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Abstract | In this article, we review the progress in the field of application 
of phase-field models for simulating electrochemical phenomena such as 
etching, electro-deposition, electromigration, intercalation etc. As we will 
see the present models can be considered as extensions of the already 
existing models for diffusion coupled phase transformations. We briefly 
visit the essential thermodynamics of the electrochemical interfaces and 
the basis of phase-field formulations existing in literature for modeling 
electrochemical reactions and electromigration. Thereafter, we give a brief 
overview of the present state of literature in this field.

1 Introduction
Phase-field modeling has been used extensively 
in investigations of phase transformations 
and pattern formations in many areas such 
as solidification, solid-state transformations, 
and other elastic and magneto-elastic coupled 
problems.1–3 In this paper, we discuss the 
developments in the field of phase-field modeling 
for simulations electrochemistry of related 
applications.

In literature, there are a number of models 
written down for the application to problems 
involving electrochemical reactions. Guyer et al.4,5 
discuss a general description for the including 
electromigration in the phase-field equations 
of the Allen-Cahn type, however, coupling 
of electrochemical reactions whose rates are 
described by the Butler-Volmer type equations are 
not explicitly discussed. Subsequent efforts6 have 
extended the model to include electrochemical-
hydrodynamic interactions in nano-channels. 
A general feature of the model requires the 
discretization of the double layer where there 
are rapid changes in the composition and the 
charge density, requiring fine discretization. This 
has led to model simplifications as described by 
Shibuta et al7,8 and others,9 who extend the KKS 
type10 model for solidification to electrochemical 
reactions. However the authors circumvent 
computational problem of the treatment of double 

layers through a simplification of imposing charge 
neutrality which is valid when time-scale of charge 
re-distribution is much smaller as compared that 
to the relaxation of the long-range diffusion field. 
Thus, the authors apply the model to instabilities 
at the growth front leading to dendrites, which 
are mass-diffusion controlled and the potential 
distribution follows from the continuity of the 
current. This simplification is, however, valid only 
for certain applications such as in electrolysis 
of molten-salts and has been applied to these 
applications by different authors,11,12 who extend 
a Cahn-Hilliard model for incorporating chemical 
reactions. The other extreme of reaction-controlled 
evolution such as spinodal decomposition during 
intercalation has been investigated by,13–16 where 
again the structure and influence of the dynamics 
of the electrochemical interface is ignored. The 
current is related to the over-potential through the 
generalized Butler-Volmer type equation, and the 
current exchange density J

o
, which is a pre-factor 

of the Bulter-Volmer equation is a function of the 
composition and the compositional gradients. 
The general frame-work of including the reaction 
into the mass conservation equation in the 
general phase-field models solving the entire set 
of Poisson-Nernst-Planck equations (PNP),4,5,13 is 
discussed separately13,17 in a manner that is similar 
in treatment to what has been stated in a mean-
field lattice gas model.18
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2  The Equilibrium Electrochemical 
Interface

In this section, we discuss certain properties 
about the electrochemical equilibrium between 
two phases α, β. For this, we develop the 
thermodynamic discussion from the case of 
pure materials to binary alloys and thereafter an 
electrochemical interface.

2.1 Pure material
Let us start from the equilibrium of a pure material, 
i.e. consisting of a single element which exhibits a 
phase transformation (say melting) from α (solid) 
to β (liquid) above a temperature T

m
 (melting 

point). At the equilibrium temperature T
m
, the 

phases α and β co-exist and at this temperature 
the driving force of phase transformation, which 
is the difference of the free-energies between the 
phases is zero, fα(T

m
) = fβ(T

m
), where fα and fβ are 

the free energy densities of the α and β phases 
respectively. The situation can be depicted using 
the following schematic Fig. 1, where above T

m
 the 

free-energy of α (solid) is greater than that of the 
β (liquid), which implies a driving force for 

Driving force: Difference 
between the grand-potential 
densities of the phases which 

reduces to the difference of the 
free-energy densities for the 

case of the pure materials.

melting and conversely for T < T
m
, where there is 

driving force for solidification. At the equilibrium 
temperature T

m
, the internal energies of both 

phases can be shown to have a jump, at the 
interface between the phases α and β following 
the release of latent heat at the interface which is 
the difference of the internal energies of the solid 
and the liquid phases.

2.2 Alloys
Now, let us visit the case of alloys, and for simplicity 
consider a binary alloy. At a given temperature the 
free-energy of each of the phases can be described 
as functions of compositions. Equilibrium between 
the two phases then is described using the well 
known common tangent construction, which gives 
the compositions of the phases in equilibrium  
as well as the region of compositions at a given 
temperature where a two-phase existence can 
be expected. The situation of equilibrium can 
be visualized through the following schematic 
Fig. 2. The common tangent construction can be 
visualized equivalently by performing a Legendre 
transform of the free-energy density (see Fig. 3), 

Figure 1: Schematic of the variation free energies of the α (solid) and the β (liquid) with temperature. 
At T = Tm, the free-energies of both the phases are equal.

Figure 2: Equilibrium in a binary alloy between two phases described using a classical common tangent 
construction. An equivalent description using the Legendre transforms of the phases is described along 
side which is analogous to the discussion of pure materials discussed before.
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which is the grand-canonical potential Ψ, and then 
plotting the grand-potential densities of each 
of the phases against the transformed variable, 
which is the effective diffusion potential µ. The 
intersection of the two curves (Ψα(µ), Ψβ(µ)) 
occurs at the equilibrium diffusion potential µ

eq
, 

which is also the slope of the common tangent at 
which the grand-potential densities of both phases 
are equal. Comparing this schematic with the case 
already discussed for the case of pure materials, one 
can analogously derive that the deviation of the 
diffusion potential from its equilibrium value 
results in a driving force for phase transition in a 
manner similar to the case of temperature in the 
case of pure materials. Noteworthy is the fact that 
while there is jump in internal energies between the 
phases at equilibrium for the case of pure materials, 
correspondingly, there is a jump in the compositions 
between the phases that exist at the same diffusion 
potential across an equilibrium interface.

