposition 
is not widely recognized.51 In this section, we 
describe the analyses of both these scenarios. 
Unlike the other theoretical studies described in 
this section (which are sharp interface models), the 
description of spinodal decomposition necessarily 
involves building a phase field model. So, we 
describe the classical (sharp interface model of) 
diffusion before discussing the models of spinodal 
decomposition.

3.7.1 Classical diffusion equation and its 
failure: Let us consider the classical diffusion 
equation: it is based on the constitutive law (known 
as Fick’s first law), which connects the atomic flux 
(denoted by J) to concentration gradient (∇c) 
through the material property known as diffusivity 
tensor (D):

J D= − ∇c  (30)

The diffusivity is a second rank tensor; hence, 
in isotropic and cubic systems it is replaced by 
Dδ

ij
 where δ

ij
 is the Kronecker delta and D is a 

material constant known as diffusion coefficient. 
For the rest of this review, we use diffusion 
coefficient.

Using the law of conservation of mass in 
differential form,

∂
∂

= −∇⋅
c

t
J  (31)

along with Fick’s first law, one obtains the classical 
diffusion equation (which is also called Fick’s 
second law):

∂
∂

= ∇⋅ ∇
c

t
D c  (32)

If the diffusivity is assumed to be a constant 
(that is, not a function of composition, and hence, 
position), we obtain

∂
∂

= ∇
c

t
D c2  (33)

This equation indicates that the rate of 
change of composition at any point is given 
by the curvature of the composition profile at 
that point; hence, if one assumes a sinusoidal 
composition profile, one can see that the 
compositional heterogeneities will be evened 
out with time. However, in some systems, it was 
known that compositional heterogeneities grow 
with time (leading to phase separation—called 
spinodal decomposition) instead of getting 
evened out, giving rise to the so-called “up-hill” 
diffusion.

One way that the compositional heterogenei-
ties will grow if the diffusivity is a negative con-
stant. The negative value of diffusion coefficient 
can be explained if the Fick’s first law is modi-
fied using the knowledge of classical thermody-
namics, namely, that it is the chemical potential 
gradients that drive diffusion and not composi-
tional heterogeneities. In other words, the modi-
fied Fick’s first law states that

J = − ∇M µ  (34)

where M is the mobility tensor and µ is the 
chemical potential, defined as ∂ /

∂
( )G N

c
v  where  

G/N
V
 is the Gibbs free energy per atom (N

V
 is the 

number of atoms per mole, and G is the Gibbs 
free energy per mole). Here again, in isotropic 
and cubic systems M can be replaced by Mδ

ij
 

where M is the mobility; for the rest of this 
review, we use M and not the mobility tensor. 
Note that in condensed systems, the Gibbs and 
Helmholtz free energies can be assumed to be 
the same.

Combining this constitutive law with the law 
of conservation of mass, one obtains
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∂
∂

= ∇ ∇
c

t
M µ  (35)

If we assume the mobility to be a constant 
independent of composition, one can see that the 
mobility and diffusivity are related through the 
relationship:

D M G NV= ∇ /2( )  (36)

In other words, when the sign of the curvature of 
the free energy versus composition curve is negative, 
one expects the diffusivity to become negative and 
the up-hill diffusion to take place and the classical 
diffusion takes place when the curvature of the free 
energy versus composition curve is positive. Thus, 
the point where the curvature of the free energy 
versus composition curve becomes zero, (that is, 
G G

c

′′ ∂
∂

= =
2

2 0) defines the region in which spinodal 
decomposition will take place.

3.7.2 Going beyond classical diffusion 
equation: The chemical potential based 
constitutive law can (partially) explain spinodal 
phase separation—namely, it can explain the 
‘up-hill’ diffusion. However, it does not explain 
all the observed phenomena. Specifically, if the 
diffusivity is negative, one expects sinusoidal 
composition profiles of any wavelength to grow 
with time; further, smaller the wavelength, faster 
will be the growth of such composition waves (since 
shorter diffusion distances lead to smaller diffusion 
times). However, in such up-hill diffusion cases, it 
is known that only compositional heterogeneities 
with a wavelength greater than certain critical 
wavelength grow,169 and the amplitude of any 
wavelengths shorter than the critical wavelength 
diminishes with time.

Cahn170 showed that the critical wavelength is a 
consequence of the (incipient) interface energy (due 
to the formation of the two phases). As we discuss 
in the next section, incorporation of this interfacial 
contribution through a (positive) constant known 
as the gradient energy coefficient (K) leads to a 
modified diffusion equation (in 1-D):

∂
∂

=






∂
∂

−
∂
∂









′′c

t

M

N
G

c

x
K

c

xV

2

2

4

4
2  (37)

Further, in solids, if the two phases are coherent, 
the phase separation can also lead to eigenstrains. 
Let η be the strength of the eigenstrain (εT), where 
η is the Vegard’s coefficient:

η = ,=
1

0
0a

da

dc c c  (38)

Up-hill diffusion: 
diffusion which enhances 
compositional gradients.

where, c
0
 is the overall alloy composition, a 

and a
0
 are the composition dependent lattice 

parameter and the lattice parameter of the 
reference (i.e., of the homogeneous alloy) 
respectively. In such elastically stressed systems, 
Cahn121,170–173 showed that elastic strains can 
suppress spinodal decomposition, leading to 
the description of what is known as coherent 
spinodal, which has now become standard 
textbook material.174

To understand coherent spinodal, let us 
consider the modified diffusion equation of Cahn 
in 1-D (including elastic strain):169

∂
∂

=






+ −








.′′c

t

M

N
G Y

d c

dx
K

d c

dxV

( )2 22
2

2

4

4
η  (39)

Consider a spatial composition profile 
described by

c c A i x d− = ∫0 ( )exp( )β β β  (40)

where c
0
 is the overall alloy composition and β is 

the wavenumber (related to the wavelength λ as 
2π/λ). If we substitute this profile in Eq. 39, we 
obtain the differential equation:

dA

dt

M

N
G Y K A

V

= −






+ +′′





2 22 2 2η β β  (41)

The solution of this differential equation is:

A t A R t( ) ( )exp( ( ) )β β β, = ,0  (42)

where R G Y KM
NV

( ) ( )[ ]β η β β= − + +′′ 2 22 2 2. 
From this solution, it is clear that the sign of R(β) 
determines whether a given composition profile 
will grow or not.

Let us first consider the case where there is no 
eigenstrain (η = 0). If G″ > 0, the composition 
fluctuations die out irrespective of β. However, if 

G″ < 0, there is a critical wavenumber βc
G
K

= − ′′

2
 

(obtained by equating [G″ + 2K β2] to zero). 
Any wavenumber smaller than this will grow 
and any wavenumber larger than this will grow. 
The point at which G″ = 0 is known as the 
(chemical) spinodal. Let us now assume η ≠ 0. 
In this case, the critical wavenumber is given by 

β η
c

G Y

K
= − −′′ 2

2

2

. Hence, the point at which G″ + 
2η2 Y = 0 is known as coherent spinodal. Since 
Yη2 is a positive quantity, it is clear that the elastic 
stresses suppress spinodal decomposition.
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3.8  Stability analysis in an elastically 
inhomogeneous system under 
imposed strains

The iterative procedure described above (in Sec. 6) 
can be used to obtain (approximate) analytical 
solutions in certain elastically inhomogeneous 
systems; for example, in a system with a 
sinusoidal composition profile under plane stress 
approximation. Obtaining such an analytical 
solution helps us extend the spinodal analysis of 
Cahn.

Let us assume the following composition 
dependence for the α and γ functions, namely, 
the composition dependence of the elastic moduli 
and eigenstrain (described in Sec. 5), respectively:

α γ( ) ( )c c c c= = − 0  (43)

Note that in this part of the derivation we 
have used γ for the composition dependence 
of eigenstrain (instead of β as earlier) to avoid 
confusion with the wavenumber denoted by β.

