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Cellular Dynamics Controlled by Phosphatases

1 Introduction
Phosphorylation is a critical reversible post-trans-
lation modification known to function in various 
basic cellular processes, including cell growth, 
metabolism, cell cycle, migration, differentiation, 
vesicular trafficking, immunity, memory, and 
learning.1–3 Protein kinases transfer phosphate 
group from ATP to target proteins, specifically at 
serine, threonine, and tyrosine residues, whereas 
phosphatases remove this chemical group from 
substrates. Protein kinases, one of largest families 
of genes, are extensively studied and many kinases 
are popular drug targets in pharmaceutical 
industries. But unlike their counterpart kinases, 
phosphatases have stayed away from limelight 
and were mostly considered as housekeeping 
enzymes. However, in recent years, several stud-
ies had made it eminently clear that phosphatases 
are equally crucial in regulation of cellular pro-
cesses.4 Although phosphatases were considered 
as simply ‘switch offs’ to prevent signaling over-
drive, kinases are inactivated even in the presence 
of continuing stimuli, which suggests that phos-
phatases are critical in regulating the duration 
and strength of kinase activation. From a bio-
chemical perspective, the enzymatic potential of 
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Abstract | Protein phosphorylation, a fundamental post-translation modi-
fication that acts as a backbone of signaling networks, is essential for 
multiple aspects of eukaryote physiology. Phosphorylation status of a 
substrate is dependent on opposing activities of two distinct enzymes, 
where the relevant kinase catalyzes the modification and is reversed by 
a phosphatase. Historically, kinases have been at the research forefront; 
however, phosphatases have gained importance with many studies 
revealing predominant roles for these enzymes in controlling the cellular 
responses. Phosphatases are known to attenuate or amplify signaling by 
operating both as early, as well as delayed regulators of signal transduc-
tion. This review is focused on describing the versatile roles of phos-
phatases in controlling different cellular pathways through their 
spatio-temporal dynamics during signaling.
Keywords: Phosphatases, Signaling, PPP family, PPM, MAPK, Mitosis

Phosphatase: Enzymes that 
remove phosphate group 
from substrates by hydrolysis.

Post-translation modifica-
tion: Post-translational 
modification is covalent 
modification of proteins that 
occur during or after protein 
synthesis, where functional 
groups are added by enzy-
matic action.
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a phosphatase may be higher to that of a respec-
tive kinase, owing to the fact that kinases require 
ATP whereas dephosphorylation is direct. Thus, it 
is conceivable that controlled signal transduction 
does not occur through kinase activation, but 
rather by the regulation of phosphatase expres-
sion and activity. In support of this, phosphatases, 
rather than the kinases looked to be under much 
more dynamic regulation, both at their expres-
sion as well as activity levels. Overall, kinases were 
believed to control the amplitude whereas phos-
phatases control rate and duration of signaling 
response.5, 6 Thus, any imbalance in the activities 
of kinases and phosphatases may result in various 
human malignancies.

2  Diverse Family of Phosphatases
Originally phosphatases were classified into three 
distinct categories, Ser/Thr phosphatases, Tyr 
Phosphatases, and dual-specificity phosphatases, 
based on their substrate specificity. However, 
several examples have emerged over time where 
phosphatases were shown to dephosphorylate 
more than one type of substrate. Thus, a newer 
and more acceptable classification has been 
evolved, where phosphatases have been divided 
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into distinct families based on sequence conserva-
tion, catalytic mechanism, and structure (Fig. 1). 
It is important to note that this newer classifica-
tion overlaps, but does not coincide with older 
classification made based on substrate specificity.

The Ser/Thr phosphatases constitute three 
structurally distinct families (1) PPM fam-
ily, (2) PPP family, and (3) the Asp-based FCP/
SCP family. PPM family members, containing a 
PP2C catalytic domain, function as phosphatase 
dependent on divalent cations such as magne-
sium and manganese (Mg2+/Mn2+).7 In contrast 
to PPP phosphatases, PPM family phosphatases 
function as monomers and have specific domains 
at N or C-terminus that function in substrate 
selection and cellular localization. In humans, at 
least 18 members of PPM family are known and 
7 in yeast whereas in A. thaliana 72 members are 
known.8 Unlike PPP family, PPM phosphatases 
are resistant to inhibitors such as okadaic acid, 
calyculin A, and microcystin. PPM family of 
phosphatases plays critical role in regulating the 
stress response, cell cycle progression, apoptosis, 
Ca2+ signaling, metabolism, RNA splicing, mito-
chondrial function, and lipid transfer. Several 
members of this phosphatase family have been 
attributed to function either as tumor suppres-
sors or oncogenes. For example, PPM1A, PPM1B, 
ILKAP, and PHLPP have been shown to function 

as tumor suppressors whereas PPM1D is a known 
oncogene.

PPP family that contains PP1-PP7 catalytic 
subunits catalyze majority of dephosphorylation 
reactions in eukaryotic cells. All the members of 
PPP family phosphatases have similar core struc-
ture and catalytic mechanism but have distinct 
set of substrates and interacting proteins. One of 
the important aspects of PPP phosphatases is 
their ability to function as holoenzymes. Numer-
ous distinct regulatory subunits associate with 
PPP catalytic subunits to form heterodimeric or 
trimeric phosphatase holoenzymes with unique 
substrate specificities, subcellular locations, and 
physiological functions. For example, PP2A phos-
phatase forms heterotrimeric complex made up 
of ABC subunits. A subunit act as a scaffold 
whereas the B subunits act as regulatory pro-
teins.9, 10 The heterotrimeric PP2A holoenzymes 
display exquisite substrate specificity dependent 
on its regulatory subunits. For instance, B′ subu-
nit (PPP2R5), but not B (PPP2R2) subunit, con-
taining PP2A can interact with a centromeric 
protein Shugoshin whereas the B (PPP2R2) subu-
nit, but not B′ subunit (PPP2R5), complexed 
PP2A specifically dephosphorylates microtubule-
binding protein Tau.

