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Spatio‑Temporal Control of Cellular 
and Organismal Physiology by Sirtuins

1 Introduction
Organismal physiology and hence survival is 
dependent on the ability to perceive and respond 
to various stimuli, both intrinsic and extrinsic. 
While the need to respond to extracellular and 
intracellular signals is inherent, the ability to 
decode the inputs into spatial and temporal com-
ponents often determines the biological response. 
This becomes even more evident in the case 
of metabolic sensing. Specifically, to maintain 
homeostasis cells also need to couple the intra-
cellular metabolic status, extracellular signals 
and nutrient availability, in addition to assess-
ing them independently. This requires a complex 
interplay between various molecular mechanisms 
in cells. With the evolution of multicellularity, 
signal generation, sensing and integration had 
to be orchestrated across tissues, still maintain-
ing heterogeneity among various tissues. Apart 
from the spatial control of metabolic sens-
ing, time-dependent responses become critical 
since (a) metabolic inputs are not constant and 
(b) the metabolic demand varies, for example,  
during development and aging1, 2, and under var-
ious physiological states such as sleep and wake 
cycles3, 4.

Genetic screens in various organisms followed 
by biochemical and phenotypic characterizations 
have led to the discovery of key factors that medi-
ate metabolic sensing. AMPK (AMP activated 
kinase)5, sirtuins (NAD-dependent deacylases)6, 7 
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In the context of metabolic or nutrient sensing while intracellular signal‑
ing ensures synchronization of various metabolic pathways, inter‑tissue 
communication enables the organism to couple energetic needs of all 
the organ systems and in a concerted manner. In this review, we high‑
light the role of evolutionarily conserved sirtuins (NAD‑dependent deac‑
ylases) in synchronizing inter‑organellar and inter‑tissue cross‑talk that is 
needed to orchestrate organism‑wide metabolic homeostasis.

and TOR (Target of Rapamycin that responds to 
amino acids and ATP)8 form the ‘trinity’ of meta-
bolic sensors. These factors are known to gov-
ern almost all aspects of cellular and organismal 
physiology, including maintenance of metabolic 
homeostasis.

In this review, we have specifically highlighted 
the importance of the NAD-dependent deac-
ylases, sirtuins, in mediating metabolic sensing/
signaling. We have aimed at providing insights 
into their roles in orchestrating spatial and tem-
poral control by their ability to regulate intracel-
lular and extracellular signals. For intracellular 
signaling, we have focussed on the importance of 
bidirectional control of cellular physiology ema-
nating from nucleus and the mitochondria. For 
extracellular signals, we have reviewed the key 
role of sirtuins in regulating the evolutionarily 
conserved nutrient sensing endocrine pathway, 
the Insulin/IGF signaling (IIS).

2  Nuclear–Mitochondrial Cross‑Talk
Although mitochondria have been well estab-
lished to function as semi-autonomous orga-
nelles, nuclear transcription is key to not only 
contribute to the ETC (electron transport chain) 
complexes but also to regulate mitochondrial bio-
genesis and encode all the metabolic enzymes, 
which localize to the mitochondria. The readers 
are encouraged to refer to extensive reviews by 
Richard Scarpulla and others which describe the 

© Indian Institute of Science 2017. 

S. Deota and N. Shukla 
contributed equally. 

Department of Biological 
Sciences, Tata Institute 
of Fundamental Research, 
Mumbai 400005, India
*ullas@tifr.res.in; 
ullaskolthur@gmail.com 

R
EV

IE
W

 
A

RT
IC

LE

http://crossmark.crossref.org/dialog/?doi=10.1007/s41745-016-0018-9&domain=pdf


148

Shaunak Deota Namrata Shukla and Ullas Kolthur‑Seetharam

1 3 J. Indian Inst. Sci. | VOL 97:1| 147–159 March 2017 | journal.iisc.ernet.in

transcriptional mechanisms that govern mito-
chondrial functions9–11.

Until recently, mitochondria were regarded as 
organelles that would respond to extrinsic cues 
(from within and outside cells) and modulate 
its functions to generate ATP. However, emerg-
ing literature has clearly indicated that mito-
chondria elicit and control several signaling 
mechanisms that impinge on various aspects of 
cellular physiology. Termed as Retrograde Sign-
aling, mitochondrial signals in the form of ATP, 
ROS, Calcium and NAD/NADH are now recog-
nized for acting as mediators of intracellular sig-
nals12, 13.

