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Illuminating Cyclic Nucleotides: Sensors for cAMP 
and cGMP and Their Application in Live Cell Imaging

1  A Brief History of Cyclic Nucleotides 
in Cellular Signaling Processes

Cyclic AMP was the first molecule to be identified as 
an intracellular mediator for hormonal activity. 
Adrenaline was known to activate liver phosphorylase 
in liver homogenates, resulting in conversion of gly-
cogen to glucose-1-phosphate. Seminal work by Earl 
Sutherland and co-workers showed that adrenaline 
stimulation in liver homogenates produced a soluble 
and heat-stable factor that could activate phosphory-
lase. This factor could activate phosphorylase even in 
the supernatant fraction of liver homogenates where 
adrenaline administration had no effect.1 The factor 
was purified and identified as 3′,5′-cyclic adenosine 
monophosphate (cAMP).2–4 Later, in 1963, the pres-
ence of cAMP was also reported in prokaryotes, and 
shown to be involved in catabolite repression .5, 6 
Subsequently, 3′,5′-cyclic guanosine monophosphate 
(cGMP) was isolated from rat urine 7 and was identi-
fied as a second messenger in phototransduction in 
retina.8 Since then, a number of cyclic nucleotides 
have been identified, including cyclic CMP,9 cyclic 
UMP,9 cyclic di-GMP,10 cyclic di-AMP11 and cyclic 
GAMP.12

2  Cyclic AMP and cGMP Synthesis 
and Degradation Enzymes 
in Eukaryotes

After cAMP and cGMP were identified as second 
messengers, a large number of studies led to an 
understanding of cNMP synthesis, degradation, 
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and their mode of action inside cells.13 Cyclic 
nucleotide synthesis and degradation occurs in 
almost all tissues.14–17

The enzymes that synthesize cAMP and 
cGMP are referred to as adenylyl cyclases and 
guanylyl cyclases, respectively (Fig. 1). These 
enzymes are sensitive to various ligands and fac-
tors, thus making cAMP and cGMP play the roles 
of second messengers in signaling events.18, 19  
Cloning and sequencing of adenylyl cyclases 
revealed that enzymes from bacteria, eukary-
otes and secreted adenylyl cyclases from patho-
genic bacteria, can be classified into six classes, 
based on amino acid sequence similarity.20–22 
Mammals encode ten Class III adenylyl cyclases 
(AC1-AC10). AC1 to AC9 encode membrane-
bound cyclases, while AC10 encodes for a solu-
ble cyclase. All adenylyl cyclases are active as 
homodimers.23

Mammals express four soluble guanylyl cyclase 
subunits (α1, α2, β1 and β2) and seven single 
membrane-spanning forms named as GC-A to 
GC-G.24 Soluble cyclases function as heterodimers 
and membrane guanylyl cyclases as homodimers.

Cyclic nucleotide phosphodiesterases (PDEs) 
degrade cNMPs by converting them to 5′NMPs 
following cleavage of the cyclic phosphodiester 
bond. There are three different classes of PDE, 
out of which, class I contains all mammalian 
PDEs. Mammalian PDEs have been grouped into 
11 families based on sequence homology, sub-
strate-specificity and mode of regulation.25
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3  Cyclic NMP‑Dependent Kinases: cAMP 
and cGMP Effectors in Eukaryotes

Although cAMP stimulates ATP-dependent phos-
phorylation of phosphorylase kinase in vitro, 
no direct interaction between cAMP and phos-
phorylase kinase was observed.26, 27 This led to 
the purification of a novel protein kinase activity 
from rabbit skeletal muscles that was dependent 
on cAMP.28 Analogous to cAMP, it was specu-
lated that cGMP may act via protein kinases, 
and indeed, a cGMP-dependent protein kinase 
was subsequently purified from lobster mus-
cles.29 Cyclic AMP- and cGMP-dependent pro-
tein kinases are referred to as PKA and PKG, 
respectively.

4  Non‑Kinase Effectors of cAMP 
and cGMP

Cyclic AMP-dependent protein kinase activity 
was purified from nine phyla of the Animal King-
dom.30 This strengthened the hypothesis that all 
actions of cAMP were brought about by the set of 
protein kinases and their specific targets present in 
a cell. However, the discovery of non-kinase tar-
gets of cAMP, such as cation channels and guanine 
nucleotide exchange proteins added an increased 
level of complexity to cyclic nucleotide signaling.

In 1987, ion channels were identified as new 
effectors. The presence of odorant-stimulated 
adenylyl cyclase in olfactory receptor cells 

Patch clamping: A technique 
used to measure the electrical 

activity across a small patch of 
membrane containing one or 
more channels. It comprises a 
glass micropipette containing 

electrode in tight contact with 
a small patch of membrane 

and a reference electrode in-
serted in extracellular media.

suggested a role for cAMP in olfactory transduc-
tion.31 Patch clamping of olfactory receptor cells 
demonstrated the presence of cAMP-inducible 
cation channels.32 In parallel, rod cells were found 
to contain a cGMP-specific PDE and guanylyl 
cyclases.33, 34 PDE was found to be activated by 
light35 and led to the identification of cGMP-
stimulated, cation conductance in rod cells.36 
These cGMP-sensitive channels were purified 
from bovine retinae, and were shown to transport 
both monovalent and divalent cations, in a 
cGMP-dependent manner.37

An additional cyclic nucleotide gated chan-
nel, or CNGC, is the hyperpolarization-activated 
cyclic nucleotide-gated channel (HCN). HCN 
was identified in a study aimed at understanding 
the mechanism of cAMP-dependent, but phos-
phorylation-independent, increase of polarizing 
currents in neurons and heart cells.38

At the time of writing, the most recently identi-
fied target protein for cAMP in eukaryotes is an 
exchange protein directly activated by cAMP (Epac). 
Epac proteins were identified independently by two 
groups, and share sequence homology with a gua-
nine nucleotide exchange factor (GEF).39, 40

5  Cyclic NMP‑Binding Domains
The general understanding is that cyclic nucleo-
tides bind to specific domains in proteins, thereby 
allosterically regulating the effector activity of the 

Nucleotide exchange factor: 
These are proteins that acti-

vate G proteins by enhancing 
the exchange of GDP for GTP.

