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A Systems Perspective of Signalling Networks 
in Host–Pathogen Interactions

1 Introduction
Host response to a pathogen is a result of a com-
plex, highly dynamic set of interactions between 
the two species. The precise set of interactions 
in a given situation decides the outcome, lead-
ing to one of the possible end results, which are 
(a) clearance, where the infection is fully elimi-
nated from the host;1 (b) active disease, where the 
infectious agent is successful in evading the host 
immune response2 and (c) a stalemate, where 
there is no clear winner but the infection persists 
in some sort of a dormant form.3 Thus, there can 
be extremely diverse outcomes between the same 
pair of species based on the specific set of inter-
actions. These are governed by the specific set of 
signalling cascades or pathways that are triggered, 
as also their relative extents, making it important 
to understand both the qualitative and quantita-
tive aspects of such cascades.

The host system has a demanding task of 
sensing, recognising and responding to a patho-
gen, while the pathogen also has a daunting task 
of sensing the specific response from the host, 
subverting and modulating it where possible, 
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Abstract | Signalling in biological systems occurs through complex net-
works of molecular interactions and leads to regulation of various physio-
logical activities within and between cells. As a whole, they span multiple 
spatial and temporal scales and equip the cells to respond to a variety of 
signals. The complexity arises from a large number of molecular players, 
their pleiotropic roles and extensive interconnections among them. Sig-
nalling networks have been studied extensively using systems biology 
approaches. Modelling these networks at various levels of granularity 
can provide considerable insight into the interactions between host and 
the pathogen in infectious diseases. In this review, we describe some of 
the widely used modelling methods for studying signalling pathways and 
their networks, particularly in the context of host–pathogen interactions. 
A number of example cases are described, which provide a glimpse of 
the different types of insights provided by such models.
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not only to survive, but in fact also to thrive in 
the hostile environment of its host.4 Signalling 
in pathogens can also enable them to hijack host 
cells to derive nutrients and other important 
machinery for their survival.5 Signalling occurs 
in cells through complex networks of molecu-
lar interactions, geared to respond to a variety 
of chemical, mechanical or electrical cues.6 The 
networks provide a framework to understand 
complex properties such as multi-specificity, 
pleiotropy, redundancy and cross-talk.7 Besides 
responding to infections, the networks also cater 
to several diverse activities within a cell such as 
maintenance of cellular homeostasis, commu-
nication between cells and tissue repair.8 Many 
of these involve the same set of signalling com-
ponents, but may vary in the relative extents 
to which each component is triggered. It is not 
surprising that the host response depends on 
the relay of information to and from other cells 
around it9 and is intricately interconnected to 
its nutrition state and metabolism. A large num-
ber of molecules are involved in signalling, that 
include small molecule ligands, peptide and 
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non-peptide hormones, complex glycans and 
glycan attachments of various proteins, cell sur-
face receptors, effector proteins, enzymes such 
as kinases and phosphatases and other media-
tors. Information is processed through a range 
of molecular events spanning molecular recogni-
tion, binding, conformational changes and qua-
ternary structure rearrangements, enzyme action, 
post-translational modifications, making or 
breaking of protein–protein interactions, translo-
cation to the nucleus or other cellular compart-
ments, manipulating transcription and regulating 
gene expression, finally resulting in regulation 
of cellular processes.10 The whole process can 
span multiple spatial and temporal scales.11 For 
example, the process of apoptosis is regulated 
by multiple signalling pathways, which together 
orchestrate the precise temporal and spatial dis-
tribution of the corresponding end-players.12

2  Need for a Systems Approach
It is clear from the extensive interconnectedness 
and contextual dependence at multiple levels that 
an understanding of multiple organisational lev-
els from molecular interactions to epidemiologi-
cal consequences is required. A comprehensive 
appreciation of the various signalling pathways, 
their inter-connections and how, when and to 
what extent they influence each other requires a 
systems approach, where individual components 
can be studied in the larger context of a con-
nected system.13 In the case of signalling due to 
infections, there is an additional layer of com-
plexity that arises due to the interactions between 
the signalling pathways of the pathogen and those 
of the host, making it a study of a ‘system of sys-
tems’ (Fig. 1).

Systems biology aims to reconstruct systems 
by a bottom-up approach, with detailed knowl-
edge about the individual components and their 
interactions, providing a basis to study the emer-
gent properties of systems. A molecular systems 
approach has the added advantage of providing a 
helicopter view that has emerged from the full 
knowledge of the individual components, making 
it a high-resolution way of studying biological 
processes.14,15 A synergy between experimental 
and computational efforts, involving a series of 
experimental measurements, model building, 
refinement and validation, captures and rational-
ises knowledge about the system. Systematic 
screening of the parameter space, perturbations 
of various kinds including individual component 
knock-outs are commonly performed to choose 
the best model.16 Increasingly, the model building 

Quantitative modelling: 
A model generated using 
mathematical equations 

incorporating initial condi-
tions and input-output func-

tions to simulate a system’s 
response. In biology, it often 

complements the experi-
mental efforts and can aid in 

rationalization, hypothesis 
generation and prediction of 
the selected properties of the 

system.

Genome-wide interaction 
network: A large scale mo-

lecular interaction network, 
where each protein coded by 

the genome forms a node and 
an interaction between two 

nodes form an edge. Physical 
interactions such as during 

complex formation as well as 
all types of functional influ-
ences between two proteins 

are included.

methods are leaning upon large-scale data col-
lected through high-throughput omics experi-
ments. Their simulations generate testable 
hypotheses that can be validated through experi-
ments (Fig. 2). A high-resolution view of signal-
ling systems that encompasses aspects ranging 
from molecular interactions to cellular responses 
is still not within easy reach. However, there is 
substantial progress in our understanding of dis-
crete levels in cellular organisation, especially in 
genome-wide  interaction networks, quantitative  
modelling of individual pathways, receptor struc-
tures and dynamics. In the following sections, we 
discuss some of the widely used modelling 
approaches for studying signalling systems and 
the insights gained from them in several cases.