3  Insulin/IGF Signaling (IIS)
IIS is an evolutionarily conserved mechanism 
across metazoans and involves an intricate 
signal transduction pathway, described and 
reviewed elsewhere14, but depicted in Fig. 1. IIS 
is critical to maintain organism-wide nutrient 
and metabolic homeostasis. For example, in the 
case of insulin signaling, this entails secretion 
of insulin (or related peptides) from insulin 
secreting cells, which bind to cognate receptors 
(receptor tyrosine kinases) present on almost 
all cells across tissues15. Nutrient uptake, spe-
cifically glucose, is dependent on the action of 
insulin and at a cellular level, insulin signaling 
is essential to maintain physiology16. Control 
of insulin signaling can be elicited at various 
levels from production/secretion of the ligands 
(insulin) to receptor binding/activity and all 
the way up to transcription of downstream 
genes15. Reduced signaling, termed insulin 
resistance, is known to cause metabolic dis-
eases such as obesity and diabetes16. Genetic 
perturbations in IIS from worms to mice have 
shown that they are also involved in organismal 
aging17–22.

4  Sirtuins
Sirtuins (Sir2 like proteins) are evolutionarily 
conserved NAD+-dependent protein deacylases. 
Among the metabolic sensors, sirtuins seem to be 
most ancient—evolutionarily being present in 
Archaea and present in all species studied thus 
far. Sir2 was first identified in yeast as a histone 
deacetylase, which was part of Silent Information 
Regulator (SIR) complex and shown to play a role 
in heterochromatinization and repression of 
rDNA, telomeres and mating type loci23–25. They 
have been shown to play important role in regu-
lating aging and in mediating the beneficial 
effects of calorie restriction (CR) across model 
organisms, from yeast to mice26–31. Based on 
homology and previous reports, it emerges that 
mammals uniquely have seven Sir2 paralogs, 
compared to five each in yeast, flies and worms32, 
33. Mammalian sirtuins (SIRT1-SIRT7) are 
located in different cellular compartments: 
SIRT1, SIRT6 and SIRT7 are located in nucleus, 
SIRT2 in cytoplasm, and SIRT3, SIRT4 and SIRT5 
are localized in mitochondria (Table 1, Fig. 2). 
Owing to their dependence on NAD+ for their 
activity, wherein cleavage of NAD+ is coupled to 
deacylation of substrate protein, they act as meta-
bolic sensors. Apart from deacetylation, sirtuins 
also possess multiple catalytic activities such as 
demalonylation, desuccinylation, deglutarylation 
(SIRT5), ADP-ribosylation (SIRT4, SIRT6) and 
demyristoylation (SIRT6)34 (Table 1). Below, we 
have discussed the importance of each of these 
sirtuins, specifically in metazoans, in mediating 
spatial and temporal control of metabolic 
signaling.

4.1  Sirtuins and Spatio‑Temporal Control 
of Organismal Physiology

The contents of this review illustrate the well-
established cellular functions of sirtuins being 

Calorie restriction: It is 
loosely defined as a dietary 

regimen in which diet or 
calorie intake is reduced to 

different extents. Typically it 
involves a restriction of 30% 
or more of the macronutri-

ents without affecting the 
micronutrients.
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Figure 1: Canonical Insulin Signaling Pathway.
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elicited from different organelles or tissues in 
mediating homeostasis. It is also motivated by 
the observations, which together indicate that 
given the diverse developmental and metabolic 
fates of different tissues in metazoans, sirtuins 
may play a central role in synchronizing meta-
bolic sensing at an organismal level both in 
space and time (Fig. 2).

4.2  SIRT1
SIRT1 acts as a master regulator of transcrip-
tion by deacetylating a plethora of factors 
including transcription factors, co-activators/-
repressors, chromating modifiers and histones 
themselves35. SIRT1 has now been implicated 
in diverse cellular and organismal pheno-
types ranging from differentiation to mood 
disorders36–39. Since it is nearly impossible to 

highlight every mechanism that is affected by 
SIRT1, we have concentrated on its functions 
in mediating inter-organellar and inter-tissue 
communication brought about by IIS. Studies 
in cell culture and gain- and loss of function 
perturbations in various model systems from 
worms, flies, mice and human cells have shown 
that SIRT1 in the nucleus plays a pivotal role in 
controlling mitochondrial functions and insulin 
signaling at a cellular level40, 41.