2.3  Electrochemical interface: alloys 
with charged species

Consider now, the thermodynamics of an 
electrochemical interface. The principal difference 
from the thermodynamics of a purely diffusion 
coupled problem that was discussed for the case 
of a binary alloy in the preceding sections, is the 
fact that the constituents are now charged. This 
implies that diffusion of a particular species may 
bring about a charge localization, which must 
result in the generation of electrostatic potential 
gradients; These electrostatic potential gradients 
must then influence the diffusion of the different 
charged species in addition to the pure diffusional 
gradients; thereby a composite potential that is 
the linear superposition of the two quantities may 
be worked, whose gradient determines the flux of 
the different species. This quantity is called the 
electrochemical potential written as µ µ ϕ= + zF , 
where z is the valence of the ion, F is the charge per 

Grand-potential: This is 
Legendre transform of the 
Helmholtz free-energy density 
as also shown through the 
schematic in Fig. 3.

mole of electrons, φ is the electrostatic potential, 
µ  is the electrochemical potential and µ is the 

diffusion potential.
As we have seen, in a classical diffusion coupled 

problem of phase transformation, equilibrium 
occurs when the compositions at the interface 
corresponding to the phases α and β are such that 
the effective diffusion potentials corresponding 
to each of the elements are equal in both phases, 
and additionally, the grand-canonical potential 
differences between the phases at this value of 
the diffusion potential is zero. Correspondingly, 
for the case of an electrochemical interface, 
equilibrium occurs when the electrochemical 
potential differences between the phases vanish. 
Thus, the variable analogous to the case of the 
diffusion potential is the effective electrochemical 
potential for the case of diffusion of charged 
species. The same can be seen from the following 
discussion: For a diffusion-coupled problem with 
no charged species, the differential change in free-
energy density can be written at constant volume 
of the phases as,

df sdT dc= − + ,µ  (1)

which upon performing a Legendre transform 
(changing variables from c to µ) writes,

d f c d sdT cd( )− = = − − .µ µΨ  (2)

The variable Ψ is the grand-canonical 
potential density with the natural variables at 
constant volume as the temperature T and the 
diffusion potential µ, and the above expression 
is written with the assumption that the two 
phases under consideration have the same molar 
volumes. Difference of the grand-potential 
densities Ψ between the phases can be seen as a 
driving force for phase transition, which goes to 
zero at equilibrium. Also T and µ being intensive 
variables, at equilibrium they are the same in both 
phases, while the conjugate variables, s and c show 
a jump at the interface, with different values in 
each phase.

For a system with charged species, work is 
done when a charge zFdc is transported across 
a potential difference φ, thus bringing in an 
additional electrostatic component to the internal 
energy that writes as, zFφdc and also to the 
resultant change in the free-energy which thus 
derives,

df sdT dc zF dc= − + + .µ φ  (3)

Performing, a Legendre transform 
(transformation of variables from c to µ and 
noting that a change in dc can be accommodated 
in a charged system through changes in both 

Figure 3: Schematic showing the Legendre 
transform of the free-energy density represented 
by f(c) to Ψ(µ), where Ψ is the intercept and µ is 
the slope of the tangent to the curve at c in the 
curve f(c).
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µ : dµ and electrostatic potential φ : dφ due to 
local change in charge), we derive our effective 
grand-potential Ψ from f in the same spirit as the 
previous discussion on the thermodynamics of 
uncharged systems as,

d f c d sdT cd zF( ) ( )− = = − − +µ µ φΨ  (4)

 = − − ,sdT cd µ  (5)

where the grand-canonical potential density 
Ψ now has its natural variable as the effective 
electrochemical potential µ  and temperature T. 
Thus the driving force for phase transition can 
now be seen as a difference of the grand-potential 
densities f c− µ  between the two phases, and 
equilibrium occurs when this difference goes to 
zero along with the equivalence of the effective 
electrochemical potential µ  and temperature T 
among the two phases. Additionally, as we will see 
that, while the combined intensive variable i.e µ  
is constant among the phases at equilibrium, the 
diffusion potential µ and electrostatic potential 
φ, both vary across the interface. This variation 
occurs over a finite width at the interface, that 
is also one of principal characteristics of the 
equilibrium electrochemical interface also known 
as the double layer.

2.4  Characteristics of the equilibrium 
electrochemical interface

In the preceding sections, we have seen the 
development of the thermodynamics describing 
the behavior of a system with charged components. 
In this section, we briefly understand the structure 
of an electrochemical interface. The rate of change 
of composition, in a charged electrochemical 
system (without a reaction), can be written as,

∂
∂

= ∇⋅ ∇( ),c

t
M µ  (6)

where for simplicity we treat the mobility M as 
invariant of composition and phase. Since this is a 
problem involving charged species, localization of 
charges will bring about a resultant potential field. 
This derives from Gauss’s law, and can be read as

∇ ∇( ) = − ,ε ϕ ρ  (7)

where ρ is the local charge density and ε  is the 
effective permittivity, which again for simplicity 
we assume to be independent of composition and 
phase.

At equilibrium, as discussed the rate of 
change of composition is zero on both sides 
of the interface, which can only occur when 
µ  is constant across both phases (for the given 

boundary conditions where the far-field gradients 

vanish). For discussion’s sake let us assume the 
diffusion potential of the phases to vary as,

µα α= +RT c Bln  (8)
µβ β= + ,RT c Bln  (9)

where Bα and Bβ are constants and different from 
each other. Let us go deeper into the equilibration 
process. For this sake, let us also assume that 
we start from a charge neutral state where the 
concentration of the charged species (positive) 
on either side of the interface are balanced by 
equal and opposite ions which are immobile. 
Additionally, the compositions of the mobile 
species on both sides of the interface are assumed 
to be the same.

When the phases are now brought in contact, 
at the start, the electrostatic potentials of both 
phases are equal and zero as the charge density is 
zero. However, there is a gradient in the effective 
electrochemical potentials owing to difference 
in the diffusion potentials on both sides of the 
interface, which drives the flux of the ions following 
the direction of diffusion potential gradient. 
Assuming that Bα is greater than Bβ would result 
in a flux of ions from the α to the β side, causing 
a depletion on the α side and accumulation on 
the β side, leading to a build up of positive 
charge on the β side and a negative charge on the 
α side. Further, as a consequence of the Poisson 
equation Eq. 7, this would result in an electrostatic 
potential gradient to develop opposing the flux of 
ions, with higher value in the β phase and lower 
value in the α phase. With increasing build-up of 
positive ions on the β side and depletion on the α 
side, equilibrium is reached when the flux due to 
the gradients in the diffusion potential µ  exactly 
balances the flux due to gradients in the electrostatic 
potential, which is also the stage at which the 
gradients in the effective electrochemical potential 
µ  vanishes and equilibrium is reached. From this 

one can calculate that the difference in potential 
that develops between the phases is ∆ = −ϕ

α βB B
zF , 

also known as the open-circuit-potential (OCP). 
The variation of the electrostatic potential across 
the interface can be estimated by solving for the 
Poisson equation (Eq. 7) at equilibrium, which for 
one dimension writes,

ε φ ρ∂
∂

= − ( ).
2

2x
x  (10)

In the present discussion, the charge density ρ is 
proportional to the departure of the composition 
from the starting composition c

o
 as the initial state 

is charge neutral. Thus, the charge density writes, 
ρ = zF(c − c

o
). Additionally, at equilibrium, the 

effective electrochemical potential is eq
µ , from 
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which the composition variation on each side of 
the interface can be related to the electrostatic 

potential variation as, c eq zF B

kT
= 





− − /

exp
µ φ α β

. 