5´- AMP

adenylyl cyclases 

Extra or intracellular signals 

guanylyl cyclases 

GTP

cGMP

ATP

cAMP

cGMP PDEs cAMP PDEs

5´- GMP

PKAEPAC CNGC/HCN

Protein phosphorylationRap1 Change in conductance

PKG

GAF

PDE2

Effector  proteins

PDE5

cGMPcAMP

CNB

Figure 1: A schematic summarizing the cNMP synthesizing, degrading and effector proteins. Boxes out-
lined in red and blue indicate cAMP and cGMP effector proteins, respectively, and in purple domains that 
bind either cAMP or cGMP.
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full-length protein. The cyclic nucleotide bind-
ing (CNB) domain present in PKA, PKG, CNGC, 
HCN and Epac share sequence and structural 
similarity (Fig. 2). In addition to these eukaryotic 
cNMP-binding proteins, the CNB domain is also 
present in bacterial cAMP effector proteins. The 
most well-understood cAMP responsive protein 
(CRP) in prokaryotes is CAP. CAPs are transcrip-
tion factors, and possess a CNB and a DNA-
binding domain. They regulate the transcription 
of various genes in a cAMP-dependent manner. 
A unique cAMP-binding protein that has been 
characterized in mycobacteria possesses cAMP-
induced protein lysine acetyltransferase activ-
ity.41 Pseudomonas aeruginosa expresses a protein 
referred to as cAMP-binding protein A (CbpA) 
that has cAMP-binding activity and two CNB 
domains.42

A second domain has been found to bind 
cyclic nucleotides and is called the GAF (cGMP-
specific and stimulated PDEs, Anabaena 
adenylyl cyclases and Escherichia coli Fhla) 
domain (Fig. 2d, e). Sequence alignment of the 

photoreceptor PDE from rods and cone cells, and 
the cGMP-stimulated specific PDEs showed the 
presence of a conserved domain, distinct from the 
cGMP-hydrolytic domain in these PDEs. Lim-
ited proteolysis experiments indicated that the 
conserved domain contains non-catalytic cGMP-
binding activity.43 Subsequently, this cGMP-bind-
ing domain was found to be present in a large 
family of proteins present in all kingdoms of life, 
and was named the GAF domain.44 The role of the 
GAF domain in PDEs is to bind cGMP and stim-
ulate or inhibit phosphodiesterase activity.45, 46  
Analogous to the GAF domains of PDEs, the 
GAF domain in the Anabaena adenylyl cyclase 
was shown to bind cAMP and increase cAMP 
synthetic activity. However, not all GAF domains 
bind cyclic nucleotides. The E. coli FhlaA is acti-
vated by binding of formate to tandem GAF 
domains,47 and we now know that proteins con-
taining the GAF domain represent one of the 
largest families of proteins regulated by binding 
to a variety of small molecules.48–50

Figure 2: Structure and topology of the CNB and GAF domains. a CNB domain of catabolite activator 
protein from E. coli bound to cAMP. b C terminus GAF domain of human PKG II bound to cGMP. c The 
topology of C terminus PKG II domain, with color scheme similar to that in b. Note that the topology of 
the β-sandwich is conserved in all CNB domains. d GAFa domain of PDE5A bound to cGMP. d Topology 
of cNMP-binding GAF domains adopted from Heikaus et al.85 The region shown in back and gray is not 
present in all the GAF domains. The structures in a, b and d were generated from the Protein Data Bank 
accession codes 1CGP,184 5BV683 and 2K3189 using PyMOL Win185.
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6  Structural Features of the CNB Domain
The first reported crystal structure of a CNB 
domain bound to cAMP was of CAP from E. 
coli.51, 52 Interestingly, when sequences of PKA 
type II,53 PKA type I 54 and PKG 55 became avail-
able, it was seen that they share a significant 
sequence similarity amongst themselves and with 
CAP. Hence, it was predicted, and is now known, 
that all these cyclic nucleotide-binding proteins 
from eukaryotes and prokaryotes have structur-
ally similar CNB domains.

The CNB domain is ~120 amino acids in 
length. The basic topology of a CNB domain is a 
relatively rigid, eight-stranded antiparallel 
β-sandwich, flanked on both termini by flexible  
α-helical regions with variable number of heli-
ces.56, 57 The most conserved region of the 
β-barrel is involved in binding to the phosphate 
group attached to the ribose sugar of the cNMP, 
and is hence referred to as the phosphate-binding 
cassette (PBC, shown in yellow in Fig. 2). PBC lies 
between two strands of a β-sandwich, and is 
12–14 amino acids in length. The two most con-
served residues in PBC are arginine and gluta-
mate.58, 59 Arginine interacts with the equatorial 
oxygen of the phosphate of ribose moiety (O1P)52 
and glutamate makes hydrogen bond with 2′ OH 
of cAMP.60

The helical region undergoes large conforma-
tional changes upon cNMP binding and hence is 
important for cNMP-mediated allosteric regula-
tion. The helical region which is N-terminal to 
the β-sandwich is often referred to as N-terminal 
helical bundle. The helical region present towards 

β-sandwich: A domain 
structure in a protein that is 

characterized by the presence 
of two antiparallel β-sheets 

facing each other.

α-helical: A protein structure 
composed of α-helices. An 

α-helix refers to a conforma-
tion adopted by a stretch 
of polypeptide in which 

backbone N–H of an amino 
acid residue forms a hydrogen 

bond with C=O of every 
third or fourth residues.

the C terminus can be divided into hinge and lid 
regions.  The lid is the most variable part of the 
CNB domain. The variability of the C terminus 
helical region can be appreciated by the fact that 
the hinge of the second CNB domain of PKA type 
II acts at lid for first CNB domain.57, 61, 62 The 
amino acids in the lid make hydrophobic interac-
tions with the base of the bound cyclic nucleotide 
and protect it from the surrounding environ-
ment. In the absence of cyclic nucleotides, the lid 
helix is relieved of these interactions, and initiates 
structural changes in the CNB and other domains 
present in the protein.62 The conformational 
changes induced by binding of cyclic nucleotides 
to CNB domains have been utilized to develop 
tools for detection of these second messengers 
inside live cells in real time, as described in sub-
sequent sections.

7  Eukaryotic Proteins with CNB Domains
7.1  Epac
Epac contains CNB domains fused to a GEF 
domain and is involved in activation of the  
G protein RapI.39, 40 There are two genes in 
humans referred to as EpacI and Epac2. Both 
these Epacs are active as monomers. A single pol-
ypeptide chain harbors an N-terminal catalytic 
and a C-terminal regulatory region. The regula-
tory region contains an N terminus DEP domain 
(Disheveled, Egl-10, and Pleckstrin) and the CNB 
domain (Fig. 3).39, 40 DEP domains are involved 
in anchoring the protein to the cell membrane. 
The catalytic region contains the Ras-Exchanger 

G protein: G proteins are 
proteins that bind the guanine 
nucleotide. They are activated 

when bound to GTP and 
inactivated in a GDP-bound 

state.