4.3  Nuclear Control of Mitochondria 
Through SIRT1

Cell line-based studies and genetic pertur-
bations of SIRT1/Sir2 in specific tissues such 
as liver/fat body, muscles and adipocytes have 
illustrated its importance in modulating mito-
chondrial functions, across species27, 42, 43. 

Table 1: List of mammalian sirtuins, their localization and established activities.

Sirtuin Localization Activity References

SIRT1 Nucleus Deacetylation, decrotonylation? Imai et al. Nature 2000, Bao et al. eLife 2014

SIRT2 Cytoplasm Deacetylation North et al. Mol Cell 2003

SIRT3 Mitochondria Deacetylation, decrotonylation? Onyango et al. PNAS 2002,  
Bao et al. eLife, 2014

SIRT4 Mitochondria ADP-ribosylation, deacetylation, delipoylation Haigis et al. Cell 2006, Laurent et al.  
Mol Cell 2013, Mathias et al. Cell 2014

SIRT5 Mitochondria Deacetylation, demalonylation, desuccinyla-
tion, deglutarylation

Nakagawa et al. Cell 2009, Du et al.  
Science 2011, Tan et al. Cell Metab 2014

SIRT6 Nucleus ADP-ribosylation, deacetylation, demyristoyla-
tion, depalmitoylation?

Liszt et al. JBC 2005, Michishita et al.  
Nature 2008, Jiang et al. Nature 2013

SIRT7 Nucleolus Deacetylation, desuccinylation Barber et al. Nature 2012, Li et al.  
Nat Comm 2016
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Figure 2: a Schematic indicating Sirtuin mediated spatial control of cellular functions and their role in 
dictating extracellular ligands/signaling. b Brief overview of phenotypes associated with Sirtuin functions 
vis‑à‑vis their role in nuclear‑mitochondrial and insulin signaling.
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SIRT1-dependent deacetylation of all the key 
factors, such as ERRa (Estrogen-related Recep-
tor alpha), NRF1 (Nuclear Respiratory Factor 
1), PPARa (Peroxisome Proliferator Activated 
Receptor Alpha) and PGC1a (Peroxisome pro-
liferator activated receptor gamma coactivator 
1-alpha), is necessary to activate transcription 
of genes involved in fatty acid oxidation, TCA 
cycle, ketogenesis and mitochondrial biogen-
esis Fig. 2, 43, 44. Specifically, SIRT1 deacetylates 
and activates PPARa in liver to increase in the 
expression of fatty acid oxidation genes like 
CPT1, LCAD and CD36, and loss of SIRT1 in 
liver leads to hepatic steatosis even under nor-
mal fed conditions43, 45. Further highlighting 
its role in regulating fat metabolism including 
beta-oxidation in the mitochondria, adenovi-
ral overexpression of SIRT1 in the livers of db/
db mice (mice homozygous for a point muta-
tion in Leptin Receptor causing decreased lep-
tin signaling and are used as a model system 
for diabetes and obesity46) has been shown to 
decrease hepatic steatosis47. In muscles, fast-
ing has been shown to increase NAD+ levels via 
AMPK, which activates SIRT1. Together AMPK 
and SIRT1 activate PGC1a (via phosphoryla-
tion and deacetylation, respectively) leading to 
elevated transcription of nuclear encoded mito-
chondrial ETC components like cytochrome-c, 
COX-IV and mitochondrial biogenic genes like 
TFAM44, 48. Similarly, knockdown or overex-
pression of SIRT1 in flies has been associated 
with decreased or increased mitochondrial  
output, respectively, in both fat body and mus-
cles26, 27.

4.4  SIRT1 is Essential for Maintaining 
Insulin/IGF Signaling Within Cells

It is important to note that SIRT1 is critical in 
maintaining intracellular insulin signaling and it 
impinges on this pathway at all levels either tran-
scriptionally or by regulating the activities of the 
components. Again, studies in cell lines, worms, 
flies and mice have shown that SIRT1 is essential 
for enabling cells to respond to insulin or in other 
words increasing insulin sensitivity and its loss has 
been shown to cause insulin resistance27, 49–51.