3  Signalling Pathway Data
It is well known that signalling mechanisms 
involve a series of steps, starting from receptor 
activation by a signalling molecule leading to the 
cellular response, which are studied as signalling 
pathways.17 Several signalling pathways are well 
characterised,18,19 where the pathways have been 
traced step-by-step to identify the effect of an 
extracellular stimulus, connecting the signal at the 
cell surface to its effects in the nucleus. A review 
by Seger and Krebs elucidates how the MAPK sig-
nalling pathway was traced.19 For several other 
pathways, while genetic studies have identified 
the individual components and the direction of 
flow of information in them, biochemical experi-
ments have typically characterised the nature and 
strength of interactions involved in signalling.20 
Novel molecules involved in signalling pathways 
and finer details are continuously being added to 
our knowledge base. To access and comprehend 
this vast amount of information, several data-
bases of signalling pathways have been developed 
and made publicly available. Some common ones 
are listed in Table 1. SignaLink2,21 developed a 
few years ago, is a comprehensive resource of 
curated information about signalling pathways, 
their transcriptional and post-transcriptional 
regulators, modifier enzymes as well as the down-
stream targets of seven major pathways. These 
correspond to the RTK [receptor tyrosine kinase, 
including EGF (epidermal growth factor)/MAPK 
and IGF (insulin-like growth factor)/Insulin], 
TGF-β (Transforming growth factor-beta), Wing-
less/Wnt, Hedgehog, JAK/STAT (Janus kinase/
signal transducer and activator of transcription), 
Notch and the NHR (Nuclear hormone receptor) 
pathways. Signal transduction, though once con-
sidered as an assembly of linear steps, is now well 
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appreciated to involve a highly interconnected 
network with extensive cross-talk among different 
linear components in the network.22 In addition, 
studies elucidating genome-wide protein–protein 
interactions also provide considerable amount 
of information about signalling pathways. Some 
examples of these are KEGG,23 Panther,24 Pro-
tein Lounge (http://proteinlounge.com) and 

Netpath.25 Data related to signalling pathways 
can be retrieved from these databases26 and can 
be used to build quantitative models or network-
based models to represent a dynamic system. A 
protein sequence database such as Ensembl, con-
tains more than 4000 entries annotated with the 
term ‘signal transduction’, providing a list of pro-
teins known to be involved in signalling in one 

Figure 1: A schematic representation of the study of signalling networks involved in host response to 
pathogens. Networks in both host and pathogen are shown with three types of edges: host-specific 
(blue), pathogen-specific (red) and HPI (green) edges. Examples of modelling approaches are illustrated 
as also the applications that emerge from them.

http://proteinlounge.com
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species or the other. Sequence homology searches, 
which are now routine in many laboratories, can 
extend the annotations for homologues, thereby 
providing an expanded list of such molecules. It is 
estimated that about 5% of the total protein con-
tent in a given cell is composed of signalling mol-
ecules.27 About 300 different signalling pathways 
are documented in various databases.28 There are 
considerable data about the quantitative meas-
urement of individual signalling molecules and 
the rates of the reactions they are involved in, 
facilitating construction of quantitative models, 
as described in the next section.

4  Modelling Approaches to Study 
Signalling Systems

Comprehension of large amount of complex 
information and using it for a higherorder under-
standing of the biological systems has necessitated 
the use of mathematical and systematic compu-
tational analyses. A model that mimics a natural 
process can be used to gain insights into process 
mechanisms and predict outcomes for a given set 
of input parameters. Models can be built at differ-
ent levels of coverage and resolution. What con-
stitutes a model depends upon the question that 
needs to be addressed through the simulations 
and the data available about the components at 
that point of time. Theoretical models serve as 
useful tools to probe various aspects of a signal-
ling pathway, particularly for addressing systems 
level questions such as the effect of any variation 
in the pathway on the cellular behaviour, the most 
impacted interacting pathways, its regulators and 

so on. Models are useful to obtain an understand-
ing of (a) the role of individual components and 
their interactions resulting in a given pheno-
type, (b) the effect of various perturbations such 
as alterations in concentration of a component 
(e.g., capturing gene expression or copy num-
ber changes), (c) the alterations in binding affin-
ity during complex formation (e.g., due to single 
nucleotide polymorphisms or disease mutations) 
and also (d) the effect of loss of existing compo-
nents or gain of new components, in a quantita-
tive manner. Needless to say, once a model is built, 
available computational methods facilitate high-
throughput simulations. In some cases, they also 
enable a study of what may be highly impractical 
or even impossible through available biochemical 
and molecular biology techniques. System models 
are the best suited to study emergent properties 
of signalling systems such as signal amplification, 
cooperativity, cross-talk, synergy, antagonism and 
the balance among them.29 The significance of 
single-step versus multi-step signalling pathways 
can also be systematically investigated through 
these models, to gain both qualitative and quanti-
tative insights. Various toy models, regarded more 
to be in the realm of theoretical biology, have also 
been used to study consequences of structural 
design or topology of the models, which have pro-
vided significant insights into the topologies and 
conditions that exhibit bistability and switch-like 
behaviour.29–32 Influence of graded stimuli, rate of 
signal transmission, length and complexity of the 
pathway are also investigated through these mod-
els, which have led to the identification of control 

Figure 2: Hierarchical representation of cellular complexity from a systems biology perspective. The 
range of input data that can facilitate systems biology studies and various modelling strategies are shown.
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points in different systems as well as strategies for 
their regulation.30,33

With increasing availability of genome-wide 
data, the landscape of modelling strategies has 
expanded considerably (Fig. 2). About a dec-
ade ago, modelling of signalling pathways was 
predominantly based on use of the physico-
chemical parameters for events such as protein 
modifications (e.g., phosphorylation), intermo-
lecular associations, translocation and intracellu-
lar localisation. These have been mathematically 
captured as a set of connected ordinary differen-
tial equations (ODEs), which are widely referred 
to as ODE models or kinetic models.30 A detailed 
kinetic model requires information about the 
reaction mechanism and corresponding kinetic 
parameters and can perform time-course simu-
lations. Such models were built based on prior 
knowledge obtained from biochemical and 
molecular biology experiments. These models 
have provided quantitative insights such as the 
influence of a change in concentration of a signal-
ling ligand or a mutation in a receptor or the rate 
of a particular reaction, on the outcome of the 
pathway. Such models, however, are small involv-
ing only a few reactions and a handful of param-
eters. Several tools such as Kinetikit,29 COPASI34 
and CellDesigner35 have been developed to build 
and simulate such models for different condi-
tions.36 Well-known examples in this category 
include models of the EGF receptor (EGFR) and 

MAPK pathways.37,38 A model of EGFR signal-
ling using an ODE-based approach was devel-
oped by Muller et al. to study the signal response 
when EGF binds to its receptor and its effect on 
the downstream signalling cascade.38 The model 
was generated using kinetic parameters available 
in literature and cellular protein concentrations 
were either compiled from literature or experi-
mentally determined. They extensively studied 
the effect of ligand concentration and its binding 
affinity on the downstream signalling cascade. 
They concluded that the EGF-induced response 
is consistent for a 100-fold range of ligand con-
centrations, as the internal amplification mecha-
nism contributes to a maximal ERK (extracellular 
signal-regulated kinase) signal. However, initial 
velocity of the receptor activation was identified as 
a critical parameter for signal efficacy. The results 
of their simulations correlate with the experimen-
tal findings that report the effect of EGF resulting 
in phosphorylation of ERK-1/2 and subsequent 
expression of the target gene c-fos. However, 
kinetic data are not available in such detail for 
many pathways, making it necessary to adopt dif-
ferent approaches. A second, more compelling 
reason to seek different approaches is to expand 
on the scale of the model. ODE models cater to 
studying individual pathways with tens of reac-
tions and not the most suited to model larger 
networks involving hundreds to thousands of 
components and interactions.