Thus, the preceding partial differential equation 
can now be written for either side of the phase 
interface as,




ε φ µ φα β
α β

∂
∂

| = −
− −









− ./
/















2

2x
zF

zF B

kT
c

eq
oexp

 (11)

Multiplying both sides by 
∂
∂
φ
x

 and integrating 
we derive,

ε φ φ φα2

2∂
∂







= − + −( ) ( )
x

c c zFco o ,  (12)

where as boundary conditions, one can utilize 
that on one side of the interface α the potential 
φα = 0, and on the other side, it is equal to 
∆ = −ϕ

α βB B
zF . The gradients 

∂
∂
φ
x

 go to zero on 
either phase interface while the composition c is 
the same as c

o
 on either side.

The solution to the preceding equation 
delivers the variation of the electrostatic potential 
on either side of the phase interface. While we 
do not venture into the complete derivation of 
the equations, we state here without proof that 
the decay length associated with the electrostatic 
potential, which is also known as the Debye 

length varies as lD zF co
∝ ( )1

1 2ε
/

. Thus, the more 

concentrated are the phases, with respect to the 
mobile species, the steeper is the variation of the 
electrostatic potential in the double layer. This 
particular region is also referred to as the diffuse 
layer of the Gouy-Chapman double layer.

For systems, where there is low concentration 
of carrier ions such as that in a semiconductor, say 
the phase α in the preceding example, creation 
of an equilibrium interface, leads to a complete 
depletion of carrier ions on one side of the 
interface. Given that there are immobile ions on 
either side of the interface, this leads to a region 
of constant charge density in the depleted region. 
This region has very low resistivity and is also 
called the space charge.

One of the properties of such an 
electrochemical interface is the asymmetry with 
respect to the flow of charges across the interface. 
When a current is imposed in a direction 
that reinforces the electrostatic potential, the 
corresponding gradient in the diffusion potential 

balancing this increases, leading to a greater 
depletion of ions on the α side of the interface. 
Therefore in this direction, there is a greater 
resistance to the flow of current. Conversely, for 
the case where the imposed current reinforces the 
gradients of the diffusion potential, it leads to a 
lesser depletion and thereby lesser resistivity to 
the flow of ions. This asymmetric nature of the 
interface is normally, recorded in the (current-
voltage) I-V characteristics of an electrochemical 
interface.

3  Basics of Phase-Field Formulations in 
Literature for Electrochemical Systems

In the preceding section, we have had a brief 
overview about the thermodynamics of 
electrochemical systems. In the following section, 
we briefly describe some of the features of phase-
field models that are present in literature and their 
areas of application. This process is made simple 
by characterizing the main areas of focus in the 
different phase-field formulations.

3.1 The complete problem
The first class of phase-field models treat the 
entire electrochemical problem by solving the 
entire set of Poisson-Nernst-Planck equations 
(PNP). Ideally, in a phase-field model describing 
this type of phenomenon a free-energy functional 
is created with an contribution coming from the 
electrostatic energy that writes as zFcφ along with 
the bulk chemical thermodynamics of the phases. 
The order-parameter ξ differentiating the phases 
is utilized to create the functional, with properties 
contributing to the gradient energy and excess 
energy at the interface. The evolution of the order 
parameters, thereafter, follows standard dynamics 
ensuring minimization of free-energy. Coupled to 
this there are equations of mass transport, where 
the complete (PNP) set is written as,

∂
∂

= ∇⋅ ,( )∇
,( )

+












c

t
M c

f c

c
z Fi chem

i
iξ

δ ξ
δ

φ  (13)

∇⋅ ∇( ) = − = − ,∑ε ξ φ ρ( )
i

i iz Fc  (14)

where the first equation represents the rate of 
change of composition of the component i, 
whereby the flux of ions is determined by the 
gradients in the effective electrochemical potential 
µ φδ ξ

δi
f c

c i
chem

i
z F= +,( )

, z
i
 is the valence of the ion 

and f
chem

  being the chemical free-energy density, 
and the operator δ

δci
 represents the variational 

derivation w.r.t to the variable c
i
. The second 

equation in the preceding set is the Poisson 
equation which allows the determination of 
the electrostatic potential. Notice, all properties 
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ε , M(c, ξ) are now functions of both the order-
parameter and the local composition c

i
.

The two equations are solved along with the 
evolution of the order parameter ξ at every time-
step to completely solve the electrochemical 
problem. As is common in a electrochemical 
system, reactions occur, leading to the production 
and destruction of ions. This would need to be 
accounted for, in the mass-balance relations for 
the ions, thereby for such systems, the modified 
rate evolution reaction writes as,

∂
∂

= ∇⋅ ,( )∇
,( )

+












+ ,

c

t
M c

f c

c
z F R

i chem

i
i iξ

δ ξ
δ

φ 

 (15)

where the iR  represents the rate of production as 
a result of all the reactions in the systems. These 
reactions can again be classified as heterogeneous 
and homogeneous reactions. Heterogeneous 
reactions occur when components from the 
substrate and the electrolyte react at their 
interface, to form a product that either becomes 
a part of the substrate (deposition) or a part of 
the solution (dissolution). These reaction rates  
can be determined following the Butler-Volmer-
kinetics. The rate of the reaction following the 
Butler-Volmer theory depends on the difference 
between the sum of the electrochemical 
potentials of the reactants and products from 
their equilibrium value. This departure can in 
turn be related to a fundamental variable in 
electrochemistry, which is the overpotential. 
Homogeneous reactions occur in the bulk of 
either the substrate or the electrolyte and their 
rates are determined by laws of mass action, which 
require the knowledge of the thermodynamic 
reaction constants.