In contrast to PPP and PPM phosphatases, 
members of FCP/SCP family depend on the 

Holoenzymes: Enzymes that 
contain multiple protein 

subunits
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Figure 1: Human protein phosphatases classification. Classification of protein phosphatases based on 
their substrate specificity and sequence similarity. Numbers in the brackets indicates number of genes 
encoding protein phosphatases in that group. Only catalytic subunits of protein phosphatases are 
included. PPP protein phosphatase P, PPM protein phosphatase M sequence family, MAPK phosphatase 
MAP kinase phosphatases, PRLs phosphatase of regenerating liver, Atypical DSPs atypical dual-spec-
ificity phosphatases, MTMR myotubularin phosphatases, LMW-PTP low-molecular-weight protein tyros-
ine phosphatases, FCP/SCP TFIIF-associating component of RNA polymerase II CTD phosphatase/small 
CTD phosphatase, HAD haloacid dehalogenase; sequence family.



131

Cellular Dynamics Controlled by Phosphatases

1 3J. Indian Inst. Sci. | VOL 97:1| 129–145 March 2017 | journal.iisc.ernet.in

aspartic acid of DxDxT/V motif for their phos-
phatase activity. Another distinct feature of FCP/
SCP phosphatases is that they have only one pri-
mary substrate, CTD of RNA Pol II.11 It is well 
known that Pol II binds to pre-initiation complex 
with a hypo-phosphorylated CTD and then get 
phosphorylated upon binding. During transcrip-
tion elongation, Ser-2 and Ser-5 get phosphoryl-
ated in heptapeptide repeat region and CTD is 
dephosphorylated at termination which is impor-
tant for binding to new initiation complex.12 
Thus, FCP phosphatases by dephosphorylating 
these residues are critical during transcription 
where they spatially and temporally control the 
phosphorylation status of RNA pol II.

Protein tyrosine phosphatases (PTPs) char-
acterized by the presence of conserved catalytic 
motif CX5R are divided into four distinct fami-
lies based upon their structure and sequence (1) 
Class I Cys-based PTPs, (2) Class II Cys-based 
PTPs, (3) Class III Cys-based PTPs, and (4) Asp-
based HAD family. The class I PTPs are further 
divided into two subclasses, the classical PTPs 
and dual specific phosphatases (DUSPs). The 
classical PTPs contain both transmembrane 
receptor protein tyrosine phosphatases (PTPRs) 
and non-receptor protein tyrosine phosphatases 
(PTPNs). PTPRs are localized to plasma mem-
brane and bind to ligand through their extra 
cellular domains and regulate cellular signaling. 
Many PTPRs are shown to function as cell adhe-
sion molecules and also in processes such as cell–
matrix and cell–cell contacts. Out of 21 PTPRs, 
12 have a tandem arrangement of PTP domain in 
iwntracellular segment. The membrane-proximal 
(D1) domain is active whereas membrane-distal 
(D2) is inactive except for PTPalpha.13 But D2 
domain is required for the activity, stability, sub-
strate specificity and also is important for PTPR 
dimerization.14, 15 Non-receptor PTPs are cyto-
solic and contains extra regulatory sequences 
flanking the catalytic site, which control their 
activity through either masking the active site (in 
case of SHP2) or by defining substrate specificity 
(in case of PTP-PEST).16, 17 These extra domains 
also regulate the sub cellular localization thus 
restricting the activity at specific locations.

Dual-specificity phosphatases (DUSPs) have 
short catalytic domains than classical PTPs but 
they have similar catalytic mechanism as the 
classical PTPs. The unique active site of DUSPs 
allows them to act on all three phosphorylated 
(Ser, Thr, and Tyr) residues. DUSPs are also 
known to recognize non-protein substrates such 
as mRNA and phosphoinositides.18 One of the 
well-understood DUSP subfamily is MKP (MAP 

Kinase phosphatases). These MKPs inactivate the 
MAPKs by dephosphorylation of Thr and Tyr 
present in kinase activation site. MKPs localize 
to different subcellular compartments, differ in 
pattern of induction and specific for each MAPK, 
which are crucial in maintaining the MAPK sign-
aling. MTMRs are inositol lipid phosphatases 
that constitute another subfamily of DUSPs. 
Out of 14 members known, only 8 are known 
to encode active enzymes and other 6 encode 
pseudo-phosphatases.19, 20 All MTMRs contain 
an N-terminal PH-GRAM (Pleckstrin Homol-
ogy-Glucosyltransferase, Rab-like GTPase Activa-
tors and Myotubularins) domain, a PTP catalytic 
domain (CSDGWDRT), and a C-terminal coiled-
coil region. The PH-GRAM domain mediates the 
binding with phosphoinositides, mainly PtdIns5P 
and PtdIns(3,5)P2. Many MTMRs are known 
to be altered in human diseases, for example, 
MTM1 and MTMR2 are found to have mutated 
in X-linked myotubular myopathy and Charcot–
Marie–Tooth disease type 4B (CMT4B), respec-
tively; however physiological roles of MTMRs are 
still not well understood.20

Class II Cys-based PTPs contain a small group 
of CDC25 phosphatases, which are critical cell 
cycle regulators (described in other sections 
below). Although their catalytic activity is very 
similar to Class I PTPs, they are structurally unre-
lated. The class III Cys-based PTPs are widely 
present in all kingdoms of life and humans con-
tain single gene for this class, a low-molecular-
weight protein tyrosine phosphatase (LMPTP). 
Although genetic polymorphisms of this gene are 
known to be associated with several human dis-
eases, including allergy, asthma, obesity, myocar-
dial hypertrophy, and Alzheimer’s disease, the 
functions of this phosphatase remain unclear.