Figure 3: Domain organization of CNB and GAF domain-containing proteins in eukaryotes. Ψ is the 
pseuodosubstrate sequence, and AI is the autoinhibitory sequence. Other domains have been described 
in the text.
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Motif (REM), Ras-association (RA) and CDC25-
HD domain.39, 40 CDC25-HD is the catalytic 
domain and is sufficient for acting as a nucleotide 
exchange factor for members of the Ras family of 
G proteins.63

Epac1 is localized in the cytoplasm in the 
apo state. After binding cAMP, conformational 
changes expose the DEP domain, and this is fol-
lowed by translocation to the plasma membrane. 
Epac2 is always localized on the plasma mem-
brane due to its interaction with the Ras protein. 
Thus, Epacs are involved in the regulation of mul-
tiple processes such as cardiovascular contraction, 
insulin secretion and neuronal transmission, all 
of which occur in a cAMP signaling-dependent 
manner.64

7.2  PKA/PKG
Protein kinase A (PKA) is composed of two cata-
lytic (C) and two regulatory subunits (R) and 
forms a heterotetrameric complex (R2C2).65 
Two regulatory subunits, RI and RII, define the 
enzyme as either PKA Type I or PKA Type II. The 
R subunit contains a dimerization domain (DD), 
a pseudosubstrate sequence and two tandem 
CNB domains. The catalytic activity of the C sub-
unit is inhibited by the pseudosubstrate sequence 
(Ψ) present in the R subunit in the tetrameric 
holoenzyme. Binding of four cAMP molecules to 
the heterotetramer releases the C subunits, which 
now become catalytically active (Fig. 3).66

Mammals encode two genes that encode 
cGMP-dependent protein kinases PKGI and 
PKGII. PKGI has two isoforms PKGIα and 
PKG1β.67, 68 Both PKGI and PKGII have similar 
domain architecture and catalytic and regulatory 
domains are present in a single polypeptide chain, 
and contain an N-terminal leucine/isoleucine zip-
per for dimerization, followed by an autoinhibi-
tory sequence and two tandem CNB domains, 
CNB-A and CNB-B. The C terminus harbors 
the catalytic kinase domain. CNB-A has a higher 
affinity for cGMP 69, 70 and cyclic GMP binding 
allosterically activates the catalytic domain.

7.3  CNGC/HCN
CNGC channels open and close depending on 
the binding of cyclic nucleotides. HCN open 
and close in response to membrane potential, 
and cNMP binding shifts the threshold of the 
potential needed for opening or closing of the 
channel. 71, 72 Both CNGC and HCN are tetra-
meric in nature and made of various combina-
tions of two different subunits. Each subunit 
has a six-pass membrane-spanning region, and 

a CNB domain at the C terminus (Fig. 3). Full-
length crystal structures for CNGC or HCN have 
not been reported. However, a reasonable model 
of the structure based on the crystal structure of 
isolated CNB domain of such channels,73, 74 and 
the membrane spanning domain of other related 
channels, is available, that aids in understand-
ing cNMP-induced conformational changes that 
results in opening and closing of the channel.62, 75

The structural basis of cAMP and cGMP-
induced conformational changes and the 
regulation of activity in all these CNB domain-
containing proteins has been excellently summa-
rized in a review by Rehmann et al.62

8  Selectivity in CNB Domain‑Containing 
Effector Proteins

A large number of signaling pathways involve 
cAMP and cGMP as second messengers in eukar-
yotes. The selectivity of CNBs for cAMP and 
cGMP is very crucial for keeping these pathways 
segregated. Mammalian cAMP and cGMP-spe-
cific protein kinases show considerable similarity 
in sequence but also can be selective for cAMP or 
cGMP. One residue responsible for cGMP selec-
tivity is an amino acid adjacent to the conserved 
arginine in PBC. An alanine residue at this posi-
tion in PKA was seen to be replaced by a threo-
nine in PKG. It was proposed that the OH group 
of the threonine side chain makes a hydrogen 
bond with 2-amino group of cGMP.76 When the 
conserved alanine in PKA was replaced with thre-
onine, the affinity for cGMP increased tenfold 
and that for cAMP remained unaltered.77 Fur-
ther, replacing the threonine in PKG and CNG 
with alanine resulted in a significant decrease 
in the affinity for cGMP, whereas that of cAMP 
remained unchanged.69, 78

The specificity for cyclic nucleotide-mediated 
regulation of effector protein activity can also be 
brought about by the regions that are involved 
in allosteric transition, as opposed to residues 
those are involved in interaction at the binding 
pocket. Bovine rod cyclic nucleotide-gated chan-
nel is highly selective for cGMP. Replacement of 
an aspartic acid residue located at the C-terminal 
α-helical region of the CNB domain makes it 
selective for cAMP.79 The ability of the carboxylic 
acid group of the aspartate residue allows favora-
ble interactions with N1 and N2 hydrogen atoms 
of cGMP, and unfavorable electrostatic effects 
with unshared electrons at N1 of cAMP. Analyses 
based on a two-step model involving initial bind-
ing of cNMP to the channel, and a second step of 
structural transition resulting in opening of the 
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channel, suggested that the change in selectivity 
was the outcome of the ability of cNMP to trig-
ger structural transitions, rather than affecting its 
initial binding affinity.79

Selectivity in PKGI is known to be imparted 
by the lower affinity CNB-B domain. Despite the 
presence of aforementioned threonine residue at 
the PBC, the affinity of the CNB-A domain of 
PKGI-β for cAMP is similar to cGMP.80 How-
ever, binding of cyclic nucleotides to the CNB-B 
domain is required for complete activation of 
PKG I.81 This makes binding at CNB-B a limit-
ing step for the activation of PKG I by cAMP. 
The need of very high cAMP levels (~50 μM) 
for binding at CNB-B thus limits the cross-talk 
between cAMP and cGMP signaling. The crystal 
structure of this domain bound to cGMP showed 
an arginine present at β-5 of CNB that makes a 
hydrogen bond contact with the guanine moiety. 
Mutational analysis showed that this interaction 
provides the basis for selectivity for cGMP over 
cAMP.82 Similarly, crystal structures’ cGMP selec-
tive CNB-B domain of PKG II bound to cGMP 
showed the presence of two specific aspartate and 
arginine residues that make contact with the gua-
nine moiety and provide a basis for selectivity.83

Overall, this indicates that mechanisms by 
which selectivity is achieved are directed by the 
proteins in which the CNB domain is found.

9  Cyclic Nucleotide‑Binding GAF Domain
The amino acid sequences of GAF domains have 
diverged significantly due to their long evolution-
ary history. However, all the characterized cNMP-
binding GAF domains contain a conserved 
NKFDE motif 44, 49 and mutational analyses have 
shown that these residues are essential for cNMP-
binding.43, 84 However, none of these residues are 
located near the binding pocket as seen in crystal 
structures. It has been suggested that they, there-
fore, may play a role in providing structural sta-
bility to GAF domains.85

Nucleotide-binding GAF domains have a core 
structure composed of six stranded antiparallel 
β-sheets (3-2-1-6-5-4) and four α-helices referred 
to as α-2, α-3, α-4 and α-5 (Fig. 2d, e). The cen-
tral β-sheet faces α-2 and α-5 on one side and α-3 
and α-4 on another. The cNMP-binding pocket is 
present in between the β-sheet and α-3 and α-4 
helix. Based on biochemical and structural data it 
is believed that all tandem GAF domain-contain-
ing PDEs form parallel dimers.85 The α-2 and α-5 
helices are involved in making dimerization 

β-sheet: A secondary 
structure motif in proteins 
composed of two or more 

β-strands interconnected by 
hydrogen bonds, forming a 
planar structure. β-Strands 

are polypeptides of 3–10 
amino acids in length whose 
backbones are present in an 

extended conformation.