3.8.1 Zeroth order approximation: The 
solution to Eq. (6) assuming a homogeneous 
modulus, in Fourier space is given by168 (as shown 
in Eq. 1):

{( ) } { ( )}
0

u JG c gl g li ij
T

g j
∗ = − ,σ γ  (44)

where, G C g gil ijkl
eff

j k
− =1  and σ ηδij

T
ijkl
eff

klC= ; {⋅}
g
  

denotes the quantity inside brackets to be in 
Fourier space; g

j
 denotes the jth component of the 

Fourier space vector g.
By adopting a similar approach to Cahn’s,170 we 

assume, c − c
0
 = Acosβx, where 2π/β represents any 

generic wavelength. So, in Fourier space, we get:
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 (45)

which when reverted back to the real space, we get:

r

u

u

Asin x
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1
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η ν
β

β
 (46)

Thus the only non-zero periodic strain 
component is:

0

11 01 1( ) ( ) ( )( )∈ = + = + − .∗ η ν β η νAcos x c c  (47)

3.8.2 First order approximation: As we are 
interested in deriving expressions valid for 

very early stages, we can neglect the non-linear 
terms in the expression given in Ref.168 Thus the 
expression for the periodic displacement field 
becomes:

{( ) } { ( )}

{ ( )}

1

0
u JG c g

JG C E c g
l li ij

T
j

li ijmn mn j

∗ = −
+ ,

g g
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σ γ
α∆  (48)

where, E
mn

 = eδ
mn

, with the reference being the 
unstrained homogeneous alloy lattice. The first 
term in the right hand side (RHS) of Eq. (48) is 
the solution to the zeroth order approximation 
which we already have in Eq. (45). So, we are going 
to consider only the second term in the RHS of 
Eq. (48). Denoting it by v, we get:
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 (49)

where y is given as:

y
Y

dY

dc

Y

Yc= =
∆

,
1

0 0
0

  (50)

with Y
0
 denoting the Young’s modulus of the 

homogeneous alloy and ∆Y = Yp − Ym. In the real 
space:
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So the periodic diplacement field obtained 
from the First order approximation is given by:
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 (52)

The periodic strain field is given by,

1

11

0

1
1

( ) ( )( )
( )( )( )

∈ = − +
= − + − ,

∗ η ν β
η ν

ye Acos x
ye c c   (53)

with the other strain components being zero.

3.8.3 Elastic Energy: The total strain energy  
is given by:

F del ij
el

ij
el= ∈ ,∫

1

2 Ω
Ωσ  (54)
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Substituting for the elastic modulus tensor 
components in terms of Y and v and setting 
∈ = −∗

11 0P c c( ) where P = η(1 + v) for zeroth order 
approximation and P = (η − ye)(1 + v) for first 
order approximation respectively, we get:
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 (55)

where we have neglected the constant terms as they 
do not contribute to the elastic chemical potential. 
Proceeding as in Ref.,170 we get the expression for 
the maximally growing wave-number for the 
zeroth order approximation as:
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while for the first order approximation, we get:
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 (57)

The zeroth order approximation given by 
Eq. (56) has the following salient features:

1. On setting η = 0, we recover Cahn’s results170 
for a system with no elastic misfit.

2. Cahn’s expression of the maximally growing 
wavenumber170 for a system with a non-zero 
η (but the elastic modulus tensor being a 
constant) is recovered by setting either y = 0 or 
e = 0. Thus, there is no influence of a non-zero 
y when e= 0, and vice versa.

3. When 2ey/η > 0, the positive contribution from 
the elastic energy goes down, which manifests 
as larger maximally growing wavenumbers 
(i.e., shorter wavelengths) compared to that 
predicted by Cahn’s theory for a system with 
homogeneous modulus.

Compared to Eq. (56) Eq. (57) has an 
additional term. This new term (let this be called 
A) is:

A
Y y e

NV

= − +
−

.0
2 2 2

2

1

1

( )

( )

ν
ν

 (58)

This new term has the following features:

1. There is no η in Eq. (69). So, its contribution 
is independent of the value of the misfit in the 
system.

2. The energy contribution is negative regardless 
of the signs of e or y. Thus, for given values of 
e and y, from the first order approximation we 
get a β

max
, which is larger than that obtained 

from the zeroth order approximation. In other 
words, this term promotes phase separation.

We will use these expressions in the next 
section to show how the imposed strains in these 
systems can promote spinodal decomposition 
even outside of chemical spinodal.

3.9 Particle splitting
The particle splitting instability is attributed to 
elastic interaction energy66,69,175–177 between the 
misfitting precipitates; that is, for a given volume, 
if there are more than one precipitate aligned along 
certain directions of the matrix, the interaction 
energy between such misfitting precipitates is 
predicted to lead to a reduction in energy which 
more than compensates for the increase in 
interfacial energy during splitting. However, this 
is not the only explanation. As we discuss in the 
next section, phase field models have shown that 
nucleation at dislocations, anti-phase domains of 
ordered precipitates, growth instabilities, particle 
coalescence, and, applied stress can also lead to 
split patterns. Thus, currently, the theoretical 
analysis of this instability is neither complete nor 
comprehensive.

3.10 Rafting
One of the earliest studies on rafting considering 
elastic stresses is due to Pineau.178 The study 
of precipitate shape evolution and symmetry 
breaking transitions of Johnson and Cahn123 is 
another pioneering early study on the effect of 
elastic stresses on particle morphologies. Following 
these, there have also been several studies on 
the shape evolution and stability of precipitates 
under applied stresses considering single179–181 and 
multiparticle182,183 scenarios.

One of the difficulties with these analytical 
studies is the evaluation of elastic field for 
arbitrary shapes of precipitates and taking into 
consideration the elastic moduli differences. 
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However, based on these analytical studies, it 
was shown that the driving force for rafting is 
proportional to (i) the elastic moduli mismatch; 
(ii) the misfit; and (iii) the applied stress (when 
the elastic moduli mismatch is small). In fact, the 
sign of rafting, namely, if the precipitates coarsen 
perpendicular (called N-type rafting) or parallel 
(called P-type rafting) to applied uniaxial stress 
depends on the signs of these three quantities. Let δ 
be the ratio of the shear modulus of the precipitate 
to that of the matrix. Then, P (N) type rafting 
occurs when σ Aε0(1 − δ)<0(>0) where σ A is the 
applied stress (with tensile being positive) and ε0 
is the eigenstrain (which is assumed positive if the 
lattice parameter of the precipitate is larger than 
the precipitate) for small δ. Thus, changing the 
sign of any of these keeping the other two constant 
will switch the type of rafting. In addition, the 
differences in anisotropy and the Poisson’s ratio 
of the two phases as well as large deviations of δ 
from unity has a strong say on rafting;184 however, 
in those cases the above rule breaks down.

Note that most of the analytical studies of 
rafting assume Hookean elasticity and are based 
on thermodynamic considerations—either by 
considering the elastic energies associated with 
different shapes of coherent precipitates or by 
considering the chemical potential contours 
surrounding a misfitting precipitate.

The most complete analysis of the rafting 
problem (assuming purely elastic stresses) is 
due to Schmidt and Gross.184 Schmidt and Gross 
consider the instantaneous chemical potential at 
different points of a given precipitate and use it to 
predict rafting behaviour. Here we summarise the 
approach of Schmidt and Gross by highlighting 
the key steps and the results: the algebra is fairly 
detailed and we refer the interested reader to.184

• Consider a two phase material with a coherent, 
misfitting precipitates in a matrix, assuming 
both the matrix and precipitate phases to be 
Hookean elastic. The change in potential of 
the system (strain energy), δW el, due to the 
migration of the matrix-precipitate interface 
by an amount δl in the direction n (normal 
to the precipitate-matrix interface into matrix 
from the precipitate) is calculated using the 
energy-momentum tensor of Eshelby:

 δ τ δW ldAel
n= −∫  (59)

 where τ
n
 = n⋅[P]n is the driving force with [P] 

is the jump in the Eshelby energy-momentum 
tensor.

• Using the traction and displacement continuity 
equations, and using Eshelby’s classic result,185 
namely that the total strain inside an inclusion 
is related to eigenstrain linearly through 
Eshelby tensor (S), one can show that

 
τn = ∈ : :∈

1

2
0 0Ξ  (60)

 where Ξ is a fourth rank tensor, which is related 
to elastic moduli of the two phases as follows 
(as hence has the same symmetry as moduli 
tensor):

 Ξ Λ= + + −([ ] ) ( )([ ] )C S C n C S Cp T pγ  (61)

 where

 Λ = +C C C Cp p p[ ]  (62)

 and

 Γ Ω( ) [ ] ( )n C n n n= − ⊗ ⊗− −1 1  (63)

 with ⊗ is the tensor product (outer product) 
and Ω is the acoustic tensor of the matrix: 
Ωik ijkl

m
j lC n n= . Note that Ξ is only the 

function of elastic moduli and the shape of the 
precipitate.