The fourth class of PTPs, the Asp-based phos-
phatases, includes HAD superfamily, exempli-
fied by EYA (eyes absent) tyrosine phosphatases. 
This class of phosphatases mainly functions as 
transcription factors via binding to SIX proteins 
and are involved in development of kidney, mus-
cle, eye, and ear.21, 22 Eya family phosphatases 
are found to be mutated in many disorders, like, 
congenital cataracts, late-onset deafness, and 
the multi-organ disease bronchio-oto-renal 
syndrome.

Phosphatases play a critical role in cellu-
lar signaling by controlling both the temporal 
dynamics and spatial localization of phospho-
proteins. They function as immediate as well as 
delayed regulators of protein phosphorylation, 
which often results in attenuation or propaga-
tion of signals. Immediate phosphatase activities 

Cell cycle: A sequence of 
events that occur in a cell with 
defined phases leading to its 
duplication of DNA and divi-
sion into two daughter cells.
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develop very rapidly on a scale of seconds to 
shape the initial phosphorylation profiles of 
receptors, ser/thr kinases, phosphorylated adap-
tors, and other signaling molecules activated 
by ligands such as growth factors. On the other 
hand, induced phosphatase activities occurring in 
the time scale of hours make cells adapt to per-
manent external cues by creating either negative 
or positive feedback loops. Here, in this review, 
we focus on some of the spatio-temporal control 
mechanisms exerted by phosphatases critical for 
the propagation of important cellular pathways.

3  Control of Insulin Signaling 
by Phosphatases

Insulin mediates its effects by activating the 
Insulin receptor (IR), a transmembrane protein 
tyrosine kinase that phosphorylates itself as well 
as target substrates such as IR substrate (IRS)-1 
and -2.23 Upon binding insulin, the IR undergoes 
transphosphorylation on several sites includ-
ing the Y1162/Y1163 β-subunit PTK activation 
loop site. While Y1162/Y1163 phosphorylation 
is required for IR activation, the phosphoryla-
tion of other sites, including the juxta membrane 
Y972 site allows for the recruitment of IRS-1. 
IRS-1/2 tyrosine phosphorylation events, in turn, 
result in PI3K activation, which converts the 

lipid PIP2 (phosphatidylinositol (4, 5)-bisphos-
phate) to PIP3 (phosphatidylinositol 3, 4, 5-tris-
phosphate) followed by the activation of protein 
kinases including Akt that mediate the metabolic 
actions of insulin.24 In particular, activated PI3K 
via Akt mediates the translocation of the GLUT4 
transporter onto the plasma membrane for glu-
cose uptake. Several phosphatases have been 
implicated in controlling the dynamics of insu-
lin signaling (Fig. 2). Lipid and protein tyrosine 
phosphatase, phosphatase and tension homo-
logue (PTEN), is one of the well-known negative 
regulators of insulin signaling. PTEN by dephos-
phorylating PIP3 to PIP2 controls the activation 
of insulin signaling. PTEN expression downregu-
lates GLUT4 membrane levels and thus reduces 
insulin-induced glucose uptake. On the other 
hand, microinjection of an anti-PTEN antibody 
increased basal and insulin stimulated GLUT4 
translocation, suggesting negative role of PTEN 
in controlling insulin pathway dynamics. In addi-
tion to lipid dephosphorylation, PTEN was also 
recently shown to control the insulin dynamics 
via acting as a tyrosine phosphatase for IRS-1.25

Among other phosphatases, Lar phosphatase 
(PTPRF) expression is found to be increased in 
fat tissues of obese patients and it also known to 
bind insulin receptor upon insulin treatment.26, 27  

PI-3KPIP2PIP3PIP3

AKT PDK1

PTEN
PTP1B

SHP2

Lep�n 

Insulin receptor

LAR PTPRA

PTPRJ

GLUT4 
Transloca�on  
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ObR
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Figure 2: Protein phosphatases and insulin signaling. Upon binding to insulin receptor, insulin activates 
insulin-receptor kinase that leads to recruitment of IRS proteins to insulin receptor. IRS activates PI3K 
kinase to convert PIP2 to PIP3 which results in activation of PDK1 and AKT leading to GLUT4 translocation 
to plasma membrane and increased glucose uptake. Phosphatases PTEN, PTP1B, LAR, PTPRA, PTPRJ, 
and SHP2 known to regulate this pathway at different levels are shown by dotted lines. IRS insulin-recep-
tor substrate, PI3K phosphatidylinositol 3-kinase, PIP2 phosphatidylinositol 4,5-bisphosphate, PIP3 phos-
phatidylinositol (3,4,5)-trisphosphate, PDK1 phosphatidylinositol-dependent kinase 1, AKT(also known as 
PKB) protein kinase B, SHP2 SH2 domain containing protein tyrosine phosphatase-2.
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Overexpression of Lar has been shown to sup-
press insulin signaling [28] and its depletion 
results in enhanced and prolonged insulin sign-
aling.29 Also, Lar overexpressed in mouse skeletal 
muscle shows insulin resistance through IRS-2.30 
A receptor tyrosine phosphatase PTPRA has also 
been shown to alter the dynamics of insulin sign-
aling by dephosphorylation of insulin receptor.31 
Another related phosphatase DEP-1/PTPRJ also 
demonstrated to dephosphorylate insulin recep-
tor32 and the corresponding knockout mice 
showed enhanced insulin signaling.33

SHP-2/PTPN11 is an additional phosphatase 
demonstrated to modulate insulin signaling via 
associating with insulin receptor and IRS-1.34, 35 
The role of SHP-2 in insulin signaling has been 
controversial. While in vivo studies with SHP-2 
dominant negative transgenic mice have shown 
insulin-resistant phenotype suggesting a positive 
role of phosphatase in insulin signaling,36 other 
studies with SHP-2 knockout animal model could 
not support its role in insulin signaling where no 
defects were found in these mice model.37 Func-
tion of SHP2 during insulin response might vary 
with different tissue types, and thus generation 
of tissue-specific knockout mice would allow to 
spatially and temporally define its role in insulin 
signaling.