contacts in GAFa of PDE2A 86, 87 and GAFb 
domain of PDE10 A.88 Other than the four 
α-helices mentioned earlier, additional α-helices 
are seen in the GAF domains of some PDEs. For 
example, a fifth α helix α-1 is present in GAF 
domain of PDE5, and is needed for making 
dimerization contacts.89, 90

10  Eukaryotic Proteins 
with cNMP‑Binding GAF Domains

PDE2, PDE5, PDE6, PDE10 and PDE11 con-
tain tandem cNMP-binding GAF domains in an 
N-terminal regulatory region, referred to as GAFa 
and GAFb. High affinity binding of cGMP to the 
GAFb domain of PDE2 activates the enzyme and 
results in enhanced cleavage of both cAMP and 
cGMP.91 PDE3 has higher catalytic activity for 
cAMP as compared to cGMP, but the Km for the 
two substrates is similar. This leads to competi-
tive inhibition of cAMP hydrolysis at high cGMP 
concentration.92 Therefore, PDE2 and PDE3 play 
an important role in cross-talk between cAMP 
and cGMP signaling.93 Cyclic GMP binding to 
the GAFa domain of PDE5 increases the Vmax and 
Km of the enzyme for cGMP 94 and also increases 
the affinity of PDE5 for its inhibitor, sildenafil cit-
rate.95, 96

11  Selectivity for cAMP and cGMP 
Binding in GAF Domains

The cGMP-binding GAF domains have very simi-
lar nanomolar affinities for cGMP. However, they 
show different extent of selectivity for cAMP. 
For example, PDE6 GAFa, PDE5A GAFa and  
PDE2GAFb have ~10000-, 1000- and 20–30-
fold higher affinity for cGMP as compared to  
cAMP.89, 91, 97, 98 The fact that the affinities of 
cGMP-binding GAF domains are very high and 
are very similar for all GAF domains suggests the 
selectivity in these domains is brought about by 
negative selection against cAMP. Mutational anal-
ysis of the GAFb domain of PDE2 showed that 
residues that interact with the phosphate-ribose 
moiety or the imidazole ring of cNMP confer 
high affinity binding, while residues that interact 
with the pyrimidine ring provide cyclic nucleotide 
specificity.91 We have shown that a single cAMP-
specific GAFb domain from an Anabaena adenylyl 
cyclase showed lower selectivity for cAMP in com-
parison with the tandem GAFab domain.99 This 
indicates that the presence of a second adjacent 
GAF domain in PDEs could also be a mechanism 
to achieve cyclic nucleotide selectivity in PDEs.
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12  Cyclic Nucleotide‑Binding Proteins 
as Cellular Sensors that Monitor cAMP 
and cGMP Levels in Time and Space

Traditionally, measurements of cAMP and cGMP 
are performed using cell population assays, such 
as radioimmunoassay or ELISA methodolo-
gies.100, 101 However, these methods cannot pro-
vide information about the localization of cNMPs 
within single living cells, heterogeneity in con-
centration in a population of cells, and/or fluc-
tuations that occur very rapidly. It is reasonable 
to propose that methods of detecting these ana-
lytes at the level of the single cell could provide 

new information about cNMP-mediated signal-
ing. Since cNMP-binding target proteins undergo 
conformational changes upon binding to cNMPs, 
one could monitor these conformational changes 
for visualization and estimation of cAMP and 
cGMP nucleotides inside single cells. Figure 4 
depicts the design strategies employed for making 
cNMP sensors, which are discussed further below. 
Some of these sensors utilize the CNB domain 
alone, opposed to full-length effector proteins. 
The region of the CNB domain that is sufficient 
for binding and undergoing cNMP-induced con-
formational changes are selected based on the 

Figure 4: Schematic representation of the design strategy of various cAMP sensors. a–f Protein-based 
sensors for cyclic nucleotides. Red ovals represent the domain that binds the cyclic nucleotide, and 
the filled arcs represent the conformational change that occurs on cAMP binding. g Nucleic acid-based 
cAMP sensor. Blue lines correspond to cAMP binding sequence and black lines indicate the DFHBI bind-
ing sequence.
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Table 1: A summary of the cAMP and cGMP sensors described in this article

Sensor design

cAMP sensors

Recognition module EC50 
(μM)

References

Conductance of 
CNGC

Rat olfactory CNGC α subunit (roCNGCα) 40 108

roCNGCα (C460W, E583M); C460W and E583M make it more sensitive 
and selective for cAMP over cGMP

1 105

roCNGCα (C460W, E583M and Δ61–90); Δ61–90 to impart Ca2+ 
insensitivity.

14

Inter-molecular FRET R1 subunit of human PKA 0.080 112

RII subunit of PKA NA 113

Intra-molecular FRET Epac1-camps: CNB domain of human Epac1 (E157–E316) 2.3 115

Epac2-camps: C terminus CNB domain of murine Epac2 (E285–E443) 0.9

PKA-camps: CNB domains of and RII β isoform of murine PKA (M264–
A403)

1.8

Full-length human Epac1 (hEpac1) 50 114

(Δ1–148) hEpacI; deletion to get rid of membrane localization 35

(Δ1–148, T781A, F782A) h Epac1; T781A and F782A remove catalytic 
activity

14

CNB domain of murine HCN2 (A467–K638) 6 118

(Δ1–148, T781A, F782A) hEpac1 10 117

(Δ1–148, T781A, F782A, Q273E) hEpac1; Q273E is to increase cAMP 
affinity.

4

Inter-molecular BRET RI α of human PKA ~1 125

hPKA RI α (R210K); R120K lowers cAMP affinity ~0.1

hPKA RII α NA

Intra-molecular BRET Human EpacI (149–881, T781A, F782A) 8 128, 129

Human EpacI (149–881, T781A, F782A). In addition an N terminus tag 
(1–196 aa of PDE2A3) for plasma membrane localization

10

hEpacI (149–881) NA 130

Full-length KATms (1–333) 0.15 41

CNB domain of KATms (1–215) 0.07

Fluorescence (not 
FRET)

Flamindo: Mouse Epac1 CNB domain (157–316) 3.6 123, 124

PM-Flamindo: mEpacI (157–316) and N terminus tag (20 amino acid of 
GAP43) for plasma membrane targeting

NA

Flamindo2: mEpacI (157–316), longer linker between Citrine and N 
terminus of mEpac

2.1

NLS-Flamnido2: NLS at N terminus for nucleus targeting. NA

Class II RNA aptamer 182 985 142

cGMP sensors

 CNGC conduct-
ance

Chimeric CNGC known as “RONS2” 183 3–4 107

 FRET CGY-A12: h PKG 1α (L, I, C1–47A); leucines/isoleucine zipper mutated 
to prevent dimerization.