SIRT1 has been shown to activate IRS-1 and 
IRS-2, which are immediately downstream of insu-
lin receptor. SIRT1 activates IRS-1 indirectly, via 
NF-κB and JNK52. In the case of IRS-2, SIRT1 plays 
a direct role in its activation. The activatory tyros-
ine phosphorylation on IRS-2 is enhanced upon 
deacetylation by SIRT153. The next component 
in IIS, namely phosphoinositide 3-kinase (PI3 K) 

Insulin resistance: A patho-
logical condition in which the 

cells are unable to respond 
to insulin and thus cannot 

absorb glucose from blood. 
This is typically character-

ized by a hyperglycemic state 
and reduced signaling flux 
through Akt. To tackle this 
situation, beta cells of pan-

creas produce more insulin to 
maintain the blood glucose. 
If this condition persists, it 

ultimately may lead to type 2 
diabetes mellitus.

that converts PIP2 to PIP3, is controlled by SIRT1. 
Specifically under calorie-restricted conditions, 
SIRT1 has been shown to downregulate transcrip-
tion of regulatory subunits of PI3 K, namely p55a 
and p50a, by deacetylating and inhibiting STAT3, 
as shown in skeletal muscles54. PTEN (phosphatase 
and tensin homolog) is a lipid phosphatase that 
converts PIP3 into PIP2, counteracting the activity 
of PI3 K and acting as a negative regulator of IIS. 
SIRT1 deacetylates and inhibits PTEN, thus acti-
vating insulin signaling55. SIRT1 represses the tran-
scription of Ptpn and hence seems to relieve the 
repressive action of PTP1b on insulin signaling56.

Subsequent to conversion of PIP2 to PIP3, 
concerted action of two kinases, i.e,. PDK 
(3-phosphoinositide dependent protein kinase-1) 
and Akt is a key to transduce the membrane-
anchored insulin signal to the interior of the cell. 
SIRT1 activates both PDK1 and Akt via deacety-
lation and seems to enhance the flux of insulin 
signaling57. Interestingly, under conditions of 
oxidative stress, SIRT1 prevents Akt activation by 
deacetylating and activating PTEN58.

In addition to mechanistic underpinnings of 
SIRT1-mediated control, its importance in regu-
lating glucose homeostasis has been evidenced by 
genetic alterations both in the entire organism, 
and in specific tissues such as muscle and liver/fat 
body in flies and mice27, 49–51. Importantly, over-
expression of Sir2.1/dSir2 has been found to be 
sufficient to improve insulin sensitivity in worms 
and flies, suggesting its evolutionarily conserved 
role in regulating insulin signaling and sensitiv-
ity26, 29, 59. Despite this, the mechanistic basis for 
Sir2.1/dSir2 regulating insulin signaling and sen-
sitivity is poorly understood.

4.5  Role of SIRT1 in Regulating Insulin 
Secretion

Apart from the above-described role in regulating 
insulin signaling at a cellular level, SIRT1 acts to 
modulate this signaling ‘top–down’ by controlling 
the expression and secretion of insulin and insu-
lin-like molecules. In mammals, SIRT1 has been 
shown to regulate insulin secretion via its ability 
to control transcription of various genes includ-
ing the repression of UCP2 (uncoupling protein 
2)60. Gain of function studies in the beta islets 
have clearly demonstrated that SIRT1 increases 
insulin secretion61. Interestingly, the expression of 
SIRT1 itself has been shown to be modulated 
during glucose stimulated insulin secretion 
(GSIS) in mice. Specifically, SIRT1 expression 
seems to oscillate during GSIS and a reduction of 
SIRT1 protein that is mediated by a microRNA, 

microRNA: It is a small, 22 
nucleotide non-coding RNA 

that is involved in post-
transcriptional regulation 

of mRNA. MicroRNAs are 
known to both inhibit transla-
tion and degrade mRNAs and 
hence act as key regulators of 

gene expression.

Hepatic steatosis: A patho-
logical condition arising due 
to perturbed fat homeostasis 

in the liver. It is character-
ized by accumulation of lipid 

droplets, inability to break-
down and mobilize fat. Clini-

callly it is one of the major 
causes of non-alcoholic liver 

failure, which is associated 
with hyper-inflammation.
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miR-9, has been implicated in the ‘fall-phase’ of 
insulin secretion from the beta islets62.