Also, PTP1B/PTPN1 has a well-known role in 
insulin signaling, where it act as a negative regula-
tor.38, 39 PTP1B directly binds to IR and dephos-
phorylates both IR and IRS-1.40–42 Homozygous 
PTP1B knockout mice had shown abnormal glu-
cose and insulin tolerance, increased sensitivity to 
insulin, and increased phosphorylation of IR after 
insulin treatment.43, 44 Together, involvement of 

multiple phosphatases highlights the importance 
of tight spatial and temporal control of insulin 
signaling.

4  Regulation of MAPK Signaling by MKP 
Phosphatases

MAPK signaling is a well-conserved pathway that 
is involved in various biological processes, such 
as metabolism, immunity, cell proliferation, and 
differentiation. Abnormalities in MAPK pathway 
is reported in many human diseases, such as dia-
betes, obesity, neurodegenerative disorders, can-
cer, and rheumatoid arthritis. MAPK pathway is 
comprised of three sequential protein kinases: 
MAPK kinase kinase (MAPKKK), MAPK kinase, 
and MAPK. MAPKKK is activated by extracellu-
lar signal through binding to a small GTPase or 
a kinase downstream of receptor. This activated 
MAPKKK directly phosphorylates MAPKK, 
which then activates MAPK by phosphorylating 
a T–X–Y motif in activation region.45 MAPK can 
be divided into three groups, such as ERKs, JNKs, 
and p38/SAPKs. These groups of MAPK are acti-
vated by specific extracellular signal.45

The amplitude and duration of MAPK network 
is critical in determining the cellular responses. 
For example, a rapid and transient MAPK activa-
tion in rat hepatocytes promotes G1/S cell cycle 
progression, where as its constitutive activation 
results in inhibition of G1/S transition. Thus, 
by controlling MAPK dynamics via phospho-
rylation/dephosphorylation cycles, phosphatases 
ensure proper functioning of MAPK signaling cas-
cades. MAPK phosphatases belong to a family of 
DUSPs that negatively regulate MAPK pathway by 

Figure 3: Substrate specificity and differential localization of various MAPK phosphatases was shown.
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directly dephosphorylating T–X–Y motif in acti-
vation loop of kinase.46 The MAPK phosphatases 
(MKP) are classified into three subgroups based on 
sequence homology, subcellular localisation, and 
substrate specificity. While there are four induc-
ible nuclear MKPs (DUSP1, DUSP2, DUSP4, and 
DUSP5), three are cytoplasmic MKPs (DUSP6, 
DUSP7, and DUSP9) and further three MKPs 
(DUSP8, DUSP10, and DUSP16) are distributed in 
cytoplasm as well as nucleus. These MAPK phos-
phatases localize to different cell compartments 
and show distinct substrate preference (Fig. 3). 
In addition to their dephosphorylating function, 
DUSPs also regulate subcellular localization of 
MAPKs. For instance, DUSP16 by virtue of its NLS 
and NES transports p38 and JNK from nucleus to 
cytoplasm. Similarly, DUSP6 helps in the retention 
of ERK2 in the cytoplasm. Interestingly, DUSP 
activity is regulated by substrates where binding 
of MAPK enhances DUSP activity. In addition, 
many DUSPs themselves are found to be substrates 
of MAPK and therefore contribute to the cellular 
feedback mechanism. These feedback regulators 
are required to respond rapidly and with high 
precision to changes in MAPK activity. The feed-
back control by DUSPs shapes the dynamics of 
mitogenic responses. Several studies demonstrated 

that negative feedback control of Ras/ERK signal-
ing by MKPs may play an important role in deter-
mining the biological outcome of signaling when 
upstream components of this pathway, such as 
receptor tyrosine kinases (RTKs), Ras isoforms 
or Braf, are mutated and activated. The fact that 
MAPK signaling is often abnormally activated in 
human cancers suggests that DUSPs may also be 
regulated as a result of the oncogenic activation of 
MAPK signaling. This is supported by numerous 
observations of either increased or decreased MKP 
expression in malignant disease, suggesting that 
these enzymes might play important role in cancer 
initiation and/or progression.

5  Phosphatases in TGFbeta and BMP 
Signaling

TGFbeta signaling has well-known role in cell 
differentiation, proliferation, and development 
(Fig. 4). TGF ligands bind to its receptor kinase at 
plasma membrane that results in oligomerization 
of receptors and phosphorylation of cytoplasmic 
proteins SMAD2/3 for TGF and SMAD1/5/8 for 
BMP signaling. This phosphorylation of C-termi-
nal SXS motif allows binding with MH2 domain 
of SMAD4 and leads to nuclear translocation of 
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SMAD4

PPM1A
SMAD2/3

SMAD2/3

SMAD4

Sara
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Nucleus 
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Figure 4: Phosphorylation dynamics in TGFβ signalling. TGFβ binding to its receptor kinases leads to 
phosphorylation of SMAD2/3. Phosphorylation of SMAD2/3 allows binding with SMAD4 and nuclear 
translocation where this complex binds to various transcription cofactors that regulate gene expression 
of many genes. This signalling in nucleus is inhibited by PPM1A phosphatase that dephosphorylates 
SMAD2/3 that results in dissociation of SMAD2/3–SMAD4 complex and both proteins are exported out of 
nucleus. At plasma membrane, sara recruits PP1 phosphatase which dephosphorylates TGFβ receptor 
and signal inhibition.
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this complex where it regulates gene expression. 
Thus, dephosphorylation of SMAD proteins may 
be necessary to control TGF signaling.47 To iden-
tify SMAD2/3-specific phosphatases, Lin et al.48 
screened 39 phosphatases and demonstrated only 
PPM1A was able to dephosphorylate C-terminal 

site of SMAD2/3. They also showed PPM1A 
binds directly to SMAD2/3 and has more affinity 
for phosphorylated SMAD2/3 compared to non-
phosphorylated SMAD2/3. PPM1A is localized 
to nucleus and dephosphorylates the SMAD2/3 
upon TGF stimulation that results in nuclear 
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Figure 5: Dynamic activity changes of selected kinases and phosphatases during mitosis. Mitotic entry 
is characterized by heavy phosphorylation due to high kinase/phosphatase activity ratio but at the exit the 
activities are reversed and thus resulting in ordered dephosphorylation of proteins.
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export of SMAD2/3. Furthermore, another study 
has also found PP1-binding protein Sara to target 
PP1 to TGF receptors to dephosphorylate it and 
terminate TGF signaling.49 On the other hand, 
two independent studies reported that SCP1-3 
phosphatases (not FCP1) enhance TGF signal-
ing by dephosphorylating the linker regions in 
SMAD2/3.50, 51