• Consider the two phase system to be under 
an externally applied stress. Schmidt and 
Gross show that this problem is equivalent to 
the problem above (that is, without applied 
stress) albeit with a modified (“equivalent”) 
eigenstrain ((ε0)*):

 ( ) [ ]∈ =∈ − − ∞0 0 1 C σ  (64)

 where σ ∞ is the applied stress, can be defined; 
this idea is equivalent eigenstrain is very similar 
to that of Eshelby;185 however, while Eshelby 
reduces the problem to one of homogeneous 
inclusion using his equivalent eigenstrain, 
in Schmidt and Gross’s case, the inclusion 
remains inhomogeneous.

• Schmidt and Gross also manage to show 
that in case the precipitate volume remains 
constant and only shape changes, the driving 
force for the modified problem is the same as 
the original problem. These results are valid for 
more than one precipitate; it is independent of 
the geometry of the system; and, it is valid for 
arbitrary inclusion shapes.

• Once the equivalent inclusion is known, the 
problem can be solved using the Ξ tensor for 
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the modified eigenstrain. In case the precipitate 
volume fraction does not change, the modified 
τ

n
 calculated using the equivalent eigenstrain 

(and hence the modified Ξ) gives the change 
in potential.

• At this stage, to proceed further, it becomes 
necessary to assume some symmetry for the 
precipitate as well as their distribution, and 
calculate the change in potential for different 
elongations—as shown schematically. For a 
spontaneous process, the change in potential 
should be negative. Using this condition, maps 
of normalised applied stress and normalised 
elastic moduli ratio indicating the different 
regions of P or N type rafting are obtained (as 
shown in schematic).

3.11 Asaro-Tiller-Grinfeld instabilities
There are two approaches to the study of ATG 
instabilities; one is a perturbation analysis and 
the other is variational approach. While the 
variational approach results are stronger in the 
sense that the morphology that minimizes the 
free energy is identified using it, the perturbation 
analysis will give the morphology also taking into 
account the kinetics. There are morphological 
instabilities such as dendritic morphologies 
formed during solidification, which are a result 
of kinetics (how fast can the solidification 
front can move), and actually increase the 
interfacial free energy. Thus, both approaches 

are needed for a complete understanding of the 
morphological instabilities. In addition, since the 
ATG instabilities are of two types, namely, static 
and dynamic, while variational approaches are 
ideal for static studies, the perturbative approach 
can take the growth into account while analysing 
the stability.

There are a few relevant reviews/useful 
reviews/ that valid reviews discuss the elastic stress 
effects, from the point of view of applications, 
on surface instabilities,186 on semiconductor 
heteroepitaxy107 and epitaxial growth,187 during 
crystal growth by atomic and molecular beams,188 
and, on wrinkling of surfaces in soft materials.21 
The instability analysis itself is summarised in 
several articles for several different scenarios: 
see, for example.96,97,189–213 These papers can be 
classified in many different ways; for example, 
they can be classified based on the phases 
involved as solid-solid (for example, multilayers 
of solids), solid-liquid (for example, minerals in 
contact with stressed solids) and solid-vapour 
(for example, elastic half-spaces, plates and 
thin films), the mechanism assumed (volume 
diffusion or surface diffusion or evaporation-
condensation), the assumptions about the 
elastic properties (isotropic or orthotropic), 
the geometry they assume (cylindrical pore, 
spherical cavity, thin film and so on), the source 
of elastic strain (applied stresses, pressure in 
fluid, coherency strains, imposed strains due to 
epitaxy and so on), whether they consider linear 
or nonlinear effects, the approach they take, 
namely the perturbative approach of Asaro-Tiller 
or the variational approach of Grinfeld. In this 
section, for the same of completeness, we briefly 
summarise the steps involved in the perturbative 
(using solid-solid, thin film geometry example202) 
and variational (using solid-liquid, curved solid 
in contact with fluid geometry example191) 
approaches.

3.11.1 Variational approach: The variational 
approach pioneered by Gibbs, namely, extremising 
the relevant free energy functional, is used to 
study the stability of stressed solid in contact with 
the second, compliant phase (be it solid, liquid or 
vapour), is described in this section (with specific 
reference to stressed solid in contact with a fluid). 
As noted by Heidug,191 by demanding that, at 
equilibrium, there should be no production of 
entropy, one can derive the condition of chemical 
equilibrium at the interface as a jump condition, 
as done by Lehner and Bataille.214 This entropy 
production approach shows that the conditions 
derived using Gibbsian approach are generic 

Figure 2: Schematic rafting behaviour based 
on the analysis of Schmidt and Gross, assuming 
a positive dilatational eigenstrain and an applied 
stress along the x-axis on particles with four-
fold symmetry; the red regions (6 and 7) require 
the elastic anisotropy and Poisson’s ratio of the 
two phases to be different; the green region (5) 
corresponds to δ  1 ; the blue regions (1, 2, 3, 
and 4) are where the P and N rule is valid. The 
figure is based on184 and adapted from.161
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and are independent of the specific constitutive 
behaviour assumed for the bulk phases or the 
loading configuration that the solid is subjected 
to.

Let us consider the equilibrium of a solid-
fluid system as shown in the schematic Fig. 3; the 
system is at constant temperature and is enclosed 
by rigid boundaries. The equilibrium of such a 
system is determined by the minimization of the 
(Helmholtz) free energy

Ψ
Σ

= +
+∫ ∫R Rs f

dv daψ ψ̂  (65)

where the first term is the bulk free energy 
integrated over the solid (R

S
) and liquid (R

f
) 

volumes (in the reference state at equilibrium) and 
the second term is integrated over the interface 
area; the minimization has to be carried out subject 
to the conservation of the solvent (denoted by D) 
and solute (denoted by S) mass:

R R

S S

s f

dv da
+∫ ∫+ =ρ ρ

Σ
ˆ Constant  (66)

R R

D D

s f

dv da
+∫ ∫+ =ρ ρ

Σ
ˆ Constant  (67)

Thus, the problem we are considering is one 
of constrained minimization. So, we introduce the 
(undetermined) Lagrange multipliers λS and λD 
corresponding to the two constraints, and write 
the new functional to be optimized as follows:

Φ Ψ
Σ

Σ

= + +





+ +





+

+

∫ ∫

∫ ∫

λ ρ ρ

λ ρ ρ

S

R R

S S

D

R R

D D

s f

s f

dv da

dv da

ˆ

ˆ   (68)

The minimization is achieved when the first 
variation δΦ is zero and the second variation 
is positive. The first variation leads to local 

equilibrium conditions—which, in this case, are 
as follows:

• The chemical potential for the solvent and the 
solute are uniform;

• In solid and the fluid, the relevant equations 
of mechanical equilibrium is satisfied; that is, 
solid supports non-hydrostatic stress and in 
fluids the stress state is hydrostatic;

• At the interface, force balance for stressed 
membranes is satisfied; namely, capillary 
equilibrium for solid-fluid interface is satisfied; 
and at the interface, the shear stresses in the 
solid are balanced by surface tension.

The key piece in this derivation is the 
identification appropriate allowed variations. 
Specifically, the allowed variations should be such 
that (i) there are no displacements at the system 
boundary (since we assumed it to be rigid); 
(ii) the displacements at the interface have no 
discontinuity; (iii) in the solid phase, their gradient 
is the same as the variation of the deformation 
gradient; (iv) the displacements at the interface, 
when decomposed into the normal and tangential 
components, give rise to tangential components 
that are compatible with the (Gaussian) surface 
parameters; and (v) the interface velocity and the 
rate of change of interface metric that it gives rise 
to are compatible.

The second variation gives the stability 
criterion; it can be shown that stability demands 
that (i) the stress on the solid at the interface 
should be hydrostatic and equal to fluid pressure; 
and (ii) either the Gibbs surface energy vanishes or 
that the interface is flat.191 Thus, phase equilibrium 
at non-hydrostatically stressed, curved solid-fluid 
interfaces is not stable.