NA 119

CGY-Del1: PKG Iα (∆1–47); dimerization domain deleted 0.02

Cygnet 1: PKG Iα (∆1–77); dimerization domain deleted. 1.5 120

Cygnet 2.1: PKG Iα (∆1–77, T516A); T516A removes catalytic activity 1.8

cGES-DE2: PDE2A (Q392–A525); GAFb domain 0.9 121

cGES-DE5: PD5A (Q154–A308); GAFa domain 1.5

cGES-GKIB: PKGI (L231–A350) 5

(Continued)
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information available from the crystal structures 
(see Table 1).

13  CNGC and HCN Channels for Sensing 
Using Electrophysiology

To monitor rapid changes in cGMP and cAMP 
concentrations near the plasma membrane, 
CNGCs are very useful. Since homotetrameric 
CNGCs are functional, expression of a signal sub-
unit in the cell of interest is sufficient for making 
use of them as a sensor. CNGC sensors are either 
expressed in cells using adenovirus transduction 
method or patch-crammed into cells of inter-
est.102, 103 The amount of cNMP generated in the 
cell is estimated from the extent of cation con-
ductance through these channels, which can be 
measured using standard electrophysiological 
methods. Alternatively, cation conductance can 
also be measured by detecting Ca2+ entry into the 
cytoplasm using a Ca2+-sensitive dye.104–106

Electrophysiological 
methods: The methods for 
recording electrical activity 
of a cell.

Patch-crammed: This is a 
method where a patch of 
membrane from a donor cell, 
expressing the membrane 
protein of interest, is excised 
and inserted into another 
cell of interest. This method 
is mainly employed to 
understand the properties of a 
channel inside the membrane 
patch.

Adenovirus transduction: 
It is a method of delivery of 
foreign DNA into the cells, 
achieved by packing the 
DNA into adenoviral-like 
particles. These infect cells 
and release their contents, but 
cannot replicate and cause 
pathogenesis.

The first real-time measurement of cGMP in 
living cells was performed in differentiated neu-
roblastoma cells using the patch-cram method.107 
A patch from a Xenopus oocyte containing a 
high density of CNGC was excised and inserted 
(crammed) into recipient cells. Prior to insertion, 
the patch was calibrated for cGMP-stimulated 
conductance. In a second study, a rat wild-type 
olfactory CNGC (oCNGC), mutant, which is 
more selective for cAMP, was used for cAMP 
measurement in cultured cells using adenovirus-
based expression methods.105, 108

The advantages of using CNGC for live cell 
measurements of cAMP or cGMP are that meas-
urements can be performed rapidly, result in 
lower swamping of cNMPs, and provide high res-
olution of cNMP concentrations following cali-
bration using excised patches from membranes 
of cells expressing the channels. However, electro-
physiological measurements are technically chal-
lenging and time consuming; therefore, the use of 

Table 1: (Continued).

Sensor design

cAMP sensors

Recognition module EC50 
(μM)

References

 BRET Human PDE5A2 (S118–H273); GAFa domain 0.030 96

 Fluorescence (not 
FRET)

Regulatory domain of PKG1 α (1–356) 0.035 122

Regulatory domain of PKG1 β (1–372) 1.1

Regulatory domain of PKG1 α (77–356) 0.17

NA means EC50 values were not reported

Figure 5: Output from a typical FRET-based cAMP sensor. a The emission spectrum of cell lysates pre-
pared from cells expressing an Epac-based cAMP sensor. The sensor has CFP and YFP variant pro-
teins as FRET donor and acceptor, respectively. In the presence of cAMP, the emission of CFP increases, 
whereas emission of YFP decreases, indicating loss of FRET in the presence of cAMP. b Images of 
cells expressing the sensor, acquired using widefield epifluorescence microscopy, with CFP excitation 
(408 nm) and collection of emission using CFP (CFPem) and YFP (YFPem)-specific filters. Upon cAMP 
elevation, an increase in intensity in CFPem can be seen. The changes in FRET can be visualized in pseu-
docolored images obtained by dividing the intensity acquired in the YFPem channels by the correspond-
ing intensity in the CFPem channel. Scale bar 10 μm. The data shown was generated in our laboratory 
and the sensor was generously provided by Prof. K. Jalink (Netherland Cancer Institute)117
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these sensors has been restricted to a few labora-
tories.109, 110

14  FRET Sensors
Förster resonance energy transfer (FRET) is the 
phenomenon of non-radiative transfer of energy 
from one fluorophore to another, when present 
in near proximity. Efficiency of FRET between 
a given pair of fluorophore depends on the dis-
tance between them, as well their orientation. In 
general, FRET sensors have an analyte-binding 
domain fused to a pair of fluorophores suitable 
for FRET. Analyte binding brings about confor-
mational changes in the biosensor, resulting in 
an alteration in distance or relative orientation 
of the fluorophores, and a consequent change in 
the FRET signal.111 An example that is commonly 
obtained from FRET-based imaging of cAMP has 
been illustrated in Fig. 5.

The first attempt to visualize cAMP in single 
living cells was made in 1991.112 The C subunit 
and R subunits of PKA were labeled with fluo-
rescein and tetramethylrhodamine, respectively, 
and the labeled subunits injected into the cells. 
The inactive holoenzyme complex, R2C2, showed 
high FRET because of proximity of fluorescein 
and tetramethylrhodamine-labeled C and R sub-
units. Upon addition of cAMP-elevating reagent 
such as forskolin or isoproterenol, the FRET sig-
nal was lost because of dissociation of the R2C2 
complex.

The development of mutant GFPs with differ-
ent excitation and emission wavelengths allowed 
replacement of chemical fluorescent dyes with 
a pair of fluorescent proteins in the PKA sen-
sor, and made them genetically encodable.113 
Such a sensor was expressed in CHO, COS-7 
and HEK293 cells and responses to forskolin and 
di-Br-cAMP were detectable. These PKA-based 
sensors were not monomeric. Therefore, this 
resulted in slower kinetics of the sensor. Moreo-
ver, fluctuations in the relative expression of C 
and R subunits resulted in variations in the FRET 
ratios, independent of cAMP. The second major 
improvement to cAMP sensors was to encode 
them in a single polypeptide chain, by attaching 
the FRET protein pair to the termini of either 
full-length Epac114 or the CNB domains of PKA 
or Epac115. Ponsioen et al. used isoproterenol to 
elevate cAMP levels in GE11 cells and detected 
the increase using earlier PKA sensors as well as 
single-chain Epac sensors. Lysophosphatidic acid 
(LPA) treatment followed by isoproterenol low-
ered cAMP levels, and this rapid lowering could 

be detected by the Epac single-chain sensors, but 
not by the PKA sensor. In fact, the PKA sensors 
showed a lag period of several minutes before 
showing a recovery of the FRET signal after LPA 
addition.114