Studies in Drosophila and mice have also 
indicated a central role for SIRT1 in control-
ling the expression of dILPs/insulin non-auton-
omously. Fat body-specific overexpression of 
SIRT1 decreases dILP2 and dILP5 transcription 
while knockdown of SIRT1 in fat body increases 
dILP2 and dILP5 transcription. Interestingly, no 
such effect was seen by perturbing SIRT1 in mus-
cles27. Similar results have been seen in liver-spe-
cific SIRT1 knockout or overexpression studies in 
mice, where SIRT1 expression/function in hepat-
ocytes has been negatively correlated with serum 
insulin levels43, 47.

Together, these findings show that whereas 
SIRT1 in the islets is required for GSIS, SIRT1 
from the fat body or liver inhibits circulating 
serum insulin. This clearly indicates that mul-
tiple control mechanisms, which are spatially 
separated, regulate insulin secretion. Moreo-
ver, these also highlight the importance of liver 
and fat body as central organs that remotely 
modulate insulin signaling, across evolution. 
This raises the possibility of differential meta-
bolic sensing, via sirtuins, in each of these 
tissues mediating non-overlapping but con-
certed effect on the evolutionarily conserved 
endocrine system that is critical for survival of 
organisms.

4.6  Control of Endocrine Ligands/
Signaling by SIRT1

Pointing towards a general theme in the SIRT1-
dependent control of spatial endocrine signals, 
emerging studies published in the recent past 
have shown that presence or absence of SIRT1 
affects growth hormone (GH), fibroblast growth 
factors (FGFs) and insulin-like growth factor 
(IGF) signaling. Specifically, SIRT1 has been 
shown to deacetylate cAMP response element 
binding protein (CREB) and Glycogen syn-
thase kinase 3 beta (GSK3β) and in turn nega-
tively regulate GH transcription from anterior 
pituitary gland63. It also negatively regulates 
IGF1 transcription in liver by deacetylating and 
inhibiting STAT564. On the other hand, SIRT1 
positively regulates FGF21 transcription and 
signaling, and promotes fasting response in 
liver65. Given the intricate interplay between 
various endocrine pathways, it will be interest-
ing to address if SIRT1 mediates tissue-specific 
origin or control of organismal physiology, by 
altering the ratios of various ligand-dependent 
signaling mechanisms.

5  SIRT3
5.1  Regulation of Mitochondrial 

Functions
SIRT3 has now been well characterized as the 
major deacetylase present in mitochondria and 
multiple proteomic studies have identified sev-
eral proteins involved in almost every aspect of 
mitochondrial physiology as its substrates Fig. 2, 
66, 67. Highlighting its importance in the core 
function of mitochondria that is oxidative phos-
phorylation, SIRT3 has been shown to deacety-
late electron transport chain and ATP synthase 
components. Specifically, SIRT3-dependent dea-
cetylation of NDUFA968 and ATP synthase F1 
complex proteins69 have been associated with 
increased mitochondrial respiration and ATP 
production. Indicating the central role of SIRT3 
in maintaining the flux through TCA cycle, fatty 
acid oxidation and urea cycle, it is now known 
to deacetylate several enzymes such as isocitrate 
dehydrogenase (IDH2)70, succinate dehydroge-
nase (SDH)71, long chain acyl CoA dehydroge-
nase (LCAD)72 and ornithine transcarbamoylase 
OTC73. SIRT3-dependent deacetylation of ROS 
scavengers MnSOD and Catalase reduces ROS74, 
75 pointing towards its role in oxidative stress 
response.

5.2  SIRT3 and Spatial Control 
of Metabolic Signaling

Although little is known about the role of SIRT3 
in mediating intracellular signaling, its ability 
to regulate ROS seems to hint at this possibil-
ity. This is because, ROS is now well regarded as 
a key factor in mediating both stress responses 
and intracellular signaling76, 77. Whether ROS 
homeostasis mediated by SIRT3 impinges in 
encoding spatial cues via signaling remains to 
be seen (except for one report, see below).

While several reports have highlighted bidi-
rectional cross-talk between mitochondria 
and insulin signaling, the importance of mito-
chondrial sirtuins in mediating any such path-
ways is less understood. However, SIRT3 has 
been shown to impinge on insulin signaling via 
ROS and hence determine insulin sensitivity in 
muscles78.