BMP signaling functions similarly to TGF 
signaling but instead of SMAD2/3, BMP ligands 
induce phosphorylation of SMAD1/5/8 which 
in turn leads to binding to SMAD4 and entry 

into nucleus. An siRNA-based screening using 
drosophila S2 cells identified PDP phosphatase 
that dephosphorylates SMAD1, which was later 
confirmed in human cells as well.52 Also, PDP 
phosphatase was found to have no effect on 
SMAD2/3 phosphorylation. Interestingly, SCP1-3 
phosphatase-mediated dephosphorylation of 
SMAD1 was shown to attenuate BMP signal-
ing.53 Consequently, while SCP1/2 knockdown 
inhibited TGFbeta transcriptional responses, 
but it enhanced BMP transcriptional responses. 
Thus, context-based activation of phosphatases 
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Figure 7: PP2A dynamics in mitosis: a during interphase CDK1 is kept inactive by inhibitory phosphoryla-
tion and PP2A-Bδ is active. During G2–M transition, CDC25 dephosphorylate CDK1 that leads to asso-
ciation with cyclin B. activated CDK1–cyclin B activates Greatwall kinase which phosphorylates PP2A-Bδ 
inhibitory proteins ENSA and ARPP-19 and inactivate PP2A-Bδ. Phosphorylated forms of CDK1 sub-
strates accumulate in metaphase. During transition from metaphase to anaphase, APC degrades CDK1 
that leads to dissociation of ENSA and ARPP-19 and CDK1 substrate are dephosphorylated by PP2A-Bδ. 
b During prophase, Plk1 phosphorylate cohesin complex that dissociates cohesin from chromosomes 
except centromeric region. Sgo1 recruits a local pool of PP2A-B′ on centromeres that keep cohesin in 
dephosphorylation forms and counteracts the Plk1 function.
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followed by dephosphorylation of distinct sub-
strates is proven to be critical for appropriate 
TGF beta/BMP responses.

Together, it is becoming clear that phos-
phatase-mediated deactivation of cellular path-
ways is used by cells to control different aspects of 
signaling, be it the duration, amplitude or locali-
zation of the signal.

6  Protein Phosphatases and Cell Cycle
In addition to cellular signaling pathways, phos-
phatases actively participate in the spatio-tempo-
ral control of cell cycle, in particular mitosis. The 
timely (de)phosphorylation of hundreds of pro-
teins contributes to the intricate control of 
mitotic transition through different phases 
(Fig. 5). For instance, at the beginning of mitosis, 
high magnitude of phosphorylation generally 
mediated by kinases, such as CDK1, Plk1, Great-
wall kinase, and Aurora A, is observed. During 
mitotic entry, as counteracting phosphatases 
largely remain inactive, higher phosphorylation 
stoichiometry of proteins was achieved at this 
stage. In contrast, the mitotic exit is characterized 
by an ordered bulk dephosphorylation of phos-
phoproteins, due to drastically increased phos-
phatase/kinase activity ratios. On the other hand, 
the dynamic phosphorylation during intra 
mitotic phases is associated with low phosphoryl-
ation stoichiometries since some of the kinases 
and phosphatases (such as Plk1 and PP2A-B′) are 
simultaneously active, although not necessarily at 
the same location. The details of some of the time 
and location-specific dynamic (de)phosphoryla-
tion events that occur during mitosis are dis-
cussed in the sections below. CDK protein 
complexes are important kinase regulators of cell 
cycle and these CDK complexes are kept in inac-
tive state by phosphorylation of their ATP loop by 
MYT1 and WEE1 kinases.54 CDC phosphatases 
activate CDK–cyclin complexes by dephosphoryl-
ating these inhibitory phosphorylation sites and 
thus facilitate entry into next phase of cell cycle.55, 56  
CDC phosphatase family contains three isoforms 
and regulates the G1–S and G2–M transition by 
controlling the activities of CDK2 and CDK1, 
respectively (Fig. 6). CDC25A regulates the G1-S 
transition by activating CDK2–cyclin E and 
CDK2–cyclin A.57–59 CDC25A is also involved in 
G2–M transition through activation of CDK1–
cyclin B complex which initiates chromosome 
condensation.60–62 CDC25B is responsible for ini-
tial activation of CDK1–cyclin B on centrosomes 
during G2–M transition63, 64 and CDC25C fully 
activates it in nucleus during start of mitosis.65 

Centrosome: A cellular 
organelle from which spindle 
fibres develop during cell 
division.

Mitosis: A particular phase of 
the cell cycle where duplicated 
DNA is separated into two 
nuclei followed by separation 
of a mother cell into two 
daughter cells by division.

Studies using RNAi knockdown also demon-
strated the role of CDC25B/CDC25C in S-phase 
entry.66, 67 All three CDC phosphatases spatially 
and temporally activate their substrates and func-
tion as crucial regulators of G1–S and G2–M 
transition.