While this way of solving the complete 
problem accurately describes the complete 
electrochemical phenomenon, a natural problem 
that arises when simulating morphological 
evolution of microstructures in the scales of 
microns is the wide variation of length scales. This 
is because, the scale of the double layer described 
by the Debye length extends over a few nano-
meters, while the effective microstructures are 
more than three-orders of magnitude different 
in size. Therefore, the complete problem of 
simulating a statistically relevant microstructural 
size, at present appears impossible. To get around 
this, one of the possible solutions, to this problem 
is to assume that there is scale separation between 
the properties at the scale of the electrochemical 
interface and the microstructural evolution. 
We elaborate on this in the following section.

3.2 Condition of charge neutrality
One of the ways to avoid resolving the double 
layer in the electrochemical reactions is to assume 
that the charges relax very fast, in comparison to 
the reactions that occur at the interface, whereby 
there is no charge localization in the time scales 
in where one investigates microstructural 
evolution. Imposing this condition implies that 
the electrostatic potential at any given point will 
be such that the total flux of charge due to the 
diffusional currents as well as the electrostatic 
potential gradients exactly cancel. This condition 
can be written as ∇⋅i = 0, where i is the local 
current. This equation delivers the electrostatic 
potential which is then used to solve for the local 
update of the different components using the 
preceding mass transport equations. Since there 
is no effective charge localization and thereby 
no formation of double layer, the scale of the 
simulations can be increased. This is useful for 
simulating conditions of electrodeposition, charge 
transfer reactions in oxide salts etc. However, 
certain other situations such as morphological 
instabilities that are inherently linked to the nature 
of the electrochemical interface, such as that 
found during the formation of macro-pores in 
semiconductors, where the structure of the space 
charge region is important to the resolution of the 
instability, the complete electrochemical problem 
must be resolved. This is the recent challenge in 
the phase-field community, which is to resolve the 
inherently multi-scale nature of electrochemical 
phenomenon during interfacial evolution.

3.3 Electromigration
An additional simplification of the complete 
problem is applicable for situations in metallic 
interconnects, where the motion of ions is directly 
a result of an imposed electronic wind. Here 
the imposed currents are much larger than the 
local electrostatic potential gradients created as 
a result of local charge generation, whereby the 
flux of ions can be directly linked to the imposed 
electrostatic potential density and the update of 
the compositions of ions can be derived. Local 
inhomogeneities due to difference in electronic 
conductivities can be resolved using the general 
structure of the phase-field order parameters 
to interpolate the conductivity properties 
in the entire domain and the solution to the 
Laplace equation, ∇⋅ ( )∇( ) =ε ξ ϕ 0, delivers the 
electrostatic potential field, in such a system.

4 Phase-Field Models in Literature
In the previous sections, we have had an overview 
of the thermodynamics as well as the basis of the 
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different phase-field formulations for different 
situations in electrochemical phenomenon. In 
this section, we summarize the progress in the 
development and application of phase field 
models to studying electrochemical interfacial 
phenomenon whereby we elaborate about the 
different models, their structure and areas of 
applications. In particular, we highlight those 
phase field studies which aim at understanding 
technologically important electrochemical 
processes, namely, electrodeposition, 
electromigration and intercalation processes in 
battery electrode materials.

Among these, the first phase-field model 
discussing the solution to the complete 
electrochemical problems is provided by Guyer 
et al.4,5 Here, they demonstrate the formation 
of an interfacial double layer (similar to 
classical Guoy-Chapman-Stern layer) and its 
structural changes with current and established 
interrelations between the physical parameters 
of the electrochemical system and the phase-field 
parameters such as the gradient energy coefficient 
and kinetic coefficients. Their model uses a 
phase-field variable (similar to ξ) to distinguish 
between the electrode and the electrolyte phases. 
Ions are assumed to be substitutional species with 
equal partial molar volume while the electrons 
are assumed to be interstitial species with zero 
partial molar volume. The model draws parallels 
between the dynamics of an electrode-electrolyte 
interface and that of a solid-melt interface as is 
clear from the similarity in thermodynamics from 
the discussion in the previous sections. Since the 
model illustrates the solution to the complete 
(PNP) set, it incorporates interactions between 
charged species and electrostatic potential, which 
requires the solution of Poisson’s equation Eq. 7 
at every point in the system.

The electrical permittivity is assumed to be 
position-dependent to distinguish between the 
dielectric properties of electrode and electrolyte 
through interpolation functions created using 
the phase-field variable ξ. The equilibrium 
distribution of electrostatic potential within the 
electrolyte obtained from their model shows 
excellent agreement with the classical Guoy-
Chapman and Deby-Huckel theories. The 
dynamic solutions to their phase-field model 
show the development of nonlinear current-
overpotential relation. However, the numerical 
solutions of the governing equations were limited 
to one dimension since their primary objective 
was to develop a phase-field approach that could 
capture the formation of electrochemical double 
layer. Although their phase-field model compares 

well with the classical sharp interface theories 
of electrochemistry and resolve the double 
layer accurately it is limited by the thickness 
of electrochemical double layer and cannot be 
applied to systems whose dimensions exceed a 
few nanometers. Therefore, the development 
of models to simulate the evolution of realistic 
microstructures (where the length scale varies 
between hundreds of nanometers and several 
microns) during electrochemical processes poses  
a crucial challenge both physically and numerically.19

4.1  Phase-field models of 
electrodeposition

Electrodeposition broadly refers to 
electrochemical processes, which involve 
reduction of dissolved metal cations to form a thin 
coherent coating on suitable electrode surfaces 
using electric current. Electrodeposition has 
been applied since ancient times to protect metal 
surfaces from corrosion and produce decorative 
surface finishes. In recent times, electrodeposition 
has been extensively used for the fabrication 
of advanced microelectronic devices and 
nanobiosystems.20 To control and optimize the 
morphology of the electrodeposits at different 
length scales, it is crucial to understand the effect 
of electrodeposition process parameters on the 
morphological evolution of the electrodeposits.