Table 1: List of online databases for signalling pathways.

HPD http://discern.uits.iu.edu:8340/HPD/ Human pathway database

KEGG http://www.genome.jp/kegg/pathay.html KEGG pathway database

PANTHER http://www.pantherdb.org/pathway/ Includes > 177, primarily signalling pathways

Reactome http://www.reactome.org/ A curated resource of core pathways and reac-
tions in human biology

SignaLink2 http://signalink.org/ RTK, Hedgehog, JAK/STAT, NHR, Notch, TGF-β, 
WNT/Wingless signalling pathways

NeuroDNet http://bioschool.iitd.ac.in/NeuroDNet/path-
way.php

The pathway related to genes associated with 
neurodegenerative diseases

DOQCS http://doqcs.ncbs.res.in/ Database of quantitative cellular signalling: reposi-
tory of models of signalling pathways

Pathway commons http://www.pathwaycommons.org/ Contains data from nine databases with over 
1400 pathways and 6,87,000 interactions

Protein lounge http://www.proteinlounge.com/Pathway/
Pathways.aspx

Signalling pathways linked to protein database 
with analysis tools

NetPath http://www.netpath.org/ Manually curated resource of signal transduction 
pathways in humans

ConsensusPathDB http://www.consensuspathdb.org/ Integrates interaction networks in humans

PID http://pid.nci.nih.gov Pathway interaction database (PID)

SPAD http://www.grt.kyushu-u.ac.jp/spad/ Signalling pathway database with categories based 
on extracellular signal molecules

http://discern.uits.iu.edu:8340/HPD/
http://www.genome.jp/kegg/pathay.html
http://www.pantherdb.org/pathway/
http://www.reactome.org/
http://signalink.org/
http://bioschool.iitd.ac.in/NeuroDNet/pathway.php
http://bioschool.iitd.ac.in/NeuroDNet/pathway.php
http://doqcs.ncbs.res.in/
http://www.pathwaycommons.org/
http://www.proteinlounge.com/Pathway/Pathways.aspx
http://www.proteinlounge.com/Pathway/Pathways.aspx
http://www.netpath.org/
http://www.consensuspathdb.org/
http://pid.nci.nih.gov
http://www.grt.kyushu-u.ac.jp/spad/
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The ‘omics’ data provided by genome-wide gene 
expression and protein quantification experiments 
can be used for generating networks. Some other 
approaches used for modelling are Boolean model-
ling and rule-based modelling.39 Rule-based mod-
els are developed on the principle of Gillespie’s 
algorithm,40 according to which a cell is considered 
as a well-mixed system and interaction between any 
two molecules in the cell is dependent on the abun-
dances of each interacting molecule as well as the 
rate of the corresponding reaction. A model is con-
structed using a defined set of rules for the compo-
nents, their transformations and their respective 
interactions in the system. At each step, the most 
probable state is predicted from a large set of possi-
ble interactions in the system, based on mass-action 
kinetics or stochastic simulations , thus eliminating 
the need for enumerating them explicitly. A model 
can be systematically studied with a range of input 
conditions and parameters, to predict outcomes of 
specific scenarios.41 BioNetGen,42 Kappa43 and 
RuleMonkey44 are some of the software tools that 
can be used for this approach. An example is the 
modelling of the EGFR pathway by Danos and 
coworkers,44 where the authors tackled the problem 
of combinatorial complexity and captured physico-
chemical causality at individual steps. They investi-
gated the pathway structure and its dynamics and 
obtained insights for a range of system behaviours. 
Another example of studying iron-dependent sig-
nalling in the host and pathogen is described in a 
later section.

Large systems are also often represented as 
networks, where the nodes form the individual 
molecular components and the interactions 
between them form the edges. Interactions of the 
structural type referring to complexes between 
two proteins, and also of the functional type, 
referring to functional influences of one protein 
on the other, are both included as interactions. 
Experimentally identified interactions available in 
various databases provide a rich source of such 
interactions, which are further augmented 
through a variety of knowledge-based predic-
tions. Algorithms providing such predictions are 
based on the concepts of Rosetta Stone,45 phylo-
genetic profiling  46 or gene neighbourhood.47 
Databases such as STRING,48 provide a useful 
resource for this purpose. The edges in a signal-
ling pathway have specific directions that indicate 
the direction of reactions in the pathway. The 
nodes can also be weighted, to indicate the rela-
tive importance of the individual nodes. Weight-
ing schemes can be chosen such that it helps in 
addressing the specific question being asked. For 
example, abundance data of individual proteins 

Stochastic simulations: 
A simulation strategy in 

which the variables evolve 
randomly based on a set of 

given probabilities, capable of 
accounting for heterogeneity 

in the system.

Phylogenetic profiling: A 
bioinformatics approach to 
infer biological connections 

between two genes, based 
on the patterns of their 

co-occurrence across a large 
number of species. This has 
led to numerous discoveries 

in biology, including filling in 
the annotation gaps in meta-
bolic pathways, identification 

of regulatory interactions 
and explanations for roles of 
certain mutations in human 

disease

can be used to weight the nodes, to identify spe-
cific pathways in a complex network. Graph theo-
retical methods are then used to identify 
important components, the most feasible routes 
as well as variations in the network under differ-
ent conditions. For the signalling networks, inter-
actions can also be tagged as stimulatory or 
inhibitory edges.49 The importance of each node 
can be systematically determined by a perturba-
tion analysis where a node may be deleted or 
down-weighted and its effect on the network 
studied. Networks can be used for addressing a 
range of questions including pathway finding or 
identifying a minimal set of nodes sufficient for 
the particular signal propagation process.