Among different phases of cell cycle, mito-
sis is highly subjected to control via phospho-
dephosphorylation cycles, which is discussed in 
detail below. Many reports have suggested that 
activation of CDK by dephosphorylation is not 
sufficient for normal mitosis and there exists 
an okadaic acid-sensitive phosphatase that act-
ing on CDK substrates needs to be inhibited for 
entry into mitosis.68 Furthermore, this phos-
phatase activity is also required for mitotic exit.69 
PP2A was identified to be the phosphatase which 
makes cells more sensitive to CDK1 activation 
and promote the mitotic entry.70–74 Greatwall 
kinase phosphorylates two small heat stable pro-
teins endosulfine (ENSA) and c-AMP-regulated 
phosphoprotein-19 (ARPP-19), and these phos-
phorylated protein binds to PP2A holoenzyme 
containing PPP2R2D (B delta) regulatory subu-
nit and leads to inhibition of PP2A-b delta phos-
phatase complex.75, 76 PP2A-B delta phosphatase 
is highly active in interphase and less active in 
mitosis, so its activity is the inverse of CDK1–cyc-
lin B activity (Fig. 7a).

6.1  Phosphatases During Cohesion 
Control in Mitosis

During mitosis, chromosomes are formed by 
DNA condensation and it results in formation of 
sister chromatids. These sister chromatids are 
joined to each other through a multisubunit pro-
tein complex known as cohesin that forms a ring-
like structure around the sister chromatids.77 
During prophase, most of cohesin is removed 
from the chromosomes by Plk1 and aurora B 
kinase-mediated phosphorylation of cohesin 
complex.78 However, cohesin complex at cen-
tromere regions stays protected against Plk1 and 
Aurora B and provides a unique X-shaped mor-
phology to chromosomes. This X-shape is crucial 
for attachment of spindle to chromosomes to 
ensure proper sister chromatid separation. 
Cohesin at centromere region is protected by 
Shugoshin 1 (sgo1). Shugoshin 1 was initially 
identified in yeast that is required to protect 
cohesin Rec8 during meiosis.79 Shugoshin 2 
(sgo2), a Sgo1 paralog, has been shown to have 
similar role in mitosis. In humans, two shu-
goshins are known—sgo1 and sgo2. Sgo1 local-
izes to centromere and its depletion results in loss 

Centromere: A part of the 
chromosome that attaches 
to spindle fibres during cell 
division through assembly of 
multiprotein structure called 
kinetochores.

Spindle: A cytoskeletal 
structure formed by group of 
spindle fibres containing tu-
bulin and associated proteins 
that pull the chromosomes 
towards opposite poles during 
cell division.
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of sister chromatid cohesion in early mitosis 
whereas Sgo2 was suggested to have role in meio-
sis not for mitosis.80–82 In sgo1 knockdown cells, a 
non-phosphorylated form of cohesin subunit 
(SA2) was able to rescue the loss of sister chroma-
tid phenotype.81 Later, it was shown that sgo1 
recruits PP2A holoenzymes containing B′ subu-
nits to centromere and keeps the Plk1 and aurora 
substrate (SA2) in dephosphorylated state.83–85 
Therefore, non-phosphorylated forms of cohesin 
at centromere are not removed during prophase 
whereas phosphorylated cohesin is removed from 
chromosomes arms (Fig. 7b).

6.2  Phosphatase Action During Spindle 
Formation

A stable bipolar spindle formation is crucial 
for proper segregation of chromosomes dur-
ing mitosis.86 First step in this process is centro-
some duplication and separation that yields two 
microtubule-organizing centers. Nek2 protein 
kinase controls this centrosome-splitting process 
and a PP1 family phosphatase plays an oppo-
site role.87–89 PP1gamma isoforms interact with 
Nek2 by binding to its RVxF like motif, and regu-
late its kinase activity and also dephosphorylates 
Nek2 substrate such as centriolar linker protein 
C-nap1.87 Other reports have also showed both 
PP1alpha and PP1gamma interact with Nek2, but 
PP1alpha was found to be more crucial for Nek2 
kinase activity regulation in vivo.89 After cen-
trosome separation, centrosomes move away to 
form microtubule-organizing centers that further 
leads to formation of bipolar spindle. This event 
is regulated by two protein kinases—Aurora A 
and Plk1. Disruption of either of these kinases 
leads to formation of monopolar spindles and 
failure of chromosome segregation.90, 91 Activity 
of both Aurora A and Plk1 is regulated by phos-
phorylation of T-loop or activation loop at Thr 
residue. Aurora A and related Aurora B kinase 
are targeted by binding to TPX2 and INCEP 
protein, respectively, that keeps T-loop phos-
phorylation protected from phosphatases and 
stabilizes the active form.92–94 It is believed that 
at start of mitosis these kinases are activated by 
T-loop phosphorylation and are degraded at end 
of mitosis. But activity of these kinases is tightly 
regulated both spatially and temporally at vari-
ous sites and at different times during mitosis. 
So, a dynamic equilibrium exists between the 
phosphorylated and dephosphorylated form of 
T-loop. PP1 and PP2A are shown to dephospho-
rylate Aurora T-loop in vitro and implicated to 
regulate it. Recently Zeng et al. demonstrated that 

PP6 phosphatase is a major T-loop phosphatase 
in mitotic cells.95 Furthermore, only depletion 
of PP6 catalytic or regulatory subunits, but not 
PP1 or PP2A, results in increase in the T-loop 
phosphorylation. In absence of PP6, Aurora A 
kinase becomes hyperactive that yield to impaired 
bipolar spindle assembly and chromosome 
segregation.