Shibuta et al. adopted the model developed by 
Pongsaksawad et al. to simulate electrodeposition 
of copper from copper-sulfate solution.8,11 
The difference here is the bulk chemical 
thermodynamics, which is similar to the Kim-
Kim-Suzuki model of diffusional coupled phase 
transformation, wherein, two composition fields 
are used, one pertaining to the electrolyte and 
the other to the electrode. The composition fields 
satisfy the condition of equal diffusion potential 
in each phase as well as the condition of local mass 
balance, i.e the local composition is the weighted 
average of the composition fields in the electrode 
and the electrolyte with the weighting factor being 
an interpolation function constructed out of the 
phase-field parameter ξ. The driving force for phase 
transition is then formulated as the difference of 
the grand-potential densities constructed out of 
the composition fields in either phase. Their study 
is aimed at understanding the effect of copper ion 
concentration in electrolyte, applied voltage and 
interfacial anisotropy on the dendritic morphology 
of electrodeposited copper. Further, we should 
note that the model can be applied to those 
electrochemical processes where the influence of 
interfacial double layer on interface dynamics can 
be neglected. A similar simplified model based on 
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Allen-Cahn kinetics was developed by Shibuta 
et al. to study bridge formation and dissolution 
through electrochemical reactions in nanometer 
scale switches.21

Okajima et al. extended the two-dimensional 
phase-field model developed by Shibuta et al. 
by incorporating Butler-Volmer kinetics at the 
electrode/electrolyte interface.22 The model 
relates the growth velocity of the interface to the 
overpotential arising due to electrochemical redox 
reaction. The asymmetry in redox reactions is 
described by the difference in exchange current 
densities in the Butler-Volmer equation,

i i
Fz

RT
i

Fz

RTox red= 





−
− −( )





0 0 1
exp exp ,

α η α η
 (16)

where iox
0  and ired

0  are the exchange current 
densities of the oxidation and reduction reactions, 
η denotes the overpotential (difference between 
electrode potential during the redox event and 
the equilibrium electrode potential) and α is the 
asymmetric charge transfer coefficient. Butler-
Volmer kinetics was incorporated in the model 
by adding an exponential term to the diffusion 
coefficient where the exponent is a function of 
overpotential η and the asymmetry parameter 
α. A charge conservation equation was solved 
to compute electrostatic potential distribution 
assuming local electroneutrality condition at 
the interface. Their simulations of dendritic 
growth of electrodeposits show asymmetry in 
growth velocity as function of overpotential in 
accordance with Butler-Volmer kinetics. Shibuta 
and coworkers applied their model to study 
dendritic growth of electrodeposited uranium 
and zirconium from molten salt and estimated the 
threshold concentration of cations in the molten 
salt as a function of current density for transition 
of the growth front from planar to dendritic.23,24

Liang et al. proposed a nonlinear phase-field 
model to study electrode/electrolyte interface 
evolution during electrochemical reactions where 
the thermodynamic driving force was modified to 
reproduce Butler-Volmer kinetics.25 They modified 
the Allen-Cahn equation to describe a nonlinear 
relation between the rate of phase transformation 
and the thermodynamic driving force following 
the principles of rate theory of chemical reaction 
kinetics. The nonlinear model reproduces Butler-
Volmer kinetics as a function of overpotential in the 
sharp interface limit. Liang and Chen extended the 
nonlinear phase-field formalism to model lithium 
electrodeposition on electrode surface during 
charging operation of a lithium-ion battery.26–28 
In addition to the nonlinear phase-field equation 
describing motion of electrode-electrolyte 

interface, they solve an ambipolar diffusion 
equation for Li+ cations assuming local charge 
neutrality condition within the electrolyte and an 
electrostatic Poisson’s equation which includes a 
reaction current term describing the asymmetry 
in the generation and depletion of charge at 
the electrode-electrolyte interface. The model 
predicts the formation and growth of dendritic 
morphology of Li-electrodeposits as function of 
charge rate and qualitatively investigates the role 
of varying current density and rate constants on 
the morphology of electrodeposits.

Ely et al. reported a phase-field model 
describing the growth and coarsening of 
heterogeneously nucleated electrodeposits of 
lithium.29 The total free energy of the electrolyte-
dendrite system is described using a variational 
framework and includes bulk driving force 
for electrochemical reduction of lithium ions, 
electrolyte-electrodeposit interfacial energy, and 
the work of adhesion due to wetting of the substrate 
by electrodeposited lithium. The temporal 
evolution of the solid phase is governed by a 
modified Allen-Cahn equation where the driving 
force includes a non-zero interfacial reaction rate 
derived using nonlinear Butler-Volmer kinetics in 
accordance with the nonlinear model proposed by 
Liang et al.25 Charge density is treated as a locally 
conserved order parameter and its evolution is 
described using Cahn-Hilliard equation. The 
phase field simulations with different degrees of 
wetting show an increase in curvature-induced 
electro-dissolution with increase in contact angle, 
albeit that the dendritic tip velocity remains the 
same for all wetting conditions.

Recently Cogswell developed an 
electrochemical potential based phase-field 
model to study dendritic growth during 
electrodeposition of metals incorporating Marcus 
kinetics for concentrated solutions where the 
reactants and products do not change their atomic 
structure during electron transfer process.30 The 
asymmetric transfer coefficient in the Butler-
Volmer current-overpotential equation (Eq. 16) is 
defined using Marcus theory of electron transfer. 
Local electroneutrality condition is imposed to 
derive a current conservation equation. The model 
was parametrized using a dimensionless 
Damkohler number Da

i V nF

D L
m= /0

/
, where n 

is the number of electrons transferred, D is the 
ionic diffusivity and L is the separation distance 
between two electrodes. The model was used to 
simulate the effect of electrolyte concentration 
and electrochemical reaction kinetics on dendritic 
growth of electrodeposited zinc. The formulation 
of this model can be seen as a thermodynamic 



Phase-Field Modeling of Electrochemical Phenomena

Journal of the Indian Institute of Science  VOL 96:3  Jul.–Sep. 2016  journal.iisc.ernet.in 265

re-formulation of the model of Shibuta et al., 
with the use of the diffusion potential µ as the 
state variable instead of the different composition 
fields akin to the KKS10 type of formulations. 
This re-formulation can be seen in similar lines 
following31,32 which were performed for the case 
of pure diffusion coupled problems.

We note that the afore-mentioned phase field 
models describing morphological evolution during 
electrodeposition assume negligible interface 
resistance and impose local electroneutrality 
condition although these assumptions are strictly 
valid when the structure of electrical double layer 
does not affect electrochemical interface kinetics. 
In other words, when morphological evolution is 
diffusion-controlled rather than charge-transfer 
limited, solution of charge conservation equation 
may suffice.19

4.2  Phase-field models on Li-ion 
intercalation in batteries

Electrochemical phase-field models also find their 
application in the study of intercalation dynamics 
(insertion and extraction of ions in cathode and 
anode materials) in batteries. Of particular interest 
are mesoscale models for intercalation of Li-ions 
in cathode nanoparticles and the subsequent phase 
transformations within the intercalating particles. 
A typical cathode of a Li-ion battery contains 
carbon coated intercalating particles packed in 
a porous composite structure. A fundamental 
understanding of Li-ion intercalation dynamics 
during charging/discharging is crucial for 
optimization of battery performance.33