3.11.2 Perturbative approach: Let us consider 
a perturbation of the solid-solid interfaces as 
shown in Fig. 4 in an elastically stressed solid. 
The (sinusoidal) perturbed interface profile is 
described by y kxi

h= ± +[ cos( )]
2

δ , where δ is 
the amplitude of perturbation of wavelength 
λ π( )= 2

k
 where k is the wavenumber and h is 

the height of the film as shown in the figure. 
We assume δ k1 ; that is, the interface profile 
is such that its slope is very small everywhere; 
this assumption is what makes the analysis 
perturbative.

Let µ
0
 be the chemical potential of the 

interface when it is flat and let µ be the chemical 
potential along the interface when the interface 
is perturbed. Let γ be the (isotropic) interfacial 
energy. Then,

Figure 3: Schematic of solid-liquid system in 
reference configuration; based on.191
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µ µ κγ− = + − ⋅
∂
∂















−

+

−

+

0 Ω [ ]W
n

T
u

 (69)

where κ is the interface curvature; Ω is the atomic 
volume; [ ]W −

+  is the jump in strain energy 
density across the interface; T is the traction on 
the interface; ∂u/∂n is the derivative of the total 
displacement field in the direction normal to the 
interface. The first term on the RHS is due to 
interfacial energy; and, the last two terms on the 
RHS are due to elastic stresses and was derived by 
Eshelby using energy-momentum tensor.126

Thus, for the perturbed geometry, the 
equation of mechanical equilibrium is to be 
solved (under appropriate boundary conditions), 
and using the elastic solution obtained the 
second and third terms are to be evaluated. It 
is not possible to do this analytically. However, 
since we have assumed small slope for the 
interface everywhere, it is sufficient to obtain 
these quantities to first order in δk and such an 
approximate expression can be obtained—see 
these notes for the MAPLE™ script, which can 
be used to obtain the elastic solutions.215 In 
addition, the interfacial curvature can also be 
shown, to first order in δk, to be δk2cos(kx).

Let F be the force on atoms at the interface. 
It is relationship to the chemical potential is as 
follows: F

s
= − ∂

∂
µ

, where s is the distance along the 
interface (interfacial arc). By Fick’s first law, the 
atomic flux is proportional to the force and the 
proportionality constant is the mobility M; that is, 
J = MF. The mobility is related to the diffusivity 
and interface width η through M = Dη/(Ωk

B
T), 

where k
B
 is the Boltzmann constant and T is the 

absolute temperature. Once the flux is given, 
using the conservation of mass, the velocity of the 
interface (v) can be calculated as

ν µ
= −

∂
∂

=
∂
∂

Ω Ω
J

s
M

s

2

2
 (70)

However, the velocity can also be calculated to 
first approximation, by differentiating the interface 
profile with time, and hence.

ν δ µ
≈

∂
∂

=
∂
∂t

kx M
s

cos( ) Ω
2

2
 (71)

The solution of this equation (since the RHS 
term can be shown to be sinusoidal) is

δ τ δ φτ( ) ( )exp( )= 0  (72)

where both the time, τ and growth rate ϕ, are 
non-dimensional.

By solving the elastic problem under different 
boundary conditions and assuming different 
diffusion mechanisms, Sridhar et al.202 showed 
that there are two possibilities of break-up for 
films—namely, symmetric and anti-symmetric. 
In fact, Sridhar et al.202 give stability diagrams 
indicating the parameter ranges of break-up and 
the type of break-up.

4 Phase-field Models
The models used for the study of elastic stress 
induced instabilities can be very broadly 
classified as atomistic models and continuum 
models. The Discrete Atom Method (DAM) is an 
example of the atomistic method. On the other 
hand, the continuum models can further be 
broadly classified as sharp interface and diffuse 
interface models. Most of the theoretical studies 
described in the previous section, for example, 
are sharp interface models. There are numerical 
implementations (at times based on the finite 
element method) of these sharp interface models 
(see for example,216). However, for the study of 
microstructural instabilities, as we show below, 
the diffuse interface models are the most ideal.

In the diffuse interface models, the 
microstructure is described using field variables 
(that is, variables which are defined for all space 
points at all times) and their derivatives. These 
field variables are also called order parameters. 
The order parameters typically take a constant 
value in the bulk phases and change from one 
bulk value to another in the interface region. 
Thus, the interface is defined as the region over 
which the order parameter changes. Hence, these 
models are called diffuse interface models. In 
these models, the bulk phases are defined by the 
constant value that the field variable takes inside 
of them. Hence, these models are also called 
phase field models—to indicate that different 
phases are denoted by the field variables taking 
specific values.

Figure 4: Schematic of perturbation of the film-
matrix interface; based on.202
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There are several different ways in which one 
can understand phase field models. Here we list a 
few of these viewpoints—though, these viewpoints 
are not exclusive.

Phase field models can be thought of as 
a mathematical strategy to find solutions for 
hard-to-solve sharp interface models.217–219 In 
such a scenario, we artificially assume a width 
to an interface, which, in reality, a plane of zero 
width. Such artificial, diffuse interface allows us 
to solve the resultant partial differential equations 
fairly easily. In such a viewpoint, the attempt is 
always to show that in the limit of the interface 
width going to zero, we obtain the corresponding 
sharp interface models, and hence, in the limit of 
the interface width going to zero, we obtain the 
solution to the sharp interface problem from 
the corresponding diffuse interface solution. 
This viewpoint can be considered as a purely 
mathematical viewpoint because many physical 
interfaces are indeed diffuse.

Phase field models can also be thought of as 
partial differential equations that lead to interesting 
patterns as solutions. In this viewpoint, which is 
also relatively mathematical, the emphasis is on 
the solutions obtained. A classic example of this 
viewpoint is the attempt of Alan Turing220 to look 
at pattern formation (what he called as chemical 
morphogenesis) as a reaction-diffusion equation.

Another prominent viewpoint is to think of 
phase field models as continuum models (derived 
from statistical physics) that lead to interesting 
patterns as solutions.221,222 As in the case of 
biological pattern formation models, in this 
viewpoint also, the emphasis is on the solutions 
obtained. However, here an attempt is also made 
to connect the patterns obtained to the underlying 
physical processes and statistical mechanics. To 
that extent, this viewpoint is more physics based.

The viewpoint (which we will take in this review, 
and which we call as the materials science based 
approach) is to consider phase field models as non-
classical diffusion equations. In this viewpoint, we 
begin by modifying the classical thermodynamics 
of materials. In classical thermodynamics, the 
interface width is arbitrarily assumed (typically, 
zero—though not always); and, in calculations 
(such as in phase diagram construction) the 
interface contribution is further assumed to 
be negligible. If we incorporate this interface 
contribution and allow the system to choose 
the interface width consistent with the imposed 
thermodynamic variables and constraints, the 
resultant non-classical thermodynamics (along 
with certain constitutive laws), as we show below, 
leads to equations which are non-linear diffusion 

equations. This was the approach pioneered by 
Cahn and Hilliard in formulating the Cahn-
Hilliard equation223 and explained very lucidly in 
his pedagogical article by Hilliard.169

The contribution of Cahn and Hilliard (based 
on the earlier atomistic studies of Hillert) is to 
show that this wavelength limit is set by interfacial 
energy of the incipient interfaces in the system and 
to get this limit out of the model, the interfacial 
energy contribution should be incorporated into 
the free energy. In the next subsection, we will 
indicate the modification to the free energy and 
the derivation of the Cahn-Hilliard equation. 
This is one of the two canonical phase field 
equations. In the following subsection, we will 
indicate the other canonical phase field equation 
called Allen-Cahn equation (or, sometimes Time 
Dependent Ginzburg-Landau (TDGL) equation, 
or, simply, Ginzburg-Landau equation). All phase 
field models can be thought of as a combination 
of these two models. These two subsections will 
also set the stage for us to describe the process of 
formulating phase field models in a more abstract 
fashion.