Aurora B kinase is also a key player in mitosis 
that is involved in bipolar spindle attachment to 
chromosomes. Like Aurora A, Aurora B is regu-
lated by its T-loop phosphorylation and interacts 
with INCENP. INCENP binding is necessary for 
Aurora B activation and chromosome localiza-
tion.96 PP1-PPP1R7 holoenzyme complex has 
been demonstrated as T-loop phosphatase and 
cells depleted of this complex showed defects in 
chromosome attachment to spindles.97, 98 But 
complete mechanism of PP1-PPP1R7-meditated 
dephosphorylation is still unclear. Also, how 
both PP6 and PP1-PPP1R7 dephosphorylate a 
site in T-loop that buried inside the kinase active 
site is still not known. To address this problem, 
structure of phosphatases bound to its substrate 
may need to be resolved. Another PP1 holoen-
zyme, PP1gamma, is shown to dephosphorylate 
the substrate of Aurora B kinase and stabilizes 
the kinetochore–microtubule attachment under 
tension.99 PP1gamma binds directly to RVXF 
and SILK docking motif in the KNL1 subunit 
of KMN complex.99–101 Under no tension state, 
Aurora B is in close proximity to KNL1, phospho-
rylate it near to PP1 docking site that inhibits the 
binding of PP1gamma. This results in phospho-
rylation of Aurora B substrate and destabilization 
of microtubule attachments. Under tension, kine-
tochore is stretched away from centromere, so 
KNL1 does not get phosphorylated by Aurora B. 
PP1 can interact with KNL1 and dephosphoryl-
ate kinetochore substrate of Aurora B that results 
in stabilization of microtubule attachment to 
kinetochore.

6.3  Phosphatase Dynamics During 
Mitotic Exit

Once all chromosomes are properly aligned at 
metaphasic plate and spindle checkpoint is 
cleared CDK1 phosphorylates APC/C ubiquitin 
ligase. This leads to binding of APC to its coacti-
vator cdc20 that targets many mitotic substrates 
and initiates mitotic exit. Spindle assembly check-
point keeps APC in inactive state till all chromo-
somes are properly attached to spindles. Mitotic 
exit includes all events that occur after the spindle 
assembly checkpoint including chromosome 

Cytokinesis: A process of cy-
toplasmic division of a cell at 
the end of mitosis or meiosis 
that leads to division into two 
daughter cells.
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PP6 phosphatase is a major T-loop phosphatase 
in mitotic cells.95 Furthermore, only depletion 
of PP6 catalytic or regulatory subunits, but not 
PP1 or PP2A, results in increase in the T-loop 
phosphorylation. In absence of PP6, Aurora A 
kinase becomes hyperactive that yield to impaired 
bipolar spindle assembly and chromosome 
segregation.

Aurora B kinase is also a key player in mitosis 
that is involved in bipolar spindle attachment to 
chromosomes. Like Aurora A, Aurora B is regu-
lated by its T-loop phosphorylation and interacts 
with INCENP. INCENP binding is necessary for 
Aurora B activation and chromosome localiza-
tion.96 PP1-PPP1R7 holoenzyme complex has 
been demonstrated as T-loop phosphatase and 
cells depleted of this complex showed defects in 
chromosome attachment to spindles.97, 98 But 
complete mechanism of PP1-PPP1R7-meditated 
dephosphorylation is still unclear. Also, how 
both PP6 and PP1-PPP1R7 dephosphorylate a 
site in T-loop that buried inside the kinase active 
site is still not known. To address this problem, 
structure of phosphatases bound to its substrate 
may need to be resolved. Another PP1 holoen-
zyme, PP1gamma, is shown to dephosphorylate 
the substrate of Aurora B kinase and stabilizes 
the kinetochore–microtubule attachment under 
tension.99 PP1gamma binds directly to RVXF 
and SILK docking motif in the KNL1 subunit 
of KMN complex.99–101 Under no tension state, 
Aurora B is in close proximity to KNL1, phospho-
rylate it near to PP1 docking site that inhibits the 
binding of PP1gamma. This results in phospho-
rylation of Aurora B substrate and destabilization 
of microtubule attachments. Under tension, kine-
tochore is stretched away from centromere, so 
KNL1 does not get phosphorylated by Aurora B. 
PP1 can interact with KNL1 and dephosphoryl-
ate kinetochore substrate of Aurora B that results 
in stabilization of microtubule attachment to 
kinetochore.

6.3  Phosphatase Dynamics During 
Mitotic Exit

Once all chromosomes are properly aligned at 
metaphasic plate and spindle checkpoint is 
cleared CDK1 phosphorylates APC/C ubiquitin 
ligase. This leads to binding of APC to its coacti-
vator cdc20 that targets many mitotic substrates 
and initiates mitotic exit. Spindle assembly check-
point keeps APC in inactive state till all chromo-
somes are properly attached to spindles. Mitotic 
exit includes all events that occur after the spindle 
assembly checkpoint including chromosome 

Cytokinesis: A process of cy-
toplasmic division of a cell at 
the end of mitosis or meiosis 
that leads to division into two 
daughter cells.

segregation, cytokinesis, and assembly of inter-
phase cell structures. APC ubiquitinate two 
important proteins—cyclin B and the separase 
inhibitor securin. Cyclin B degradation results in 
inactivation of CDK1 thus promoting transition 
from metaphase to anaphase. Securin degrada-
tion activates separase that leads to cohesin 
removal from centromere and results in sister 
chromatid separation.102 During late stages of 
anaphase due to low activity of CDK1, APC binds 
to its second coactivator cdc20 homologue 1 
(CDH1) which enables APC to target CDC20, 
Aurora kinases, and PLK1. But phosphorylation 
by CDK1 and other kinases still need to be 
removed for exit from mitosis. Cdc14 acts as 
main mitotic exit phosphatase in budding 
yeast.103 But role of Cdc14 phosphatase in mam-
malian cells is still elusive although Cdc14 has 
been shown to be involved in anaphase and 
cytokinesis regulation.104 Thus, it may not be the 
major phosphatase to dephosphorylate the CDK1 
substrates. Moreover, Cdc14 has been demon-
strated to have more important role in DNA 
damage repair than mitotic exit regulation.105 In 
mammalian cells, the phosphatases required for 
mitotic exit are not fully understood but some 
recent studies have provide few clues on role of 
PP2A family and PP1 phosphatases during this 
process. PP2A-B55 targets CDK1 consensus site 
on CDK1 substrates (Ser-Pro or Thr-Pro) in vitro 
whereas regulatory subunits of other phosphatase 
do not confer specificity to CDK1 substrate.106, 107  
In drosophila, mutation in PP2A-B55 subunit 
results in abnormal chromosome segregation in 
anaphase.108 This suggests a crucial role of PP2A-
B55 in regulating animal cell mitotic exit. Further, 
biochemical studies in Xenopus embryonic 
extracts and RNAi screening in human cell lines 
have confirmed the role of PP2A-B55 as regulator 
of mitotic exit.109, 110 In human cells, depletion of 
B55alpha results in delayed formation of nuclear 
membrane and Golgi apparatus along with 
delayed disassembly of spindles and chromosome 
decondensation. Using CDK1 inhibitor to induce 
mitotic exit also demonstrated that PP2A-b55al-
pha act on CDK1 substrates but not on CDK1 
itself.110