In any modelling exercise, model build-
ing is a critical step, which is often iterated and 
refined with validation steps. Different models 
built at different levels of abstraction provide dif-
ferent levels of insights, thus making it impor-
tant to understand the model, before drawing 
inferences from it. A number of tools are avail-
able to model biological pathways. For example, 
ODEs can be modelled through JWS Online,50 
COBRA,51 VirtualCell,52 Cytoscape,53 PathVi-
sio,54 Pathwaytools,55 Cell Illustrator,56 while 
tools such as Boolnet,57 BooleanNet,58 SimBool-
Net,59 ViSiBooL,60 BooleSim61 can be used for 
Boolean modelling and Kappa and Bionetgen can 
be used for rule-based modelling. Several R and 
Matlab packages are also available for network-
based simulations. A pictorial representation 
of the model can be generated using visualising 
engines such as Cytoscape53 and Gephi.62 For a 
detailed description of the modelling methods 
and how they have helped in understanding cell 
signalling in specific cases, the reader is referred 
to excellent reviews available in literature.12,15 In 
the next few sections, we will focus on how mod-
elling has helped in understanding signalling in 
infectious diseases. Only representative examples 
are described, as a description of all modelling 
studies in this category is beyond the scope of this 
article.

5  Case Studies in Infectious Diseases 
and Insights Gained by Modelling

5.1  Models for Studying Mycobacterium 
Tuberculosis Infection

Mycobacterium tuberculosis (Mtb) employs a 
complex interplay between cellular signalling and 
transcriptional regulation to combat a wide vari-
ety of stresses inside the host.63 Several aspects of 
pathogenicity, virulence and the role of different 
signalling pathways have been studied in a variety 



47

A Systems Perspective of Signalling Networks in Host–Pathogen Interactions

1 3J. Indian Inst. Sci. | VOL 97:1| 41–57 March 2017 | journal.iisc.ernet.in

of modelling studies, carried out at different levels 
of abstraction. A model based on nonlinear ODEs 
capturing cellular level immune response due to 
Mtb infection has simulated conditions of active 
disease, latency and reactivation.64 The study 
indicated that latency might result in tissue dam-
age if the response is not adequately regulated 
and further suggested that cytokines interferon-γ 
(IFN-γ), interleukin-10 (IL-10) and IL-4 could 
play a prominent role in maintaining a balance 
between Th1 and Th2 immune responses—so as 
to minimise tissue damage. Another model by the 
same group indicated that dendritic cells play an 
important role in establishing latency and a delay 
in dendritic cells and T cell migration may lead 
to a different outcome, that of reactivation into 
active tuberculosis (TB).65 Simulation results 
have indicated that IFN-γ produced by CD4+ 
T-cells is instrumental in controlling the infec-
tion. However, it also indicated that CD4+ T-cells 
make a larger contribution towards the control 
of infection, independent of IFN-γ produc-
tion.66,67 A comparatively recent study extends an 
ODE-model to a Bayesian computational model 
that describes CD137 signalling in human TB. 
In this model, a set of differential equations were 
used to model the induction of the initial infec-
tion state. Another set of equations were used to 
integrate the observable parameters, such as the 
antigen-presenting cell activation rate and dura-
tion of apoptosis, to specific states of the model.68 
This model successfully predicted the underly-
ing mechanism of the cytokine modulation by 
CD137 and established a framework by which 
other scenarios could be tested.

5.2  Models for Studying Other Infectious 
Diseases

Models of signalling systems have been con-
structed and simulated in many other infectious 
diseases as well, some examples of which are 
described below. A model of the mucosal immune 
responses induced during Clostridium difficile 
infection causing nosocomial diarrhoea and coli-
tis was used to study the immunoregulatory role 
of peroxisome proliferator-activated receptor-γ 
(PPARγ), in modulating host responses to the 
pathogen using a mouse infection model, using 
wild-type and T-cell-specific PPARγ null mice.69 
The ODE model correctly predicted the effect of 
the upregulation of miR-146b, downregulation 
of the PPARγ and its co-activator NCOA4 on 
the upregulation of IL-17, explaining the regu-
lation of Th17 responses due to this infection. 
Use of a PPARγ agonist pioglitazone was seen 
to reduce the symptoms of colitis and suppress 

pro-inflammatory gene expression. Another 
model has addressed the crosstalk between effec-
tor molecules and pattern recognition recep-
tors that mediate the complex immune response 
during Helicobacter pylori infection. Interactions 
between macrophages and intracellular H. pylori 
were captured through a set of ODEs. The predic-
tions from this model that were subsequently val-
idated experimentally showed that the bacterial 
load in macrophages is regulated by nucleotide-
binding domain and leucine-rich repeat-con-
taining protein X1 (NLRX1) expression. It was 
further identified that a negative feedback circuit 
is responsible for downregulation of NLRX1 by 
the early host response cytokines.70

Molina-Paris and coworkers developed a sto-
chastic, within-host, computational model of 
Francisella tularensis infection in mice.71 The 
model considered bacterial replication in mac-
rophages in spatial compartments of lung, liver 
or spleen and macrophages in three different 
states of ‘resting’, ‘suppressed’ and ‘activated’ con-
ditions, to capture immune subversion by the 
pathogen. The simulations of immune cells and 
bacterial kinetics used probabilistic expressions 
to describe the time taken for rupture of infected 
macrophages and subsequent bacterial release 
and provided mechanistic insights into the early 
stages of pathogenesis. This also provided a 
framework to explore the benefits of candidate 
therapeutics that activate the immune responses.