Transition metal based phospho-olivine type 
compounds LiMPO

4
 (M = Fe, Mn, Co, Ni) have 

emerged as candidates for intercalating cathode 
materials in Li-ion batteries due to their high 
storage capacity, high discharge rate and optimum 
operating voltage.33–35 Li

x
FePO

4
 olivine exhibits a 

miscibility gap at room temperature and forms an 
equilibrium mixture of Li-poor Li

0.032
FePO

4
 and 

Li-rich Li
0.962

FePO
4
 phases.36 The propensity of 

phase-separation in Li
x
FePO

4
 can be altered with 

change in the intercalating particle morphology, 
application of electric overpotential, doping bulk 
electrode with transition metal ions and applying 
conductive coating on particles (see37,38 for 
detailed reviews and references therein). In-situ 
experiments, first-principles calculations and 
atomistic simulations show strongly anisotropic 
one-dimensional diffusion of lithium in bulk 
olivine structure.39–41 Moreover, first-principles 
calculations of elastic properties reveal strong 
anisotropy in elastic constants (elastic stiffness tensor 
shows orthorhombic symmetry), composition-

dependence of elastic moduli, and anisotropy in 
misfit strains.42,43 Therefore, to understand the 
role of anisotropy in the parameters affecting 
electrochemically induced phase transformations 
within intercalated Li

x
MPO

4
 particles, there have 

been efforts to develop mesoscale phase-field 
models of morphological evolution during the 
intercalation process.14–16,37,44–49

The first attempt in phase-field modeling 
of intercalation process is by Han et al. who 
implemented a phase field model in one 
dimension to investigate the diffusion of Li 
ions and the diffusional phase transformations 
inside the olivine particles during intercalation.44 
They compared the effective chemical diffusion 
coefficients obtained from the phase-field 
simulations with those obtained experimentally 
using PITT (Potentiostatic Intermittent Titration 
Technique) and GITT (Galvanostatic Intermittent 
Titration Technique).

In a later study, Singh et al. developed a phase 
field model where they incorporated anisotropic 
ionic mobility in the olivine structure and surface 
reactions governing the flux of Li-ions across 
the electrolyte/electrode interface.14 Tang et al. 
developed a phase field model to study the effect of 
size, overpotential and strain energy on the phase 
transition pathways in nanoscale phospho-olivines. 
They used their model to study the competition 
between crystalline to amorphous transition and 
phase separation between the Li-rich and Li-poor 
phases in nanoscale olivines.37,46 Bai et al. studied 
the effect of overpotential on the suppression of 
phase-separation in intercalating cathode particles 
during battery discharge using an electrochemical 
phase-field model.15 However, all of these studies 
were restricted to one-dimension or simplified 
two-dimensional geometries and neglected the 
effect of coherency strain.

Cogswell and Bazant included elastic stress 
effects arising due to anisotropic misfit strain 
between Li-rich and Li-poor phases to study the 
morphology of intercalation in single Li

x
FePO

4
 

nanoparticles where x lies within the spinodal 
limit.16 Their two-dimensional simulations show 
the formation of striped morphology of lithiated 
and de-lithiated phases. They also observed 
that coherency strains can modify the solubility 
limit of lithium and may lead to suppression of 
phase separation with varying particle size and 
magnitude of misfit strain. Bazant developed a 
phase-field theory of chemical kinetics and charge 
transfer based on the principles of non-equilibrium 
thermodynamics and created a modified 
“Allen-Cahn-Reaction”  model coupled with 
Cahn-Hilliard equation of mass transport to study 
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the dynamics of electrochemically induced phase 
transformations within nanoparticles.47 Welland et 
al. implemented a three-dimensional multi-physics 
phase-field model that incorporates anisotropic, 
concentration dependent moduli, misfit strain 
and anisotropic surface wetting to study phase 
separation in phospho-olivine nanoparticles as a 
function of lithium concentration.48 They observe 
that the stability of phases crucially depends on 
their surface wetting characteristics. Further, they 
report disappearance of miscibility gap when 
the intercalating particle sizes fall below five 
nanometers. However, the effect of Butler-Volmer 
boundary condition on the surface of the particle on 
the phase transformation pathways is not evident 
in their model. Recently, Hong et al. implemented 
a phase-field model based on spectral smoothed 
boundary method to study lithium intercalation 
in a Li

x
FePO

4
 nanoparticle immersed in lithium-

ion rich electrolyte.49 Heterogeneous nucleation 
of Li-rich and Li-poor phases on particle surface 
as well as flux of lithium atoms, through a charge 
transfer process across particle surface (Butler-
Volmer boundary condition), are taken into 
account. Their simulations in two dimension 
show growth of Li-rich plates along elastically 
soft directions. Although the phase-field models 
do capture some essential morphological features 
during intercalation, we should note that the 
simulations are restricted to a single intercalating 
particle while nanoscale state-of-charge mapping 
of intercalation pathway in many-particle electrode 
show the formation of a majority of completely 
lithiated or delithiated particles during discharging 
of battery.50 Moreover, in-situ visualization of 
lithium transport and intercalation in model FeF

2
 

nanoparticles using nanoscale imaging suggest new 
pathways of Li-ion transport and subsequent phase 
transformations during intercalation.51 Thus, we 
need to develop quantitative phase-field models 
where crucial thermodynamic parameters such as 
gradient energy coefficient and interfacial length 
scale can be ascertained from ab initio calculations 
to accurately describe chemical segregation and 
surface effects on electrochemically induced phase 
transformations.52 Such quantitative models 
need to be extended to multi-particle electrodes 
to understand the development of intercalation 
morphology during charging-discharging cycles 
of batteries.

4.3  Other applications of electrochemical 
phase-field models

Pongsaksawad et al. developed a phase-field 
model to study electrochemical interface 
evolution during transport-limited electrolytic 

steel refining and smelting processes.11,19,53 The 
model was applied to investigate topological 
evolution of cathode surface in two- and three-
dimensions during mass transport limited 
electrolysis with fast redistribution of charge. 
Thus, the electrostatic potential can be retrieved 
through the condition of electroneutrality, 
which makes it applicable to situations when 
electrochemical reactions are “mass-transport-
limited”, i.e the changes at the scale of the 
electrochemical interface occur much faster 
compared to the rate of the reactions as well as 
microstructural evolution. Additionally, they 
coupled the Navier-Stokes equation to their 
phase-field model to account for convective flow 
in liquid electrolytic systems.