4.1 Cahn-Hilliard equation
The classical Gibbs free energy in a binary alloy is 
a function of composition. The derivative of this 
free energy with respect to the A or B atoms gives 
the corresponding chemical potential. Using the 
chemical potential in the modified Fick’s first law 
in combination with law of conservation of mass 
leads to the classical diffusion equation.

Cahn and Hilliard showed that in order to 
account for interfacial energy contribution to 
the free energy, the free energy should be made 
a function of not just composition but also its 
derivatives (spatial, such as gradient, curvature, 
aberration and so on). This implies that the free 
energy is not a function but functional. Specifically, 
in the case of a binary alloy (assuming isotropy or 
cubic anisotropy), Cahn and Hilliard showed that 
the free energy functional is of the form

G c c N dV f c K cV V
( ) [ ( ) ],∇ ,... = + | ∇ |∫ 0

2
 (73)

where K is the gradient energy coefficient (assumed 
constant), and f

0
(c) is the bulk free energy density.

Since the free energy is a functional, the 
chemical potential is given by the variational 
derivative of the free energy functional (the Euler-
Lagrange equation):

µ
δ

δ
=

/
=

∂
∂

− ∇
( )G N

c

f

c
K cV 0 2  (74)
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Using this chemical potential, we can define 
the flux as

J = − ∇
∂
∂

− ∇





M
f

c
K c0 2  (75)

This flux, along with the conservation of mass, 
leads to

∂
∂

= ∇ ∇
∂
∂

− ∇





c

t
M

f

c
K c0 2  (76)

Thus, the Cahn-Hilliard equation is given as

∂
∂

=
∂
∂

∇ − ∇
c

t
M

f

c
c MK c0 2 4  (77)

where we have assumed the mobility to be a 
constant.

Comparing this equation with the classical 
diffusion equation, we see that there is an extra 
non-linear term (∇4c).

4.2 Allen-Cahn equation
The Allen-Cahn equation can be derived in 
a very similar fashion. Let us assume that the 
microstructure is described using an order 
parameter φ. For simplicity, we assume that 
the φ parameter takes to distinct values (say, 
zero and unity) in two phases and takes values 
between zero and unity in the interface region. 
Let f

0
(φ) be a double-well potential with minima 

at zero and unity. Let us consider a free energy 
functional that describes the thermodynamics of 
the system:

 

G N dV f KV V
( ) [ ( ) ],φ φ φ φ,∇ ,... = + | ∇ |∫ 0

2
 (78)

where K is the gradient energy coefficient (assumed 
constant).

In this case also, we can define a chemical 
potential:

µ
δ

δφ φ
φ=

/
=

∂
∂

− ∇
( )

.
G N f

KV 0 2  (79)

In the Allen-Cahn case, we assume that the order 
parameter is not a conserved quantity (unlike the 
case of composition where d

dt
cdV[ ]∫ = 0). Hence, 

we assume the following constitutive law for the 
rate of change of order parameter:

∂
∂

= −
φ µ
t

L  (80)

where L is the relaxation parameter.224

Hence, one obtains the Allen-Cahn equation 
as

∂
∂

= ∇ −
∂
∂

φ φ
φt

LK L
f2 0 .  (81)

This equation is also known as TDGL equation 
or reaction-diffusion equation, since it is very 
similar to diffusion equation except for the non-
linear polynomial is φ, which is like a source/sink 
term due to chemical reactions.

4.3 Incorporating elastic stress effects
Since we concentrate on the elastic stress induced 
microstructural instabilities in this review, the 
incorporation of elastic stress effects into the 
formulation is a key step. The incorporation 
of elastic stress effects into the phase field 
models is achieved by adding the elastic energy 
Fel el el= ∫1

2 σ ε  to the free energy functional. 
The elastic stress and strain fields are obtained by 
solving the equation of mechanical equilibrium.

In all these models, since the time scales 
of elastic relaxation are much larger than the 
diffusional time scales, the phase field equations 
and the equation of mechanical equilibrium 
are solved sequentially, assuming that for any 
given order parameter field, the elastic fields 
equilibrate instantaneously; in addition, the 
eigenstrain or the elastic moduli or both are 
slaved to the order parameter. The resultant 
equation of mechanical equilibrium is solved 
with either imposed strain or applied traction 
boundary conditions.

In models of microstructure evolution, it 
is very common to assume that the domain of 
computation is a representative volume element; 
in other words, it is common to use periodic 
boundary conditions.

As discussed earlier, in most cases of interest, 
the elastic moduli are anisotropic (at least cubic) 
and inhomogeneous; there are eigenstrains 
(primarily, due to coherency) and applied stresses. 
Hence, slaving the eigenstrains and elastic moduli 
to the order parameters makes solving the 
equation of mechanical equilibrium becomes one 
of homogenisation problem.

The equation of mechanical equilibrium 
in coherent, anisotropic and inhomogeneous 
systems can, of course, be solved using finite 
element techniques; there are several studies that 
use finite element techniques. However, in phase 
field models, in certain cases, like, for example, in 
the case of spinodal decomposition, such finite 
element techniques can become very difficult from 
an implementation/computational cost point of 
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view, since to capture interface very fine meshing is 
needed and the microstructure is full of interfaces. 
In addition, as the microstructure evolves, the 
mesh also needs frequent updating. Hence, 
Fourier transform based spectral techniques are 
very widely used and are quite successful.

4.4 Formulation
As noted at the beginning of this article, 
microstructure is nothing but the size, shape and 
distribution of interfaces; specifically, when we 
are studying elastic stress driven microstructural 
instabilities, we are interested in the formation, 
disappearance, break-up and/or merger of 
interfaces in elastically stressed systems. Thus, any 
model that we formulate to study stress driven 
microstructural instabilities should be capable 
of describing the microstructure (geometry or 
topology), its energetics (thermodynamics), 
and kinetics; in addition, since we are interested 
in stress driven microstructural changes, our 
energetics should include the strain energy, which, 
in turn, should be calculated using the appropriate 
physics.

The two canonical phase field models that 
we discussed above, namely the Cahn-Hilliard 
equation for systems with conserved order 
parameters, and Allen-Cahn equations for systems 
with non-conserved order parameters lead to non-
linear diffusion equations (from a mathematical 
point of view; note that physically, while Cahn-
Hilliard is actually a modified diffusion equation, 
Allen-Cahn is not). However, from the derivation 
of these two equations it is clear that the general 
formulation of phase field models (which are 
nothing but a combination of these two types of 
equations) consists of the following steps:

• Description of microstructure (the geometry/
topology)

 The first step in formulating a phase field 
model is to identify the order parameter 
that describes the microstructure. The order 
parameter can be a conserved quantity (such 
as composition) or a non-conserved quantity 
(such as ordered domain of a given type).

• Thermodynamics
 The second step is to describe the 

thermodynamics of the system. We do this by 
defining the free energy or entropy functional; 
these thermodynamic functionals are given 
in terms of the order parameters and their 
spatial derivatives. In our viewpoint, it is 
such thermodynamic description (in terms 
of functionals) that make phase field models 
what they are. If the thermodynamics is 

described using classical free energy functions 
(without (at the least) the gradient terms), the 
resultant partial differential equations will lead 
to sharp interface and not diffuse-interface 
description.

• Kinetics
 Given a free energy functional, one can define 

the chemical potential. In terms of the chemical 
potential, then, there are two constitutive laws 
that we use, which introduce the kinetics—how 
fast or slow the system relaxes to its equilibrium 
(since, for equilibrium, the Euler-Lagrange 
equations should equal zero): in the case of 
Cahn-Hilliard equation, it is the mobility and 
in the case of Allen-Cahn equation, it is the 
relaxation parameter.