There have been several models that have 
studied aspects of viral infections as well. An 
example is a mathematical model of the immune 
response to primary influenza infection. The 
study suggested that, in the presence of high 
viral titers, 5 days were required for an effective 
adaptive immune response to start.72 By consid-
ering viral titers during primary infection, the 
simulations showed that the viral replication 
rate was more important than viral infectivity. 
It further suggested that virus-specific IgM and 
CD8+ T lymphocytes were critical contributors 
to clear the viral load during primary infection, 
indicating that the future vaccine development 
efforts could include strategies that can boost 
virus-specific CD8+ T-cell responses. Among the 
anti-viral host responses, interferon-β stimula-
tion and subsequent induction of JAK-STAT 
signalling pathways are prominent events.73 
Through a set of differential equations cap-
turing phosphorylation and dephosphoryla-
tion, formation and dissociation of protein 
complexes, kinase and phosphatase activation, 
nuclear import and export, constitutive and 
induced gene transcription, mRNA translation 
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and degradation of molecules, Kimmel and cow-
orkers have simulated the pathway dynamics, 
which were subsequently experimentally verified. 
Dynamic negative control mechanisms, previ-
ously unknown in this system, were identified 
through this. The study also suggested an impor-
tant role for one of the phosphatases as well as 
for the inhibition of IRF1. Another example 
in this category is a study of the early response 
of human monocyte-derived dendritic cells to 
H1N1 influenza A infection, where the interplay 
between the immune response and viral antago-
nism was modelled, for two clinically different 
viruses. The results showed that strain variation 
had a significant impact on the temporal behav-
iour on several genes. Further, the study indi-
cated that variation in innate immune response 
corresponding to different H1N1 viruses74 was 
consistent with an experimentally observed time 
shift in the interferon response that was identi-
fied by a genomics study.75

5.3  Boolean Models
A modelling approach that complements the ODE 
modelling strategy is Boolean modelling,76 where 
systems are represented as logical rules or state-
ments that describe the interactions among sys-
tem components. The components themselves can 
be at any level of biological hierarchy and rules are 
written based on prior knowledge derived from 
experimental studies. For example, nodes can be 
molecules or molecular states such as activated 
receptors, cells, cellular states, reactions or even 
entire processes. The nodes take up either an ‘on’ 
or true state or an ‘off ’ or false state. The flow of 
information between the nodes are determined 
by Boolean transfer functions, which are used to 
simulate the evolution of the states and predict 
a final set of outcomes, for a set of initial condi-
tions. A major advantage is that a Boolean model 
can make use of any knowledge already available 
about the model components and convert them 
into qualitative rules. An added advantage is that 
a Boolean model is not constrained by the lack 
of detailed kinetic parameters. However, Boolean 
models cannot provide quantitative descrip-
tions of system dynamics. Instead, they can be 
regarded as excellent alternatives for modelling 
large, incompletely characterised systems and to 
understand the role of the network structure in 
defining the dynamics of the system. Integrated 
modelling schemes, where Boolean networks are 
first used for modelling regulatory and signalling 
networks, followed by detailed continuous mod-
els for some components, subject to availability of 

kinetic parameters, are suggested to offer the best 
of both strategies.77–79

Boolean modelling has been used to study 
host responses in several infectious diseases. 
Modelling the host immune response to infec-
tion for two closely related Bordetella species by 
Albert and co-workers was one of the early exam-
ples.80 The model included various components 
of the immune system and their interactions 
with bacteria capturing synergy, dependence 
and antagonism among various signalling path-
ways governing the immune system. The model 
contained specific rules for Toll-like receptor 
(TLR4) mediated signalling in response to path-
ogen-associated molecular patterns such as the 
lipopolysaccharide, the production of cytokines 
including IL-1, IL-6, tumour necrosis factor-α 
(TNF-α) and TNF-β and T-cell differentiation 
including a positive feedback, regulating the dif-
ferentiation process. Using this model, a vari-
ety of scenarios were simulated, which provided 
insights about active immune processes, growth 
patterns of the infective agent, clearance of a sec-
ondary infection and loss of antibody production 
on the dynamics of infection.

A Boolean model of the host response to Mtb 
to predict which of the three outcomes of infec-
tion—active disease, clearance of infection or 
persistence would be prominent under differ-
ent initial conditions, was described in Raman 
et al.81 The model encompassed several host and 
pathogen molecules, cells, cellular states and pro-
cesses. It captured signalling pathways mediated 
by TLRs, complement receptors, mannose recep-
tors and scavenger receptors, as well as cross-
talk among them. It also included quantitative 
parameters to account for bacterial load, growth 
rates and efficiency of pathogen clearance due to 
drug intervention. Using systematic single and 
double knock-out of the individual nodes, it was 
identified that the system’s response underlined 
the pivotal role of pathways leading to TNF-α 
in favouring bacterial clearance. Persistence was 
indeed seen to be the prominent outcome in a 
majority of systematic perturbations, indicating 
the predisposition to this state.

The crosstalk between EGFR, IGF-1 recep-
tor (IGF-1R) and insulin receptor (IR) signalling 
pathways make a pro-survival signalling network, 
which was translated into a Boolean network 
model and was combined with stochastic model-
ling of signal propagation by Capala et al.82 The 
authors used node importance criteria, based on 
static, topological properties of the network and 
extensions of centrality measures, which facili-
tated the selection of most influential nodes in 
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maintaining connectivity among three path-
ways—EGFR, IGF-1R and IR. The top-ranking 
nodes, such as ERK1/2, AKT1, p70 ribosomal S6 
kinase alpha (P70S6K) and JNK, identified from 
the model were found to be critical for signal-
ling crosstalk. The model was also successfully 
tested to predict activity in response to various 
levels of stimuli. Such an approach can be used 
to find critical nodes involved in a pathologi-
cal condition. In a separate study, Naumann and 
colleagues used logical modelling to model H. 
pylori induced c-Met signal transduction.83 They 
showed that activation of ERK signalling pathway 
induced by H. pylori is mediated by phospholi-
pase Cγ1 (PLCγ1). Inhibiting PLCγ1 inactivated 
the ERK pathway, thus forming a new strategy for 
treating invasive stomach cancers caused by H. 
pylori infection. Similarly, Tan and Tay generated 
a Boolean network to study the pathogenesis of 
the dengue haemorrhaghic fever. The simulations 
identified TGF-β, IL-8 and IL-13 as the critical 
players in pathogenesis and as possible targets for 
intervention for treating the disease.84

5.4  Orchestration of Multiple Signalling 
Pathways into Networks

With the availability of large amounts of omics 
data on various fronts, an obvious next step is to 
integrate them and reconstruct condition-specific 
networks which can facilitate in silico predictions. 
Several attempts have been made to automate the 
reconstruction of signalling pathways with inte-
gration of genomics or transcriptomics  data. 
Some examples are listed here to present the logic 
behind the integrated reconstructions. The path-
way reconstruction by Zhu et al. in 2006 was one 
of the earliest in this direction, where they 
develop an algorithm capable of constructing a 
signalling pathway based on literature and tran-
scriptomics or proteomics data.85 The drawback 
of this approach is that it considers a signalling 
pathway as a linear pathway model and excludes 
regulation via positive and negative feedback 
loops, which are integral parts of most signalling 
pathways. Signalling and dynamic regulatory 
events miner (SDREM)86 is a method that inte-
grates condition-specific time series expression 
data and protein interaction information to 
obtain condition-specific networks using input/
output hidden Markov model. SDREM was used 
to study human immune response during H1N1 
influenza infection. It revealed several signalling 
pathways known to be involved in H1N1 influ-
enza response and also predicted targets.87 
SDREM uses condition-specific time series data 

Transcriptomics: A high-
throughput experimental 
method that provides iden-
tification and quantification 
of a complete set of RNA 
molecules present in a cell, tis-
sue, organism or a biological 
system in a given condition, 
generated using techniques 
such as microarrays or RNA-
sequencing

and thus has an edge over other static literature 
based models.