The single-chain sensors based on the CNB 
domains of Epac have a higher affinity for cAMP 
in comparison to the full-length Epac sensor 114, 115. 
Single-chain Epac sensors were used to monitor 
the speed of cAMP diffusion in the cell body of 
hippocampal neurons, and cAMP levels in peri-
toneal macrophages upon β-AR stimulation.115 
Cyclic AMP-induced FRET changes are more 
dramatic in the PKA sensors, due to complete 
separation of the fluorophores present on dif-
ferent polypeptides following cAMP binding. 
In contrast, single-chain sensors show smaller 
cAMP-induced changes in FRET, because cAMP 
binding to the central CNB domain induces 
conformational changes that result in relatively 
smaller alterations in distance and orientation 
of the fluorophores. Currently, a pallet of cAMP 
sensors is available, based on both Epac and PKA, 
encoding a variety of fluorescent proteins.109, 116, 117 
The CNB domain of HCN2 has also been used to 
make a FRET-based sensor.118

A series of FRET-based sensors based on full-
length and N-terminal truncated PKG 1α have 
been reported.119 ECFP and EYFP were fused 
at the N and C termini of PKG I, using various 
linker combinations. These sensors are known 
as CGY (for ECFP, PKG Iα, and EYFP).119 Other 
FRET-based sensors for cGMP, named Cygnet-1 
and Cygnet-2 (cyclic GMP indicator using energy 
transfer) were developed by the Dostmann 
group.120 These sensors are also based on N-ter-
minally truncated PKG 1α. In Cygnet-1, PKG 1α 
lacks dimerization and autoinhibitory domains 
while Cygnet-2 lacks these two domains and is 
also catalytically inactive. Cygnet-2 was used 
to image cGMP elevation induced by NO and 
C-type natriuretic peptide (CNP) in rat fetal lung 
fibroblasts.120 Nikolaev and co-workers developed 
a series of cGMP-energy transfer sensor (cGES) 
based on the C-terminal CNB domains of PKG1 
(cGES-GKIB), GAF domains from PDE2 (cGES-
DE2) and PDE5 (cGES-DE-5).121 Comparison of 
cAMP selectivity of these sensors indicated that 
cGES-DE5 and Cygnet are selective for intracel-
lular cGMP. Further, it was observed that the 
response of cGES-DE5 to increasing concentra-
tions of cGMP is faster than Cygnet, and also 
showed a higher change in signal. This places 
cGES-DE5 as the most suitable FRET sensor for 
cGMP imaging.
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15  Non‑FRET Fluorescence Sensors 
for cAMP and cGMP

Nausch and co-workers developed non-
FRET fluorescent indicators for cGMP 
(FlincGs). They generated three FlincGs by 
attaching at the N terminus of a circularly per-
muted eGFP (1) the regulatory domain of 
PKG1-α (α-FlincGs), (2) PKGI-β (β-FlincGs) 
(3) and the N-terminal deletion mutant of 
PKG1-α (δ-FlincGs).122 Binding of cGMP to all 
these constructs resulted in an increase in fluo-
rescence of GFP. These sensors had an additional 
excitation peak at 410 nm, and intensity corre-
sponding to that excitation did not change sig-
nificantly upon cGMP addition. Hence, these 
proteins could be used as ratiometric sensors. 
These sensors show the highest dynamic range 
(~3.7-fold change in signal) amongst all the sen-
sors available for live cell imaging of cGMP. 
δ-FlincGs was used to monitor cGMP elevation 
mediated by NO and atrial natriuretic peptides 
(ANP) in vascular smooth muscle cells. While 
NO induced sustained and global elevation in 
cGMP, ANP-induced cGMP elevation was local-
ized and transient.122

A non-FRET protein-based sensor for cAMP 
is Flamindo (fluorescent cAMP indicator).123, 124  
This sensor is made by inserting a fragment of 
Epac at the 145th amino acid residue of Citrine, 
which is a modified YFP. Flamindo showed a 
decrease in fluorescence intensity upon cAMP 
binding. Kitaguhci et al. used Flamido1 to study 
cAMP elevation in pancreatic MIN6 cells, and 
showed that calcium influx from the extracel-
lular milieu, and not the immobilization of 
Ca2+ from intracellular stores, elevates cAMP 
and potentiates insulin secretion. Flamido2 is 
a modified version of Falmido and has a higher 
dynamic range (~fourfold change in signal) and 
brightness.124

Flamindos are single wavelength sensors. This 
makes them valuable for multicolor imaging 
allowing one to study the dynamics of a second 
analyte along with cAMP in the same cell at the 
same time. Simultaneous imaging of Ca2+ and 
cAMP using Flamindo2 in HeLa cells showed that 
both cAMP and Ca2+ were elevated by noradren-
aline in these cells.124 FlincGs and Flamido are 
smaller in size in comparison with FRET sen-
sors, which allows the attachment of additional 
sub-cellular-targeting sequences to them, without 
resulting in very large proteins being expressed in 
the cell.

Circularly permuted eGFP: 
is a modified eGFP having 
the same amino acids as 
eGFP; however, the order of 
the sequence of amino acid 
is changed. The new order is 
obtained by connecting the N 
and C termini to get a circular 
polypeptide and by inserting 
a break at the place of interest 
to make new C and N termini.

16  BRET Sensors
Cyclic nucleotide sensors based on biolumines-
cence resonance energy transfer (BRET) have also 
been described. In BRET the donor fluorophore 
for FRET is replaced with a luciferase enzyme 
that acts as donor of chemiluminescence. The 
advantage of BRET sensors over FRET sensors is 
that they do not need any excitation light and, 
therefore, can be used in light-sensitive systems. 
Two types of BRET sensors for cAMP, based on 
PKA type I and type II, have been reported. These 
sensors contain GFP as the acceptor fluorescent 
protein attached to the catalytic subunit, and 
Renilla luciferase (Rluc) as the donor attached to 
either RI or RII.125 Interestingly, it was observed 
in COS-7 cells that PKA type II was responsive to 
β-adrenergic stimulation whereas the type I sen-
sor showed no change in BRET. This again sup-
ported the emerging concept of 
compartmentalized cAMP elevation by 
β-adrenergic receptor signaling.126, 127

A single-chain BRET-based cAMP sen-
sor using Epac, YFP and Rluc named CAMYEL 
(cAMP sensor using YFP-Epac-RLuc) has been 
generated.128 The N-terminal 196 amino acids 
of PDE2 splice-variant-3 were fused to the N ter-
minus of CAMYEL, to get PDE2-CAMYEL. This 
construct localizes the plasma membrane and was 
used to study the localization of PDE activity in 
HEK 293 cells.129

Another BRET-based sensor using N termi-
nus truncated Epac, Citrine and Rluc has been 
described.130 BRET sensors based on a mycobac-
terial cAMP-binding protein lysine acyltrans-
ferase (KATms41) utilizes the CNB domain and 
Rluc and GFP as donor and acceptor for BRET.131 
The sensor was used to demonstrate the cAMP-
induced allostery seen in full-length KATms.131 
Interestingly, in the sensors based on the KAT 
proteins, the BRET signal increases upon cAMP 
binding as opposed to PKA and Epac-based 
sensors.