Gathright et al. apply the model developed by 
Guyer et al.4,5 to study the development of Nernst 
electromotive force in a solid-electrolyte gas 
sensor containing chemically active species.17 The 
model does not consider morphological changes 
and solves Poisson’s equation for electrostatic 
equilibrium to fully resolve the Debye layer for 
a prescribed interface morphology. The model 
is implemented to simulate electrochemical 
impedance spectra for generic electrode-electrolyte 
systems which compare well with experimental 
data.54,55 However, the simulations are restricted to 
small length scales to ensure accurate numerical 
discretization of the Debye layer.

Electromigration is described as electric field 
induced flow of matter resulting from momentum 
transfer between conduction electrons and 
charged ions, and is a crucial factor determining 
the reliability of solder interconnects in integrated 
circuits.56 There are several phase field models 
reported in literature that examine the influence 
of external electric field on the electromigration 
and coalescence of microvoids in solder 
interconnects.57–61 These models particularly 
investigate the interactions between surface 
diffusion of charged ions and electromigration 
induced mass flux.

5 Conclusions
In this review, we have presented an overview of the 
thermodynamics of electrochemical systems and 
related it to the thermodynamics of pure materials 
and alloys. Here we elaborate on the characteristics 
of the electrochemical interface and the additional 
length scale of the Debye-layer which differentiates 
it from the equilibrium interfaces of pure materials 
and alloys. Thereafter, we give a brief overview of the 
basis of phase-field models proposed for describing 
electrochemical phenomena, followed by a brief 
discussion of the work in literature related to each 
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of the applications of phase-field models. While 
this review presents the state-of-the art phase-
field models in the community, it also clarifies at 
various places the several modeling and numerical 
challenges for describing electrochemical reactions 
using phase-field models owing to the multi-scale 
nature of the problem. This is the motivation for 
future work in the formulation of better models 
and numerical techniques.

Received 16 August 2016.

References
 1. L. Chen, Annual Review in Materials Research 32, 113 

(2002).

 2. I. Steinbach, Modeling and Simulation in Mat. Sci. and 

Engg 17, 073001 (2009).

 3. B. Nestler and A. Choudhury, Current Opinion in Solid 

State and Materials Science 15, 93 (2011).

 4. J.E. Guyer, W.J. Boettinger, J.A. Warren and G.B. McFadden, 

Physical Review E 69, 021603 (2004).

 5. J.E. Guyer, W.J. Boettinger, J.A. Warren and G.B. McFadden, 

Physical Review E 69, 021604 (2004).

 6. S. Chakraborty, Physical Review Letters 101, 184501 

(2008).

 7. Y. Shibuta, Y. Okajima and T. Suzuki, Scripta Materialia 

55, 1095 (2006).

 8. Y. Shibuta, Y. Okajima and T. Suzuki, Science and 

Technology of Adv. Mat. 8, 511 (2007).

 9. M.S. Park, S.L. Gibbons and R. Arróyave, Acta Materialia 

61, 7142 (2013).

10. S.G. Kim, W.T. Kim and T. Suzuki, Phys. Rev. E 58, 3316 

(1998).

11. W. Pongsaksawad, A.C.P. IV and D. Dussault, Journal of 

the Electrochemical Society 154, F122 (2007).

12. H. Assadi, Modeling and Simulation in Materials Science 

and Engineering 14, 963 (2006).

13. T.R. Ferguson and M.Z. Bazant, Journal of the 

Electrochemical Society 159, A1967 (2012).

14. G.K. Singh, G. Ceder and M.Z. Bazant, Electrochimica Acta 

53, 7599 (2008).

15. P. Bai, D.A. Cogswell and M.Z. Bazant, Nano Letters 11, 

4890 (2011).

16. D.A. Cogswell and M.Z. Bazant, ACS Nano 6, 2215 

(2012).

17. W. Gathright, M. Jensen and D. Lewis, Electrochemistry 

Communications 13, 520 (2011).

18. M.-O. Bernard, M. Plapp and J.F. Gouyet, Physical Review E 

68, 011604 (2003).

19. A.C. Powell IV, Y. Shibuta, J.E. Guyer and C.A. Becker, 

JOM 59, 35 (2007), ISSN 1047-4838.

20. W. Schwarzacher, Interface 15, 32 (2006).

21. Y. Shibuta, Y. Okajima and T. Suzuki, Scripta Materialia 

55, 1095 (2006), ISSN 1359-6462.

22. Y. Okajima, Y. Shibuta and T. Suzuki, Computational 

Materials Science 50, 118 (2010), ISSN 0927-0256.

23. Y. Shibuta, T. Sato, T. Suzuki, H. Ohta and M. Kurata, 

Journal of Nuclear Materials 436, 61 (2013), ISSN 0022-

3115.

24. Y. Shibuta, S. Unoura, T. Sato, H. Shibata, M. Kurata and 

T. Suzuki, Journal of Nuclear Materials 414, 114 (2011), 

ISSN 0022-3115.

25. L. Liang, Y. Qi, F. Xue, S. Bhattacharya, S.J. Harris and 

L.-Q. Chen, Physical Review E 86, 051609 (2012).

26. L. Liang and L.-Q. Chen, Applied Physics Letters 105, 

263903 (2014), ISSN 0003-6951.

27. H.-W. Zhang, Z. Liu, L. Liang, L. Chen, Y. Qi, S.J. Harris, 

P. Lu and L.-Q. Chen, ECS Transactions 61, 1 (2014), 

ISSN 1938-6737.

28. L. Chen, H.W. Zhang, L.Y. Liang, Z. Liu, Y. Qi, P. Lu, 

J. Chen and L.-Q. Chen, Journal of Power Sources 300, 376 

(2015), ISSN 0378-7753.

29. D.R. Ely, A. Jana and R.E. García, Journal of Power Sources 

272, 581 (2014), ISSN 0378-7753.

30. D.A. Cogswell, Physical Review E 92, 011301 (2015).

31. A. Choudhury and B. Nestler, Phys. Rev. E 85, 021602 

(2011).

32. M. Plapp, Phys. Rev. E 84, 031601 (2011).

33. Y.-M. Chiang, Science 330, 1485 (2010), ISSN 0036-8075.

34. M. Wagemaker and F.M. Mulder, Accounts of Chemical 

Research 46, 1206 (2012), ISSN 0001-4842.

35. K. Kang, Y.S. Meng, J. Bréger, C.P. Grey and G. Ceder, 

Science 311, 977 (2006), ISSN 0036-8075.