Another approach using the prize-collect-
ing Steiner forest (PCSF) problem was used to 
reconstruct multiple signalling pathways using 
proteomic data. This model reports both over-
lapping and independent signalling pathways 
based on the functional enrichment and clinical 
properties of the relevant proteins. An extension 
of this approach, based on reverse engineering 
principles, combined the PCSF and integer linear 
programming methods, which was used to ana-
lyse a temporal signalling network using phos-
phoprotemic data of Salmonella-infected human 
cells. This revealed hidden components of signal-
ling such as the soluble NSF-attachment protein 
receptor and mammalian target of rapamycin 
signalling, cytoskeleton organisation and apopto-
sis pathways.88 Two recent approaches for recon-
struction of dynamic signalling pathways include 
PathLinker and TimePath. PathLinker was used 
to reconstruct a comprehensive set of signal-
ling pathways using information from NetPath 
and KEGG databases.89 It connects receptors to 
transcriptional regulators by computing shortest 
paths and generates a high-precision network. It 
provides a ranked-list based on curated pathways 
and thus helps in prioritising proteins and inter-
actions for experimental studies. A reconstruc-
tion of Wnt signalling pathway using PathLinker 
revealed cystic fibrosis transmembrane conduct-
ance regulator (CFTR) as a novel protein medi-
ating signalling of Receptor-Like Tyrosine Kinase 
(Ryk) to disabled homolog 2 (Dab2). Another 
reconstruction framework, TimePath, is based 
on integer programming approach which selects 
a subset of pathways to generate a response net-
work that can facilitate rationalisation of experi-
mentally observed phenomena.90 A response 
network was simulated for HIV-1 immune 
response using HIV expression data and protein 
interaction data from VirHostNet,91 which could 
correctly identify several well-known pathways 
and predict other novel pathways, some of which 
were experimentally validated subsequently.

Network models are useful for extending our 
understanding of signalling pathways beyond 
known pathways by predicting new routes of 
information flow and new probable paths in a 
given condition. For instance, it is possible to 
identify signalling pathways that are perturbed 
in disease and those that are differentially active 
in response to a given drug, vaccine or even an 
engineered miRNA intervention. PathwayLinker 
is one such method, made available as an online 
tool that uses a network approach to analyse 
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signalling networks integrated with protein–pro-
tein interactions from multiple sources.92 The 
approach is yet to be widely exploited for study-
ing infectious diseases. However, methods that 
are successful with other diseases are likely to be 
useful for studying signalling in infectious dis-
eases in the future. This approach was used to 
study possible signalling pathways through which 
Gap Junction Alpha-1 (GJA1) is affected by three 
cancer drugs viz. cisplatin, mercaptopurine and 
methotrexate. The analysis identified that GJA1 
has 47 interactors, including ERK1, ERK5 and 
SRC, which are involved in several signalling 
pathways. This information may additionally 
indicate possible side-effects of drugs that target 
GJA1. Networks that integrate data from phar-
macological intervention experiments with pro-
tein interactions have also been explicitly used to 
predict signalling pathways responsible for unex-
pected experimental outcomes.93 Using the EGFR 
network in human breast cancer cells, Ram and 
coworkers predicted new signalling paths, which 
included paths between MAPK/ERK kinase 
(MEK1) and c-Src via SEK1 and p38. The method 
has been developed into a toolkit called Pathway-
Oracle.94 Another approach to identify thera-
peutic targets from cancer signalling pathways 
based on logical modelling was presented by Han 
et al.95 Using breast cancer signalling pathway 
derived from literature, a set of vulnerable com-
ponents were identified using a stochastic logi-
cal model. In this case, they predicted that JAK2, 
STAT3, S6K, JUN, FOS, MYC and MCL1 would 
have a higher impact of the on cell viability, while 
identifying nuclear factor kappa-B (NF-κB) and 
elF4E to have no significant effect at all. This 
result was validated using siRNA mediated gene 
silencing of the respective genes in breast cancer 
cell lines. Such an approach can give an estimate 
of the response of cells when a particular gene is 
targeted, facilitating target validation studies.

6  Survival Strategies of Pathogen Inside 
the Host

Defects in signalling pathways have been clearly 
associated with increased disease susceptibility 
or risk of higher disease severity.96 For example, 
defects in IFN-γ pathway containing a few muta-
tions in the coding regions of the gene are associ-
ated with susceptibility to TB,97 while defects in a 
key signalling molecule zeta chain of T-cell receptor 
associated protein kinase 70 ZAP-70 in T-cells leads 
to chronic autoimmune arthritis in mice.98 Model-
ling studies providing insights into the mechanisms 

by which signalling pathways affect the pathogen-
esis process are described in this section.