• Conservation laws and other physics
 As in the case of Cahn-Hilliard equation, after 

the introduction of kinetics, we may have to 
impose any other relevant conservation laws 
such as conservation of mass, energy and 
charge. In addition, in the case of elastically 
stressed systems that we discuss in this paper, 
the free energy will also consist of the elastic 
energy terms. These elastic energy terms are to 
be computed using the relevant physics: that 
is, the equation of mechanical equilibrium 
should be solved under appropriate boundary 
conditions and the resultant stress and strain 
fields along with applied stresses (if any) 
should be used to compute the elastic energy 
term. Similar process has to be carried out 
if the free energy contains electric, magnetic 
or any such other energy terms that are 
relevant.225

At this point, it is to be emphasised that phase 
field modelling is a methodology; for example, 
for the same problem, there could be more than 
one description in terms of order parameters and 
the energetics; this depends on the level of detail 
that we wish to incorporate. There is no “the” 
phase field model for any given problem. A good 
example of this, in our context, is to think of phase 
field models for elastically stressed systems: one 
can consider scalar order parameters and make the 
eigenstrains slaves of such order parameters (which 
is the more common approach); however, one can 
also think of the strains as the order parameters 
and evolve them by writing corresponding free 
energies (if we can). Similarly, in the case of 
Ni-base superalloys, for example, if Anti-Phase 
Boundary (APB) related physics is not important, 
they can be modelled using a single composition 
order parameter. However, if APBs are important, 
in addition, one should introduce three additional 
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non-conserved order parameters so that the four 
variants can be completely described.

From the description above, yet another 
viewpoint on phase field models emerges. In 
this viewpoint, phase field models are partial 
differential equations that describe the evolution 
of order parameters that describe microstructures; 
the order parameters are field variables; they take 
constant values in the bulk and change in the 
interface region and thus, highlight the interfaces 
and hence help us understand the formation of 
microstructures and their evolution.

There are two characteristics of the solutions of 
the phase field equations that are very important. 
The first is of course the diffuse interface solution 
(which is a direct consequence of the inclusion 
of gradient terms); this means that there are no 
discontinuities in the domain and hence there 
is no need for tracking of interfaces (to impose 
jump conditions for example). This makes 
the numerical solutions much easier and also 
makes the processes of dealing with formation, 
disappearance, merger and splitting of interfaces 
fairly easy. The second is that the interface physics 
(that which is relatable to the interfacial energy 
primarily and not so much interface structure—
such as Gibbs-Thomson effect, for example) are 
automatically taken into account in these models. 
There is no need to incorporate them separately as 
is sometimes done in sharp interface models.

4.5  Parameters, non-dimensionalisation 
and numerical implementations

The parameters that enter the phase field model 
for stress induced microstructural evolution are 
the following:

• Related to the thermodynamics of the 
system

 Bulk free energy density and the gradient 
energy coefficients;

• Related to the kinetics
 The mobilities and relaxation parameters; 

and,
• Related to equation of mechanical 

equilibrium
 The eigenstrains and the elastic moduli along 

with their dependence on the order parameters; 
and applied stresses or imposed strains.

In addition, there are numerical 
implementation related parameters that enter the 
calculations such as the domain size, the spatial 
grid size, and the time-steps of integration. Finally, 
in the numerical solution of the equation of 
mechanical equilibrium, there are magic numbers 

that enter the calculation such as convergence 
criterion for elastic fields.

In general, while solving equations on a 
computer, it is preferable that the equations 
are non-dimensionalised. This makes the 
computations robust and can help avoid 
repetitions in calculations. A careful choice of 
non-dimensionalisation is also essential to carry 
out meaningful simulations. Let us consider a 
typical microstructure in which the interface 
is a few lattice parameters wide, say 1 nm or 
so. To capture the interface in the numerical 
model, we need nearly six to eight mesh points. 
Assuming that the interface will be captured using 
eight mesh points, one can see that the spatial 
discretization corresponds to about 1.25 Å. This 
can, at times, be very restrictive. Appropriate 
non-dimensionalisation can help overcome this 
problem as explained below.

In the classical Cahn-Hilliard model, there are 
two interfacial parameters, namely, the width and 
energy. One can use the parameters associated with 
the thermodynamics, namely, the energy barrier 
between the two phases in the bulk free energy 
density and the gradient energy coefficient by 
non-dimensionalising these quantities using the 
interfacial energy and interfacial width, while the 
kinetic parameters are used to non-dimensionalise 
time. Such non-dimensionalisation helps us study 
bigger systems and is described in detail in.161

At this point, it is also clear that there are 
several quantities that enter the phase field models, 
which are difficult to measure experimentally. For 
example, the coherency strains, the moduli and 
their dependence on composition, the interfacial 
energy, and the mobility are difficult to measure 
experimentally, though, reliable measurements of 
the bulk free energies (in the form of CALPHAD 
data, for example) are available; in some cases, 
diffusivity is also available.

In Cahn and Hilliard’s work, in addition to 
connecting their bulk free energy density term to 
a regular solution model, they also attempted to 
relate the gradient energy coefficient to the bond 
energies. However, these attempts are not very 
successful. Hence, in most phase field models, at 
present, it is far more easier (and reliable) to get 
trends than to get actual quantitative information 
though attempts are being made to make the phase 
field models more quantitative; see for one of the 
early attempts.226

Finally, the phase field equations can be solved 
using any of the available numerical techniques: 
finite difference, finite volume, finite element (see 
for example227,228 and references therein), boundary 
integral method19 and spectral techniques.229
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As noted by,228 though using finite element 
method for Allen-Cahn equations is easy, for 
Cahn-Hilliard method higher order interpolation 
methods are needed. Simulating local mass 
flux and handling topological singularities are 
very difficult in boundary integral methods; the 
method might also require preconditioners to 
solve the resulting system of equations.19

Khachaturyan, Chen and their co-workers 
pioneered the use of spectral techniques. 
Spectral techniques have several advantages:  
they automatically incorporate periodic 
boundary conditions that are the relevant 
boundary conditions for the representative 
volume elements. Even though they do not 
convert the partial differential equation into an 
ordinary differential equation since phase field 
models consist of non-linear terms, they still can 
be implemented using semi-implicit techniques 
and hence allow for relatively larger time steps 
and also result in spectral accuracy. They can 
handle higher order derivatives very well. One 
disadvantage of spectral techniques, of course, 
is that boundary conditions other than periodic 
boundary condition is difficult to incorporate, 
which can be done fairly easily in finite difference 
techniques for example.

In terms of numerical implementation, even 
though finite difference techniques are more 
involved, they can be easily parallelised unlike 
spectral techniques. However, in recent times, 
the GPU based parallelisation of FFT (such as 
CUDAFFT) has given some advantage in terms of 
parallelization to spectral techniques.

4.6  Benchmarking against analytical 
solutions

Several authors have carried out more formal 
asymptotic analysis for phase field models 
incorporating elastic stress effects; see Fried and 
Gurtin,149 Leo et al.27 and Garcke and Kwak230 for 
some representative examples.

When it comes to numerical implementation of 
phase field models, benchmarking the numerical 
solutions obtained from phase field models 
against classic elastic solutions (in those cases 
where they are available) is very important. Such 
benchmarking serves to show that the numerical 
implementation is correct. In addition, though not 
as rigorous as the analysis of, for example, Garcke 
and Kwak, such benchmarking can be thought of 
as an engineering approach to checking on the 
correctness of phase field formulation. In this 
subsection, we list examples of such benchmarking 
from some of our work; similar benchmarks have 
been reported by other authors too.

• Chirranjeevi et al.231 have confirmed that 
the phase field models do indeed show the 
symmetric and anti-symmetric break-up of 
films as predicated by Sridhar et al.202 Further, 
at the very early stages of the break-up, the 
maximally growing wavelength compares well 
with the analytical solution.161

• Gururajan and Abinandanan168 have obtained 
all the five regions identified by Schmidt and 
Gross.184 In addition, they have also verified that 
the results from the phase field model compare 
well with Eshelby solution for inclusions and 
inhomogeneities (including voids),7 and the 
homogeneous strain8 for homogeneous alloys.161

• Mukherjee et al.232 show that phase field models 
predict the curvature and coherency driven 
Gibbs-Thomson effect very well; further, in 
1-D, in systems with no coherency strains, the 
growth rates are shown to agree well with the 
classical solutions of Frank233 and Zener.234

4.7  Spinodal phase separation: 
Suppression and promotion

The phase field implementation of phase 
separation in elastically stressed systems have been 
many: see for example.166,167,235–242 As noted above, 
the presence of elastic stresses or strains tends to 
suppress spinodal. However, when the system does 
undergo spinodal, the composition modulations 
in elastically softer directions grow leading the 
phase separation that is anisotropic.