36. A. Yamada, H. Koizumi, S.-I. Nishimura, N. Sonoyama, 

R. Kanno, M. Yonemura, T. Nakamura and Y. Kobayashi, 

Nature Materials 5, 357 (2006), ISSN 1476-1122.

37. M. Tang, W.C. Carter and Y.-M. Chiang, Annual  

Review of Materials Research 40, 501 (2010), ISSN 1531-

7331.

38. P. Bai and G. Tian, Electrochimica Acta 89, 644 (2013), 

ISSN 0013-4686.

39. D. Morgan, A. Van der Ven and G. Ceder, Electrochemical 

and Solid-State Letters 7, A30 (2004), ISSN 1099-0062.

40. S.-I. Nishimura, G. Kobayashi, K. Ohoyama, R. Kanno, 

M. Yashima and A. Yamada, Nature Materials 7, 707 

(2008), ISSN 1476-1122.

41. R. Malik, D. Burch, M. Bazant and G. Ceder, Nano Letters 

10, 4123 (2010), ISSN 1530-6984.

42. T. Maxisch and G. Ceder, Physical Review B 73, 174112 

(2006).

43. R. Deshpande, Y. Qi and Y.-T. Cheng, Journal of the 

Electrochemical Society 157, A967 (2010), ISSN 0013-

4651.

44. B. Han, A. Van der Ven, D. Morgan and G. Ceder, 

Electrochimica Acta 49, 4691 (2004), ISSN 0013-4686.

45. D. Burch and M.Z. Bazant, Nano Letters 9, 3795 (2009), 

ISSN 1530-6984.

46. M. Tang, H.-Y. Huang, N. Meethong, Y.-H. Kao, 

W.C. Carter and Y.-M. Chiang, Chemistry of Materials 21, 

1557 (2009), ISSN 0897-4756.

47. M.Z. Bazant, Accounts of Chemical Research 46, 1144 

(2013), ISSN 0001-4842.



Saswata Bhattacharyya, Soumya Bandyopadhyay and Abhik Choudhury

Journal of the Indian Institute of Science  VOL 96:3  Jul.–Sep. 2016  journal.iisc.ernet.in268

48. M.J. Welland, D. Karpeyev, D.T. O’Connor and 

O. Heinonen, ACS Nano 9, 9757 (2015), ISSN 1936-0851.

49. L. Hong, L. Liang, S. Bhattacharyya, W. Xing and 

L.-Q. Chen, Physical Chemistry Chemical Physics 18, 

9537 (2016).

50. W.C. Chueh, F. El Gabaly, J.D. Sugar, N.C. Bartelt, 

A.H. McDaniel, K.R. Fenton, K.R. Zavadil, T. Tyliszczak, 

W. Lai and K.F. McCarty, Nano Letters 13, 866 (2013), 

ISSN 1530-6984.

51. F. Wang, H.-C. Yu, M.-H. Chen, L. Wu, N. Pereira, 

K. Thornton, A. Van der Ven, Y. Zhu, G.G. Amatucci and 

J. Graetz, Nature Communications 3, 1201 (2012).

52. M.E. Stournara, R. Kumar, Y. Qi and B.W. Sheldon, 

Physical Review E 94, 012802 (2016).

53. W. Pongsaksawad, Numerical Modeling of Interface 

Dynamics and Transport Phenomena in Transport-Limited 

Electrolysis Processes, Ph.D. thesis, Massachusetts Institute 

of Technology (2006).

54. W. Gathright, M. Jensen and D. Lewis, Journal of 

Materials Science 47, 1677 (2012), ISSN 0022-2461.

55. W. Gathright, M. Jensen and D. Lewis, ECS Transactions 

35, 1077 (2011), ISSN 1938-6737.

56. D. Pierce and P. Brusius, Microelectronics Reliability 37, 

1053 (1997).

57. M. Mahadevan and R.M. Bradley, Physica D: Nonlinear 

Phenomena 126, 201 (1999).

58. J.W. Barrett, R. Nürnberg and V. Styles, SIAM Journal on 

Numerical Analysis 42, 738 (2004).

59. D.N. Bhate, A. Kumar and A.F. Bower, Journal of Applied 

Physics 87, 1712 (2000).

60. M.S. Park, S. Gibbons and R. Arróyave, Acta Materialia 

61, 7142 (2013).

61. S.-B. Liang, C.-B. Ke, M.-B. Zhou and X.-P. Zhang, in 

Electronic Packaging Technology (ICEPT), 2015 16th 

International Conference on (IEEE, 2015) pp. 260–265.

Saswata Bhattacharyya is an Assistant Professor 
in the Department of Materials Science and 
Metallurgical Engineering in Indian Institute of 
Technology Hyderabad. He obtained his PhD 
from Indian Institute of Science for his thesis on 

“Evolution of multivariant microstructures with  anisotropic  
misfit: A phase-field study” under the supervision of Prof. T. 
A. Abinandanan and carried out his postdoctoral research 
on the development of phase-field models of micrstructural 
evolution in alloys and oxides with Prof. Long-Qing 
Chen at The Pennsylvania State University. His research 
interests include phase-field modeling of microstructural 
evolution in alloys and oxides and phase transformations 
in electronic and energy storage materials. He has authored 
and coauthored around twenty-five technical papers on the 
development and implementation of phase-field models to 
study phase transformations in materials.

Abhik Choudhury is an Assistant Professor in 
the Department of Materials Engineering at 
the Indian Institute of Science, Bangalore since 
Nov. 2013. He has graduated from the Indian 
Institute of Technology with a dual degree in 

2008 from the department of metallurgical and materials 
engineering, with a major in Materials Engineering and 
a minor in theoretical computer science. Thereafter 
he received his PhD from the University of Karlsruhe 
(Germany) under the supervision of Prof. Dr. Britta Nestler 
on “Quantitative phase-field modeling of multi-component 
diffusion coupled phase transformations” which concluded 
in 2012. He continued as a Post-doctoral researcher with 
Prof. Dr. Mathis Plapp at the Ecole Polytechnique Paris, 
where he worked on developing a phase-field model for 
understanding morphological instabilities originating 
during electrochemical reactions, and subsequently joined 
the Indian Institute of Science as a faculty in 2013. His 
research interests include studies on pattern formation 
during phase transformations such as solidification, 
electrochemical reactions and stress mediated evolution of 
microstructures.

Soumya Bandyopadhyay is currently a  
Graduate Student in the Department of  
Materials Science and Metallurgical 
Engineering in Indian Institute of Technology 
Hyderabad. His research involves phase field 

modeling of domain dynamics in multiferroic systems and  
dielectric degradation due to charge transport.