6.1  Subversion of Signalling Pathways 
by Pathogens

The pathogenicity of bacteria is usually caused by 
bacterial virulence factors. These virulence fac-
tors are known to interfere in several host path-
ways including major signalling pathways, such 
as NF-κB, MAPK and TLR signalling among oth-
ers.99,100 Several pathogens are known to invade 
a host’s signalling machinery and impair down-
stream signalling to meet their survival needs. 
Strategies employed by pathogens include (i) 
inhibiting a critical signalling component, for 
example, the bacterial virulence factor Yersinia 
outer protein J (YopJ) inhibits phosphorylation 
of MAPK kinase 2 (MKK2) that leads to further 
inhibition of all downstream signalling, includ-
ing ERK, p38, JNK and NF-κB pathway;101 (ii) 
impairing the leukocyte recruitment process, as 
seen in the case of Shigella with a protein effec-
tor, OspF, that blocks the activation of a few 
NF-κB-responsive genes, leading to impaired 
recruitment of polymorphonuclear leukocytes 
to infected tissues;102 (iii) inhibiting proinflam-
matory responses, for example, SpvC in Salmo-
nella significantly downregulates the release of 
cytokines like IL-8 and TNF-α in tissue-cultured 
cells103 and (iv) inducing apoptosis, as observed 
in the case of Yersinia enterocolitica, where YopP is 
translocated to the cytosol of host cells, followed 
by inhibition of MKKs and IKK-beta, which in 
turn, inhibits the production of cytokine TNF-α 
and thus, inducing apoptosis.104–106 A study pro-
posed that pathogens that are involved in acute 
infection often target central hubs of cellular sig-
nalling pathways. This leads to global disruption 
of the host defense mechanism. Contrastingly, 
pathogens involved in chronic infections avoid 
targeting the central hubs to maintain their per-
sistent state; instead, they could affect peripheral 
signalling network components.107 An under-
standing of the underlying mechanisms by which 
pathogens manipulate host signalling mecha-
nisms is necessary for deriving strategies to com-
bat them with efficiency. Vilaplana and colleagues 
studied the multimodal relationship among lung, 
spleen and lymph node during the initial stages of 
Mtb infection.108 They generated a mathematical 
model to evaluate the effect of bacillary load on 
specific IFN-γ responses in the lung, spleen and 
lymph node. The simulation results showed that a 
critical bacillary load has to be reached to trigger 
the IFN-γ responses and that higher the bacillary 
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load, earlier are the IFN-γ response initiated and 
that the control of bacillary load was not immedi-
ate after the onset of IFN-γ response. They sug-
gested that vaccination strategies targeting rapid 
IFN-γ response alone may be inadequate to cope 
with the infection.

6.2  Signalling for Nutrient Acquisition
Pathogens hamper the host system in multiple 
ways. Along with hijacking the cellular signal-
ling pathways, pathogens can also acquire nutri-
tion from the host’s system. Iron is one of the 
most essential nutrients for the development of 
pathogens and several efforts have been made 
to understand the mechanism by which iron 
homeostasis is achieved. There is a constant com-
petition between the host and the pathogen to 
maintain the desired iron concentration. This is 
achieved through complex molecular networks. 
In Mtb, iron contributes significantly to virulence 
and thus it benefits from extracting iron from the 
host. In response, the host tends to withdraw the 
iron, making it unavailable to the pathogen and 
thereby, restricting the pathogen’s growth. This is 
achieved by (i) increasing the expression level of 
transferrin receptor, which is involved in internal 
iron transport in the host system; (ii) increasing 
the expression of ferritin, which is responsible 
for iron storage in the cytoplasm;109 (iii) increas-
ing the levels of hepcidin, which can degrade 
ferroportin, involved in export of iron from the 
cell110 and (iv) through the presence of lactofer-
rin in mucosal secretion, which can bind to free 
iron with high affinity that leads to limited iron 
availability at mucosal surfaces. These molecules 
are also released by neutrophils at sites of infec-
tion to lower iron availability to pathogens.111 
In response to restricted availability of iron, 
pathogens have evolved other mechanisms to 
obtain iron from their respective hosts that have 
been described in several comprehensive review 
articles.112 A rule-based model to study iron 
homeostasis in infected versus uninfected hosts 
comprised of 92 components and 85 interac-
tions among them.113 The model captured iron-
dependent signalling cascades of the host and 
pathogen, protein synthesis and decay rates, bac-
terial growth and death rates as a set of 194 rules. 
The simulations, carried out using Kappa, mimic 
infection scenarios and various systematic pertur-
bations, including single and double knock-outs, 
in which the behavioural change of important 
proteins and metabolites were monitored. The 
study led to the identification of key controlling 
factors for maintaining iron homeostasis, correct 

prediction of the role of ideR, an iron-depend-
ent regulator in Mtb and the role of transferrin 
in the host. The study suggested that an increase 
in iron storage in the host paradoxically benefits 
the pathogen owing to its capability of extract-
ing iron from such reservoirs. Decreasing the rate 
of iron uptake by transferrin thus emerges as a 
possible strategy to control infection, suggesting 
transferrin to be a possible drug target.

Guthke and coworkers generated a regula-
tory network based on gene expression data to 
study the regulation of iron uptake mechanism 
in C. albicans when it infects human oral epi-
thelial cells.114 The model was composed of 19 
differentially expressed genes, of which 15 were 
iron acquisition genes and 4 were regulators. The 
study identified Rim101, Hap3, Sef1 and Tup1 
as novel target genes for transcriptional regula-
tors. The model was able to propose a regulatory 
mechanism to explain iron acquisition during 
adhesion to and invasion of human oral epithelial 
cells. Such an approach can identify sparse and 
robust networks and predict biologically relevant 
regulatory interactions. The same group has also 
presented a regulatory network of iron homeo-
stasis in A. fumigatus, making use of a reverse 
engineering approach with a set of linear differ-
ential equations.115 This computational model 
predicted that expression of the hapX gene gets 
activated by a transcriptional regulator srbA that 
was previously not known as a regulator of iron 
homeostasis. This prediction was later experi-
mentally confirmed.

6.3  Signalling Molecules as Specific 
Biomarkers of Disease

Biomarker discovery research has seen tre-
mendous progress in the recent years due to 
availability of systematic data on the genome, 
transcriptome, proteome and metabolome, for a 
number of diseases. Systems perspective compre-
hends large and complex data and identifies genes 
and gene signatures. Biomarkers can distinguish 
between different conditions, such as diseased 
versus healthy, stages of the diseases, subtypes of 
patients, untreated versus treated and so on. Net-
work models integrating genomics data are the 
most widely used for identification of biomarker 
candidates.116 Given that signalling pathways are 
at the heart of several pathologies, it is no sur-
prise that specific signalling molecules serve as 
discriminating features for a variety of diseases. 
Examples in this category include biomarker sig-
natures that predict reactivation risks in latent 
TB patients.117 A systems approach used by 
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Pulendran and colleagues identified gene signa-
tures that can predict immune responses in indi-
viduals vaccinated with yellow fever vaccine 17-D 
(YF-17D).118 These signatures are suggested to 
be indicators of the strength of adaptive immune 
response. They reported that cytokines IP-10 
and IL-1 were induced post-vaccination and can 
be considered as reliable markers of vaccination. 
TNFRS17, a B-cell growth factor, was shown to 
predict the neutralising antibody response with 
up to 100% accuracy. A combination of com-
plement protein C1qB and eukaryotic transla-
tion initiation factor 2 alpha kinase 4 EIF2AK4 
can predict CD8+ T-cell response with up to 
90% accuracy. A multi-organ model, capable of 
computing Mtb-specific T-cell frequencies over 
time, generated by Kirschner’s group, using non-
human primates data, was utilised to discover 
potential biomarkers for TB.119 The model, con-
structed with machine learning approaches and a 
set of ODEs, indicated that the level of Mtb-spe-
cific frequencies of both CD4+ and CD8+ T-cells, 
present in blood, can be used to predict the infec-
tion outcome.