If the system is elastically inhomogeneous, the 
harder phase becomes more compact but deviates 
from spherical shape and takes shapes that are 
consistent with their elastic anisotropy; for 
example, in cubic systems they become cuboids; 
they also preferentially align along the elastically 
soft directions. In addition, the coarsening rates 
in such systems after phase separation is slow. 
Finally, as we show below, the compact precipitate 
phases might split; and, in the presence of applied 
stresses, they coarsen preferentially along certain 
directions.

However, if there are imposed strains on 
the system (for example, as in the case of an 
epitaxially grown thin film undergoing spinodal 
decomposition), then the elastic stresses can 
promote spinodal decomposition even outside 
the chemical spinodal.51 In this section, using the 
analytical solution derived in the previous section, 
we extend the analysis of Cahn and show that the 
coherent spinodal region extends beyond chemical 
spinodal.

3.7.1 Computing the spinodal: Here we 
assume a regular solution model for computing 
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the spinodal lines. According to Cahn,170 the 
chemical spinodal is given by,

∂
∂

= ,
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G

c
 (82)
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where G is the molar Gibbs free energy, R is the 
Universal Gas constant and Ω is the molar heat 
of mixing. The critical temperature is given by:

T
Rc = .

Ω
2

 (84)

For the coherent spinodal in the plane stress 
setting assuming isotropic elasticity, we have:
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where the Young’s modulus Y is a function of 
homogeneous alloy composition and V is the 
molar volume of the homogeneous alloy under 
question.

Now we consider the situation where the elastic 
modulus of the system is composition dependent 
and the system is subjected to an applied 
homogeneous strain (constrained spinodal). 
We start out with a homogeneous alloy having 
a composition c

0
, whose strain energy density is 

given by:
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where we assume the lattice of an undecomposed 
50:50 alloy to be the reference. In the presence 
of a composition modulation, the strain energy 
density becomes:
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This defines the constrained spinodal as:
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where V denotes the molar volume.
In Fig. 5, we show the chemical, coherent and 

the constrained spinodal lines. The asymmetry 
in the spinodal lines is a characteristic of the 
composition dependent modulus. The spinodal 
lines were constructed using the following 
values for the different parameters (the strains 
are measured with respect to a 50:50 alloy): Ω = 
10000 J/mol – K, Y

A
 = 312.5 GPa, Y

B
 = 625 GPa, 

η = 0.02, ν = 0.3 and V
A
 = V

B
 = 10−5 m3/mol. For 

obtaining the different constrained spinodals, 
we applied different homogeneous strains: 
e = 0.04 leads to the constrained spinodal 
extending beyond the chemical spinodal; 
e = 0.01 leads to the constrained spinodal 
lying between the coherent and the chemical 
spinodal; e = −0.02 leads to the constrained 
spinodal being restricted inside the coherent 
spinodal. Thus, our choice clearly demonstrates  
the different possibilities for the constrained 
spinodal in an epitaxial systems where large 
tensile and compressive imposed strains are 
possible.

4.8 Particle splitting
Wang et al.236 used phase field modelling to show 
particle splitting that was achieved by the nucleation 
of matrix phase at the centre of the precipitate. 

Figure 5: Chemical, coherent and the constrained 
spinodal lines. Notice that for different values of 
applied homogeneous strain, the constrained 
spinodal can be made to lie within the coherent 
spinodal, or outside of coherent spinodal but 
within the chemical spinodal, or, even outside the 
chemical spinodal.
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However, in this model, the elastic moduli of 
both the phases is assumed to be the same and the 
elastic energy per unit volume was varied. This is 
not very realistic. On the other hand, Wang and 
Khachaturyan,165 using the same homogeneous 
moduli approximation, showed that high elastic 
anisotropy leads to cuboidal precipitates, which, 
due to the presence of corners that promote “earing” 
(due to the point effect of diffusion), can lead to 
star shaped precipitates; however, the stars never 
split (though, initial star shaped particles studied 
using sharp interface models (level set method) 
showed morphologies closer to split morphologies: 
see for example, Zhao et al.243—albeit assuming 
inhomogeneous elasticity.

Luo et al.244 reported particle splitting 
like morphologies as due to nucleation of 
ordered precipitates at dislocations (assuming 
homogeneous moduli approximation). Similarly, 
the phase field study of Banerjee et al.245 showed that 
it is possible to obtain experimentally seen splitting 
morphologies through particle coalescence (as 
also experimentally shown by73–75]).

There are other phase field models that 
report splitting (in elastically inhomogeneous 
systems). Li and Chen166 report particle splitting 
in systems with applied stresses. Boussinot et al.246 
attribute particle splitting to elongated particles 
in an unfavourable direction under applied stress. 
Similar conclusions were also drawn by Lee247 
using DAM method and Leo et al.248 using a 
sharp interface model; our own work on particle 
splitting using phase field modelling also supports 
this conclusion.161

Cha et al.249 and Kim et al.250 report splitting 
as due to elastic anisotropy and diffusion induced 
instability (which, in some sense, is closer to 
ATG instability since they also assume elastic 
inhomogeneity); The elastic anisotropy leads to 
cuboidal precipitates; the corners lead to earing of 
the precipitates as they grow; this earing enhances 
the elastic stress fields (like in ATG instability) and 
hence leads to splitting.

Zhu et al.240 argue that splitting during 
coarsening is due to the geometric aspect of high 
aspect ratios of length to width of the particles.

Leo et al.248 have used sharp interface model 
to show that deviatoric applied stresses and 
non-dilational misfit strains (in the absence of 
applied stresses) can lead to particle splitting. 
Unfortunately, as far as we know, there are no 
phase field models that report splitting in systems 
with non-dilatational misfit or deviatoric applied 
strains. This would be an interesting problem that 
can be solved with existing implementations of 
phase field models.

Further, Lee251 classifies elastic splitting 
instability into two types, namely, commensurate 
and incommensurate; incommensurate instability 
is the instability due to the elastic anisotropy of the 
matrix and precipitate phases being of opposite 
signs. Lee simulated both types of splitting 
using Discrete Atom Method and indicated that 
splitting can happen even in elastically isotropic 
systems.247,252–254 There are no detailed studies on 
incommensurate splitting instability using phase 
field models—though, this is again a problem that 
can be easily studied using available phase field 
models.

To summarise, currently, there are at least two 
valid mechanisms by which ‘split’-like patterns 
can be formed. In inhomogeneous systems, it is 
the interactions of anisotropy induced geometries 
interacting with diffusion fields leading to stress  
fields that result in actual splitting (through an 
ATG like mechanism). The second one is the 
coalescence of different ordered domains coming 
together during coarsening. Note that while 
the first mechanism necessarily involves elastic 
inhomogeneities, the second can operate even in 
homogeneous systems (and while the first one is 
a true elastic stress induced instability, the second 
one is not). Finally, the applied stress fields, non-
dilatational eigenstrains and differences in elastic 
anisotropy between the matrix and precipitate 
phases can also have a strong say on splitting—
though they are not explored experimentally 
enough (nor by modelling in an exhaustive 
manner) at the moment.

Our foregoing discussion is also very 
instructive at another level. It clearly shows 
that several different mechanisms can lead to 
the same microstructural feature. It also shows 
that phase field models (or any modelling study 
for that matter) can not only be used to verify a 
proposed mechanism, but also for advancing new 
mechanisms that can then be checked through 
experiments. Thus, while ‘equations without a 
phenomenological background remain a formal 
game’,255 these games can be very fruitful if 
they lead to such experimental validations and 
verifications. However, such verifications also 
imply that the parameters used in simulations 
are realistic; checking that indeed all the 
parameters used in the simulations are realistic 
becomes difficult due to the different non-
dimensionalisations used. Hence, indicating 
to the readers the translation of simulation 
parameters in terms of what they correspond 
to in real life (which, unfortunately, is not the 
current practice) will make the simulation 
studies more grounded in phenomenology.
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4.9. Rafting
There have been several papers questioning elastic 
energy based explanations of rafting. For example, 
one of the conclusions of Ichitsubo et al.256 reads 
as follows:

In the coherent elastic regime, the rafted 
structure cannot be realized unless the 
elastic misfit exists, and both signs of lattice 
misfit and external stress are not relevant to 
the choice of the rafted structures; the only  
0 0 1 rafted structure can be formed in any 
conditions. This indicates that the actual 
rafting phenomenon cannot be explained 
within the elastic regime.