A BRET-based sensor for cGMP has also been 
reported using the GAFa domain of PDE5.96 
It was seen that cGMP levels in HEK293 cells 
transfected with this sensor was higher than 
untransfected cells, indicating that these sensors 
can act as sinks for cGMP. This observation has 
two important implications. First, intracellu-
lar cNMP sensors could affect the physiology of 
cells by sequestering cyclic nucleotides. Second, 
the GAF domain of PDE5 may act as sink for 
cGMP, and hence play a dual role, one in lowering 

Chemiluminescence: It is the 
phenomenon of emission of 
light as a result of a chemical 
reaction. In living systems, 
the principal source of chemi-
luminescence is oxidation 
of members of a set of small 
molecules named luciferin, 
by the class of enzyme called 
luciferase.



120

Suruchi Sharma and Sandhya S. Visweswariah

1 3 J. Indian Inst. Sci. | VOL 97:1| 109–128 March 2017 | journal.iisc.ernet.in

cGMP levels by increasing PDE5 activity, and 
the other in acting as a store for cGMP, prevent-
ing its hydrolysis. Importantly, all BRET sensors 
have been used only for population-level live cell 
measurements and none were used for detection 
of cAMP or cGMP at the single cell level using 
imaging techniques.

17  Nucleic Acid‑Based Sensors for cAMP 
and cGMP

In the last few years, nucleic acids have been 
shown to be excellent biomaterials for making 
desired architectures and assemblies.132 One of 
the applications of these nucleic acid-based nan-
odevices is in bioimaging.133 Nucleic acid sen-
sors have been used for quantitative imaging of 
H+ and Cl− in isolated cell culture and in whole 
organisms.134–136 Furthermore, nucleic acid 
sequences called aptamers that specifically bind 
to an analyte of interest can be isolated using 
in vitro selection methods from synthetic librar-
ies.137, 138 These aptamers can be used to design 
nucleic acid nanodevices that can be used for 
detecting specific analytes.139

Recently, an RNA aptamer for 3,5-difluoro-
4-hydroxybenzylidene imidazolinone (DFHBI) 
called Spinach 140 has been described. DFHBI is 
cell permeable and is non-toxic to the cell and 
has very low fluorescence. When DFHBI binds to 
Spinach, its fluorescence increases significantly. 
Therefore, Spinach attached to the terminus of 
an RNA of interest can be used to visualize that 
RNA inside the cells, upon bathing cells in a solu-
tion containing DFHBI. Spinach-DFHBI system 
has been referred to as RNA mimics of GFP for 
this reason. A series of genetically encodable sen-
sors for various analytes were then prepared by 
attaching Spinach to aptamers specific for these 
analytes, in such a way that DFHBI could bind 
to Spinach only when the analyte is bound to the 
aptamer (Fig. 4g).141

An RNA aptamer for cAMP and a modified 
version of Spinach has been used to design a sen-
sor for cAMP (Figure a).142 This sensor needs a 
free 5′ end for sensing cAMP, which makes it 
challenging to stably express this construct inside 
the cell. Moreover, the sensor has a very low affin-
ity for cAMP and hence is useful for monitor-
ing cAMP fluctuations at very high cAMP levels 
(above 100 μM). Nevertheless, this study demon-
strates the possibility of generating nucleotide-
based sensors for cyclic nucleotides, which ideally 
in future, should be genetically encodable.

18  Applications of cNMP Sensors
Cyclic AMP is an important mediator of cardiac 
contractility regulated by catecholaminergic 
receptors, and also mediates responses to a vari-
ety of other hormone and neurotransmitters in 
heart.143 Deregulated GMP signaling has been 
associated with specific cardiovascular diseases.144 
Similarly, cAMP and cGMP play an important 
role in neurotransmission.145, 146 Hence, sensors 
for cAMP and cGMP have been extensively used 
to study the compartmentalization of cyclic 
nucleotides in cardiac myocytes and neuronal 
cells.145, 147, 148 A brief summary of interesting 
studies about cNMP compartmentalization in 
these two cell types has been provided below.

The first real-time measurements of cGMP in 
neuroblastoma cells was performed by Kramer 
and co-workers using patch-cram method.107 
These measurements introduced the previously 
unknown concept of long-term suppression 
(LTS) of cGMP responses elicited by NO. Post-
application of muscarinic agonists to mammalian 
neuronal cells, no response to NO donors can be 
seen for ~2 h (referred to as LTS). LTS is not a 
result of receptor desensitization, because cGMP 
elevation induced by application of NO donor 
agents is not mediated by receptors. The mecha-
nism of LTS was later explained to be activation 
of unidentified non-specific PDEs, by CaM-
Kinase II-mediated covalent modifications.107, 149

Shelly et al. showed that local application of 
cAMP and cGMP to a neurite in neuronal cul-
tures results in their differentiation into axons 
and dendrites, respectively.150 With the help of 
fluorescent biosensors for imaging cAMP and 
cGMP they were able to show that local applica-
tion of cAMP to a neurite resulted in a decrease 
of cAMP in other neurites. The level of cGMP 
decreased in the neurite where cAMP was applied, 
and increased at distantly localized neurites.150 In 
contrast, local elevation of cGMP resulted in a 
decrease in cAMP levels in the stimulated neur-
ite, but had no long-range effects. This local and 
long-range reciprocal regulation of cAMP and 
cGMP ensures that a neuron has a single axon 
and multiple dendrites.150

Del Puerto et al. used cAMP-imaging in hip-
pocampal neurons to understand the mechanism 
of coordination of three different purinergic 
receptors (P2X7, P2Y1 or P2Y1) in modulating 
the growth of the axon. They observed that these 
receptors alter the levels of cAMP at distal regions 
of axons, and the effect is brought about by the 
regulation of AC5.151

Myocytes: The contractile 
cells present in muscles.

Receptor desensitization: In-
activation of the receptor after 

activation by a ligand, which 
can include mechanisms of 

internalization and recycling.



121

Illuminating Cyclic Nucleotides: Sensors for cAMP and cGMP and Their Application in Live Cell Imaging

1 3J. Indian Inst. Sci. | VOL 97:1| 109–128 March 2017 | journal.iisc.ernet.in

Nicol and co-workers reported the dynamics 
of interaction between Ca2+ and cAMP at the tip 
of growing axon, referred to as the growth cone, 
using Ca2+ and cAMP imaging.152 They showed 
that at the filopodia of the growth cone, a tran-
sient elevation in cAMP leads to transient eleva-
tion of Ca2+, whereas at the growth cone center, 
elevation in Ca2+ leads to elevation in cAMP.152 
Castro et al. used a cAMP sensor to show that 
dendrites of cortical neurons exhibit higher 
cAMP levels in response to isoproterenol as com-
pared to rest of the cytosol, and PDE4 acts as bar-
rier in propagation of cAMP signal from 
membrane to rest of the cytosol.153 Imaging of 
cAMP in brain slices showed that cAMP signal 
elevation is faster, higher and long lasting in stri-
atal neurons as compared to cortical neurons.154 
In medium spiny neurons, NO-cGMP signaling 
modulates dopaminergic transmission. Elevated 
cGMP levels activate PDE2 which in turn inhibits 
transient cAMP elevation, mediated by stimula-
tion of dopaminergic receptors.155