In the field of cancer, ample progress has been 
made on this front. There are markers to estimate 
severity of the disease and to predict progres-
sion rates for early diagnosis, response to therapy 
and recurrence.120 A study by Ottenhoff and his 
group identified a specific status of cytokine sig-
nalling to be indicative of the effect of treatment. 
They show that IFN-γ/IL-10 and IFN-γ/TNF-α 
ratios strongly correlate with the treatment pro-
cess, where successful treatment indicates a shift 
toward proinflammatory cytokine profile.121 Such 
methods are likely to be useful for discovering 
biomarkers for different aspects of infectious dis-
eases as well.

6.4  Variations in Signalling Networks 
upon Treatment

The precise state of intracellular signalling 
network can also suggest effective therapeu-
tic strategies specific to the molecular profile. 
Disease-specific networks can infer variations in 
signalling networks upon treatment. A network 
study122 using transcriptomic data from whole 
blood samples of TB patients123 revealed that 
a top-ranking differential active sub-network 
seen in individuals after 12 months of TB treat-
ment is more similar to the path profiles seen in 
healthy individuals than those with active dis-
ease. These paths were deduced based on the least 
path cost, where path cost was calculated using 
node weights derived from gene expression data 

in a large protein-interaction network. This study 
illustrates the significance of a systems biology 
approach that can reveal molecular paths which 
are otherwise difficult to trace. This network 
analysis further indicated that there is a consid-
erable change in the path profiles after 2 months 
of TB treatment when compared with healthy 
individuals and that they reverted to similar paths 
again after 12 months of treatment. One particu-
lar example is the interferon response network, 
where IFN-α response genes GBP1, PIM1, CD40, 
IF130, IRF9, OAS1, IFIT2 and ISG15 show ele-
vated levels during TB and are later found to be 
considerably lowered during the course of treat-
ment. Presence of paths which remain unchanged 
upon treatment indicates the plasticity in vari-
ations due to disease and that the treatment 
restores the physiological state only partially. 
Such inferences can also open up new avenues for 
biomarker research.

7  Targeting Signalling Networks—Drugs 
and Vaccines

A majority of physiological responses, directly or 
indirectly, can be attributed to signalling path-
ways along with response to vaccination. The 
most evident of all is TLR signalling, which has 
been studied in great detail to understand the 
mechanism behind vaccines contributing to pro-
tective immunity. For live attenuated vaccines, 
TLR activation is known to play an important 
role.124. Known vaccines with the TLR-depend-
ent protective mechanism include vaccines such 
as the BCG conferring protection against TB, 
which activates TLR2 and TLR4 signalling path-
ways.125 Similarly, multiple TLRs are activated 
by YF-17D, leading to activation of dendritic 
cell subsets.126 Pulendran and colleagues showed 
that a nanoparticle vaccine made of ligands for 
TLR4 and TLR7 can trigger neutralising anti-
body responses with lifetime persistence. This 
vaccine is shown to protect against lethal avian 
and swine influenza viral strains in mice and can 
also provide immunity against H1N1 influenza 
in rhesus macaques.127

Since signalling pathways are involved in 
immune responses induced by vaccines, several 
attempts have been made to model the signal-
ling response to study the persistence of immu-
nity. Systems biology approaches are also being 
increasingly used in vaccinology to predict the 
efficacy of vaccines. Nakaya et al. used a systems 
approach to study innate and adaptive responses 
to vaccination against influenza in humans dur-
ing three consecutive influenza seasons and were 
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able to predict immunogenicity of vaccines. 
They studied candidates vaccinated with triva-
lent inactivated influenza vaccine (TIV) or live 
attenuated influenza vaccine (LAIV) and found 
that both TIV and LAIV vaccination induced 
distinct molecular signatures in the blood. They 
further demonstrated that calcium/calmodulin-
dependent protein kinase type IV (CaMKIV) 
plays an important role in the regulation of 
antibody responses to vaccination against influ-
enza.128 These results signify the role of systems 
biology approaches in providing new mechanistic 
insights to vaccine response.

8  Conclusion
In this review, we have described the systems biol-
ogy approaches and mathematical models widely 
used to study signalling systems and how they 
are applied to host–pathogen interactions. The 
models span a wide range from simple differen-
tial equations describing large processes in a com-
pressed form, to complex and detailed nuanced 
condition-specific genome-wide networks. Avail-
ability of a large amount of systematic genome-
wide data, on the one hand, and biochemical, 
genetic and cellular level data on individual mol-
ecules, reactions and pathways, on the other hand, 
has made it feasible to employ mathematical mod-
elling as a strategy to study signalling systems. 
However, considerable judgement is required in 
choosing the appropriate models, based on the 
initial data and the type of results required.

Systems-level models complement experi-
mental studies and contribute to a deeper com-
prehension of the processes they influence, 
especially when intuitive reasoning does not 
suffice. Several models of host–pathogen inter-
actions, in which signalling systems occupy the 
centre-stage, have been built and analysed as 
listed in this review. Some of these have pro-
vided a framework to integrate information of 
diverse types and at various levels of abstraction. 
A number of modelling studies have provided 
mechanistic insights into different aspects of 
host response to pathogens, which are generat-
ing hypotheses on critical molecules, interac-
tions and pathways, in specific cases. Systems 
level studies can also throw light on the generic 
mechanisms by which different pathogens affect 
host networks, which will help us understand 
commonalities in host response to diverse trig-
gers. Several applications readily emerge from 
such understanding, including identification of 
diagnostic markers and therapeutic intervention 
strategies.

An integration with temporal data leading to 
generation of dynamic models over the course 
of infection or treatment will facilitate an under-
standing of the basis for conditional responses 
of the host systems. It can be foreseen that these 
models can be further extended into generating 
precise patient-specific models and account for 
comorbidities and other patient-specific genetic 
and biochemical information. Such models can 
be expected to provide a basis to explain the 
effects of heterogeneity in the patient population 
and help in patient sub-typing, which can be used 
to guide us in the development of sub-type spe-
cific biomarkers and set the stage for exploring 
options for personalised treatment.

Standard gene names have been used through-
out the article.
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