There are also claims that plastic prestrain is 
essential for rafting. For example, Tinga et al.257 
write:

Whereas a certain amount of plastic 
deformation is a requirement for the onset 
of rafting, the presence of an external stress 
surprisingly appears not to be a requirement 
to sustaining the rafting process.

Finally, there are studied based on elastic 
energy calculations that the raft structure itself 
is elastically unstable258 and phase field models to 
simulate the collapse of the rafted structure.259

The most important contribution from phase 
field modelling is to show that purely elastic stress 
driven rafting is possible. There have been a series 
of phase field studies showing purely elastic stress 
driven rafting: Li and Chen,260,261 Leo et al.,248 
Zhu et al.,240 Gururajan and Abinandanan168 

and Boussinot et al.246 In Fig. 6, and 7, we show 
examples of purely elastic stress driven rafting;161 
these figures vouch for the correctness of the 
predictions of Schmidt and Gross.184

Of the elastic stress driven rafting studies, 
Boussinot et al.246 is the most complete; it not 
only includes the compositional order parameter 
but also the non-conserved order parameters to 
account for the different variants of the precipitate 
phase. These studies show the correctness of the 
thermodynamic models based on Hookean 
elasticity.

As in the case of incommensurate splitting 
shown by Lee,251 incommensurate rafting is also 
possible.184 However, a detailed study of rafting 
due to such differences in anisotropy and Poisson’s 
ratio (which is well within the capabilities of the 
current formulations and implementations) has 
not yet been made.

The second important contribution of the phase 
field models is to indicate the kinetic paths of rafting. 

Figure 6: Figure from:161 A very soft precipitate  
(δ = 0.01) under compressive stress (σA = −0.01 Gm 
along x-axis) in an elastically isotropic system after 
300 time units; numerical simulation corresponding 
to Region 5 of the Figure 2.

Figure 7: Figures from.161 Rafting in an anisotropic system (Zener anisotropy parameter: AZ = 3) of (a) hard 
particles (δ = 2) under a tensile stress, and, (b) soft particles (δ = 0.5) under a compressive stress; stresses 
are applied along the y-axis and, the magnitude of the stress is 1% of the shear modulus of the matrix. 
microstructures after 3000 time units.
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In this regard, the pure elasticity based phase field 
models described above have limited use. However, 
since in the practical scenario, there is always plastic 
activity, and since plastic activity can give rise to 
very different kinetics and kinetic paths, it becomes 
important to incorporate plasticity in the phase 
field models; there have been a few such improved 
phase field models in the last few years.262,263

4.10 ATG instabilities
Kassner and Misbah264 and Kassner et al.265,266 studied 
ATG instabilities by modelling a stressed solid in 
contact with its melt. Kassner et al.265 show that 
the reference state to measure displacements (and 
hence strain and stress) is important and different 
choices lead to different evolution equations; they 
also show that the model, in the sharp interface 
limit, recovers the continuum equations for ATG 
instabilities. Further, Kassner et al. also show that 
phase field models themselves can be used to build 
more complex sharp interface models.

Phase field models of ATG instabilities in the 
case of films in contact with vapour or vacuum is 
more common; see for example.267–274 In addition, 
there are also phase field models that study ATG 
in the dynamic setting of growing films; see for 
example.275–280 In addition to surface diffusion 
being a relatively faster process, an important 
physics associated with these problems is the 
interfacial anisotropy and some of these models 
do incorporate interfacial energy anisotropy.268,276 
Since typical analytical studies of ATG instabilities 
assume isotropic interfacial energies,202 phase field 
studies are helpful to relax this assumption and 
see the effect of the same.

Phase field models of ATG instabilities in the 
cases of film assemblies are studied by Chirranjeevi 
et al.231 and Zaeem and Mesarovic.281 As noted 
in the previous section, in the case of solid-
solid ATG instabilities, there are more than one 
mode of break-up, namely, symmetric and anti-

symmetric are possible. Phase field models are 
able to capture these different modes of break-up 
under appropriate conditions. Further, using the 
phase field models, it is also possible to study 
long-time dynamics (which could be, and indeed 
is, very different from early stage dynamics—see 
Figs. 8 and 9). Finally, it is known that the effect 
of interaction between the different layers is 
important282,283 and phase field models are capable 
of dealing with them as well as the effect of elastic 
anisotropies.231

Zaeem and Mesarovic281 extend the study 
further and look at the effect of metastable 
intermediate phase. In addition, they show that 
there is homogenisation for very thin layers. 
However, as we have seen in the spinodal section, 
in such films, the homogenised region could be a 
phase separated region albeit with a morphology 
different from thin films. This problem has not 

Figure 8: Figures from.161 Symmetric break-up and late stage evolution in a thin film assembly in an 
elastically isotropic, inhomogeneous (δ = 2) system: morphology at (a) 115000, (b) 122000, (c) 129000, and 
(d) 143000 time units. Lx = 512; Ly = 128; h = 10.

Figure 9: Figures from.161 Anti-symmetric break-up 
and late stage evolution in a thin film assembly 
in an elastically isotropic, inhomogeneous (δ = 
4) system: morphology at (a) 20000, (b) 25000, 
(c) 28000, and (d) 34000 time units. Lx = 1024; Ly 
= 128; h = 20.
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yet been explored in detail even though it is well 
within the capabilities of current models and 
implementations.

5 Conclusions
In this review, using stress effects on spinodal phase 
separation, particle splitting, rafting and ATG 
instabilities, we have shown that phase field models are 
quite successful in the study of elastic stress induced 
microstructural instabilities. In some cases, such as 
rafting, they have acted as computer experiments 
to access regimes that are experimentally well near 
impossible to access. In some cases, such as particle 
splitting, phase field models have shown that there 
could be more than one mechanism leading to the 
observed microstructural features. In the case of 
ATG instabilities and spinodal phase separation, 
they are very helpful to understand some of the 
experimental observations; this understanding can 
be translated into better control of phenomenon. 
We have also identified some problems that can be 
tackled with the current phase field formulations 
and numerical implementations but have not yet 
been studied in detail.

From the review, it is clear that there has to be 
more attempts to connect phase field parameters 
either with phenomenological data or with data 
from other methods (such as first principles and 
atomistic simulations) in order to make phase 
field studies more quantitative. We found very 
few papers tackling such problems. There are also 
relatively lesser number of studies on 3-D systems. 
We believe that the GPU based computing will 
change that and expect more 3-D studies in the 
next few years.

We also came across several attempts towards 
extending the models to incorporate interfacial 
energy anisotropy and different aspects of 
plasticity; see for example the study on stressed 
incoherent solid-solid interfaces by Paret,284 
effect of coupling of defects such as dislocations, 
coherent interfaces, vacancy and interstitial discs 
on microstructural evolution,285 spinodal phase 
separation induced by irradiation in the presence 
of dislocations,286 phase separation coupled with 
large elastic and large elastic-plastic deformations 
during Lithiation in Li-ion battery electrodes,287,288 
phase field modelling misfit accommodation by 
considering a precipitate growing into a finite 
elastic-perfectly plastic matrix,289 and, phase field 
model to study the stability of ordered array of 
islands by considering the elastic interaction 
between them.290 In the near future, we expect that 
there will be more studies incorporating interfacial 
anisotropies and plasticity.

There are also attempts to study strain gradient 
theories of Eshelby problem formulation;291 
we believe that phase field formulation of such 
problems will be very interesting. There are a 
few attempts in this direction: see for example, 
the strain gradient models (to introduce 
characteristic length scales of microstructure to 
study mechanical behaviour) based phase field 
modelling to study strongly elastoviscoplastic 
systems.292 Finally, the studies that include other 
physics such as electric and magnetic fields along 
with elasticity will also become more important 
as is clear from several recent attempts to study 
electrochemical processes such as corrosion 
and studies such as the phase field model for 
morphological evolution of vesicles in electric 
fields.293

To conclude, even though the study of elastic 
stress effects on material behaviour started by 
Gibbs about 140 years ago, their study using 
phase field models is still open; and, the open 
problems span the entire range—from theoretical 
formulations, to numerical implementations 
to materials science concepts—not to mention 
experimental verifications and validation.
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