Imaging of cAMP levels using sensors in 
rat neonatal cardiomyocytes showed that upon 
β-adrenergic stimulation, cAMP was enriched in 
specific microdomains. No such effect was seen 
when cAMP was elevated by the application of a 
phosphodiesterase inhibitor or forskolin to these 
cells. This suggested that cAMP stimulation via 
the β-adrenergic receptor may activate PKA local-
ized to these microdomains.126 Subsequently, 
cAMP was imaged in PKA type I or PKA type 
II-enriched domains in cardiac myocytes, using 
cAMP sensors targeted to these domains. It was 
seen that cAMP elevation in these domains was 
specific to the GPCR agonist used, indicating 
that these domains are coupled to different types 
of GPCRs, by a yet-to-be identified mechanism. 
Elevation of cAMP using specific PDE inhibi-
tors showed that PDE2 regulated cAMP levels at 
RI domains whereas PDE4 decreased cAMP lev-
els at RII domain.156 Furthermore, cAMP and 
cGMP imaging in cardiomyocytes demonstrated 
that cGMP modulated the levels of cAMP in both 
these domains93 is mediated by cGMP-activated 
PDEs. RII domain is enriched in PDE2. Hence, 
cGMP elevation negatively regulates cAMP level 
in this domain. RI domain in enriched in PDE3 
which is a cGMP-inhibited PDE. Hence, cGMP 
elevation elevates cAMP levels in this domain.93 
Soluble GC stimulation results in similar levels 
of cGMP elevation in both the domains, while 
plasma membrane-associated receptor guanylyl 
cyclase stimulation elevated cGMP only in the RII 
domain.93

Striatal neurons: The neu-
rons present in striatum of 
brain. Striatum is sub-cortical 
part of the fore-brain.

Cortical neurons: the neu-
rons present in the cerebral 
cortex of the brain.

Fischmeister group measured cGMP-induced 
currents at subsarcolemmal compartments upon 
local application of NO donors in frog ventricu-
lar myocytes. They observed that the spread of 
cGMP from the site of NO donor application to a 
remote part of the cell was restricted.157 Further, 
they monitored subsarcolemmal cGMP in rat 
cardiomyocytes using rat olfactory CNGC. They 
observed that the particulate GC (pGCs) have 
more pronounced localized effect in elevating 
cGMP in comparison to soluble GCs (sGC) acti-
vation.158 The intracellular compartmentalization 
of cGMP is regulated by PKG activation in adult 
cardiomyocytes.159

In addition to cardiac myocytes and neurons, 
sensors for cyclic nucleotides have also been 
used in other contexts. Bagorda and co-workers 
studied changes in cAMP levels in response to 
stimulation of chemoattractant receptors in Dic-
tyostelium discoideum. They showed that adenylyl 
cyclase A is specifically responsible for chemoat-
tractant receptor-mediated elevation in cAMP.160 
Gomes et al. showed that under starvation, cAMP 
levels were elevated which in turn activated 
PKA.161

GPCRs, post-activation by their respective 
ligands, are endocytosed during receptor desen-
sitization and recycling. Recently, cAMP-imaging 
techniques have shown that certain receptor–
ligand pairs co-localize in internalized vesicles 
and actively produce cAMP. This phenomenon 
has been referred to as “sustained cAMP produc-
tion”,162, 163 and could allow the spread of the 
signal to locations away from the plasma mem-
brane. CAMYEL and plasma membrane-targeted 
CAMYEL were used to estimate the localiza-
tion of the activity of various PDEs in HEK293 
by treatment with specific PDE inhibitors, and 
measuring cAMP in cells transfected with these 
sensors.129 Evidence for localized cAMP elevation 
near phagosomes in the activated macrophage164 
has also been described.

19  Perspective and Conclusions
Cyclic pyrimidine nucleotides (cUMP and 
cCMP), and PDE activity specific to them, were 
detected in animal tissues extracts.165–169 How-
ever, due to irreproducibility of the experiments 
and methodological problems, the field of cyclic 
pyrimidine cyclic nucleotides had remained 
unexplored. It will be worthwhile to revisit the 
field of cyclic pyrimidine nucleotides, with newer 
methodologies to gain insight into their bio-
logical functions. To develop sensors to these, 

Ventricular myocytes: 
Myocytes present in ventricle 
of the heart.
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however, one would need to identify binding pro-
teins for cUMP and cCMP which are structurally 
modulated on cNMP binding.

In addition to cyclic pyrimidine nucleotides, 
cyclic di-nucleotides have also been identified in 
bacteria and eukaryotes. Three well-known c-di-
nucleotides are c-di-GMP,170 c-di-AMP171 and 
cGMP-AMP (cGAMP).12, 172 C-di-GMP and c-di-
AMP are mostly bacterial second messengers and 
cGAMP is present in eukaryotes. Cyclic di-GMP 
seems to be the most important second messen-
ger in bacteria having surpassed the role of cAMP 
as a second messenger.173 Cyclic di-GMP signal-
ing has also been reported in Dictyostelium discoi-
deum.174 In contrast to cAMP and cGMP, where 
the target proteins either bind to CNB or GAF 
domain-containing proteins, the target molecules 
for c-di-GMP have a larger repertoire of proteins 
and binding domains.170 The targets for c-di-
AMP are also unique.171

Novel domains that can bind cAMP and/or 
cGMP may be discovered. In order to find such 
new domains, unbiased biochemical approaches 
should be utilized, instead of predictive bioinfor-
matics approaches. For example, we have identi-
fied a mycobacterial protein that binds cAMP, 
which does not contain either a CNB or a GAF 
domain.175 This protein is a universal stress pro-
tein (USP), and was identified following inter-
action of mycobacterial cytosolic extracts with 
cAMP-agarose beads. USP has a tenfold higher 
affinity for cAMP as compared to ATP. The crys-
tal structure of USP bound to cAMP, as well as 
mutational analyses, showed that cAMP binds to 
USP at the same binding site as ATP.175

Single cell imaging methods have provided 
significant information about compartmentaliza-
tion and regulation of cAMP and cGMP signaling 
in neuronal cells and cardiomyocytes. However, 
cAMP also plays an important role in innate 
immunity.176 A plethora of bacterial pathogens 
have been known to exploit cAMP signaling to 
evade host immune response.177 Surprisingly, 
cAMP sensors have not been used to study cAMP 
localization in immune cells, or in cells infected 
with cAMP-elevating pathogens. Similarly, cGMP 
has a critical role in regulating gastrointestinal 
homeostasis,178 and the compartmentalization 
and temporal dynamics of cGMP in intestinal 
cells is not known. Interestingly, current attempts 
are directed towards imaging cNMP signaling at 
more relevant physiological levels, as opposed to 
isolated cells in culture, as in imaging in brain 
slices, and generation of transgenic animals 
expressing these sensors.154, 179–181 We, therefore, 
anticipate an increase in the use of biosensors to 

get new insights into spatial and temporal prop-
erties of cAMP and cGMP signaling.
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