PP1 is another proposed Ser/Thr phos-
phatase that dephosphorylates CDK1 substrates 
and helps in mitotic exit in animal cells. Studies 
in drosophila have suggested that depletion of 
PP1 induces chromosome missegregation and 
abnormal spindle in anaphase.111, 112 Further-
more, immunodepletion of PP1 or addition of 
PP1 Inhibitor 1 results in delayed CDK1 substrate 
dephosphorylation in Xenopus egg extracts.113 

Also, its depletion in mouse fibroblasts shows 
premature CDK1 substrate dephosphorylation. 
PP1-repo-men (CDCA2) is involved in chroma-
tin architecture maintenance during anaphase 
and negatively regulated by CDK1–cyclin B by 
direct phosphorylation till anaphase onset.114, 115 
Then, repo-men become dephosphorylated and 
recruits PP1gamma to chromatin. A recent study 
has demonstrated histone H3 as substrate of PP1-
repo-men.116 H3 is phosphorylated by kinase 
haspin at Thr 3 position and mostly found at 
centromeres, where it helps in binding to Aurora 
B chromosome passenger complex.117, 118 Thus, 
a locally repo-men-bound pool of PP1gamma 
dephosphorylates H3 during metaphase and dur-
ing mitotic exit and directs Aurora B away from 
centromere toward the chromosome arms.116

6.4  Phosphatase Requirement During 
Rebuilding of Interphase Cell

During mitosis entry, nuclear envelope break-
down is initiated by CDK1-mediated phospho-
rylation of lamin proteins and nucleoporins.119 
PP1 and PP2A phosphatases are necessary for 
reassembly of nuclear envelope but it is not 
clear whether these phosphatases act directly on 
lamin or nucleoporin proteins.120, 121 PNUTS, 
a PP1 regulatory subunit, localizes to chroma-
tin after nuclear envelope formation and helps 
in chromosome decondensation.122 PP2A-Bal-
pha (PPP2R2A) is involved in assembly of Golgi 
apparatus during mitotic exit. Golgi apparatus is 
disassembled by phosphorylation of Golgi matrix 
protein GM130 and Golgi stacking proteins 
by CDK1.123 During anaphase, PP2A-B alpha 
dephosphorylates GM130 at CDK1 phospho-
rylation site that leads to tethering of Golgi vesi-
cles and self-organization to form stacked Golgi 
apparatus in interphase.124 Thus, taken together, 
a tight spatial and temporal control exerted by 
phosphatases at different phases of cell cycle, in 
particular mitosis is critical for maintenance of 
genomic integrity in the cell.

7  Concluding Remarks
The field of phosphatases has come a long way 
since their discovery. Earlier phosphatases were 
considered as housekeeping enzymes which 
were unresponsive to hormone signaling and 
therefore considered as physiologically uninter-
esting. Now role of phosphatases is well appreci-
ated in many biological signaling pathways and 
human diseases. For many years phosphatases 
were considered as non-specific promiscuous 
enzymes with no or little substrate specificity 
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especially Ser/Thr phosphatases. But, now, it is 
clear that Ser/Thr phosphatases form complexes 
with distinct regulatory subunits and target-
specific proteins.125 Although many studies have 
reported a catalog of regulatory subunits for PPP 
phosphatases but function of only a handful of 
these regulatory subunits are known and major-
ity of regulatory subunits and their substrate 
are still unknown. Next, challenge in the field is 
to find the substrates of every phosphatase and 
their phosphorylation site on each of these tar-
gets. Mass spectrometry-based proteomics can 
be used to identify the components of phos-
phatase complexes and to determine potential 
substrates of phosphatase. Recently, some stud-
ies have used affinity purification coupled with 
mass spectrometry to identify proteins associ-
ated with phosphatases.126, 127 But, role of many 
of these novel protein interaction identified 
through AP-MS are still poorly understood. 
Substrate trapping mutants of phosphatases 
can be a feasible way to identify the substrates, 
which are normally very sensitive for identi-
fication owing to their transient association 
with active phosphatases. In one such example, 
recently, we utilized PTEN trap mutant to iden-
tify novel substrates which were not found ear-
lier using active enzymes. We identified Rab7 
as a novel substrate of PTEN and functionally 
demonstrated that PTEN inhibits EGFR signal-
ing by promoting early to late endosome transi-
tion.128 On the other hand, recent advances such 
as genome-wide high-throughput RNAi and 
knockouts using CRISPR method can be utilized 
to understand the function of phosphatases in a 
particular biological process. Many phosphatases 
have been linked to human diseases includ-
ing cancer, thus targeting these phosphatases to 
disrupt their binding to substrate or with spe-
cific regulatory subunits in case of PPP phos-
phatases could be of potential therapeutic value. 
However, roles of majority of phosphatases in 
development and diseases in vivo are not fully 
understood. This will need development of con-
ditional or tissue-specific knockouts of different 
phosphatases to explore their function. Further, 
phosphatases so far have been studied as indi-
vidual enzymes. However, given the complex 
combinatorial nature of cellular signaling con-
trolled by phosphatases and possibly multiple-
associated proteins highlights the necessity of 
systems biology-based approaches in immediate 
future to understand the role of phosphatases in 
signaling dynamics and further targeting in drug 
development.
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