6  SIRT4
SIRT4 is one of the most evolutionarily con-
served mitochondrial sirtuins whose localisa-
tion, unlike the other mitochondrial sirtuins, 
seems to be restricted to this organelle79. 
Although this molecule is least studied and its 
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catalytic activity is still ambiguous, recent stud-
ies have provided insights into its role in regu-
lating metabolism and organismal physiology.

6.1  Organelle‑Specific Control Elicited 
by SIRT4

SIRT4 has been shown to repress glutamate 
dehydrogenase (GDH) activity by ADP-ribo-
sylation, which has been associated in the 
control of insulin secretion from beta islets80. 
Although, SIRT4-mediated GDH repression has 
now shown to negatively impinge on the ability 
of cancer cells to utilize glutamine81, a broader 
significance of GDH regulation in normal phys-
iology is still limited.

Providing a breakthrough to the field, Nasrin 
et al. in 2010 showed that SIRT4 knockout mice 
have increased fatty acid oxidation in WAT, mus-
cles and liver and that they were protected from 
high fat diet induced obesity. Further studies have 
clearly established that SIRT4 is a negative regula-
tor of beta-oxidation82–84. It is still unclear if the 
ability of SIRT4 to regulate fatty acid oxidation is 
mediated locally within the mitochondria.

7  SIRT4 Plays a Crucial Role 
in Mitochondrial Retrograde Signaling

Paradoxically, despite paucity of reports on the 
functions of SIRT4 within the mitochondria, its 
presence or absence has been seen to affect nuclear 
transcription and hence encode a spatial control 
over cellular physiology. It is now clear that the 
ability of SIRT4 to negatively regulate fatty acid 
oxidation genes from the nucleus is the reason 
for these mice to show a lean phenotype and be 
protected from high fat diet induced obesity. Trac-
ing the causal mechanism for increased beta oxi-
dation in the absence of SIRT4, Ho et al. showed 
that reduced cellular ATP (or energy deficiency) 
was critical in eliciting a mitochondrial signal that 
controlled nuclear transcription of genes involved 
in fat metabolism and mitochondrial biogenesis82. 
Concurrently, Laurent et al. showed that loss of 
SIRT4 causes increased NAD levels in cytosol, 
which activated SIRT183. Together, SIRT4 has now 
been shown to act via the AMPK-SIRT1-PPARa-
PGC1a axis to regulate transcription from the 
nucleus Fig. 282–84.

8  SIRT6
8.1  Cell Autonomous Mechanisms 

Downstream to SIRT6
Besides SIRT1, SIRT6 is the second most widely 
studied sirtuin in the field. Unlike SIRT1, SIRT6 

is mostly chromatin bound and has been shown 
to mediate most of its effects on cellular physi-
ology via transcription. SIRT6 has now shown 
to possess ADP-ribosylase, deacetylase and 
demyristoylase activities (see below). It has 
emerged as a key factor in regulating glucose 
homeostasis by controlling transcription of gly-
colytic genes downstream to HIF1a (Hypoxia-
inducible factor 1-alpha)85. In addition to its 
roles in mediating DNA damage and inflamma-
tory responses, SIRT6 is required for maintain-
ing telomeric chromatin and length86.

With regards to cellular signaling, SIRT6 has 
been shown to negatively regulate insulin sign-
aling in a cell autonomous manner. Specifically, 
SIRT6 loss of function studies have clearly dem-
onstrated that increased insulin signaling and 
hypoglycemia results in one of the most obvious 
or primary phenotypes that causes lethality85, 87. 
However, little is known about the mechanis-
tic underpinnings of how SIRT6 affects insulin 
signaling intracellularly, except for the negative 
regulation of AKT transcription via c-jun88.

8.2  Organismal Level Control 
of Signaling by SIRT6

Although several studies have shown that SIRT6 
knockouts have whole body phenotypes rang-
ing from lymphopenia, loss of subcutaneous fat, 
lordokyphosis, and severe metabolic defects, lit-
tle is known about the tissue specific contribu-
tions towards this89. With regards to its ability to 
control inter-tissue communication, SIRT6 has 
been recently shown to control insulin secretion 
by regulating FoxO1. Forkhead box O1 (FoxO1) 
and Forkhead box O3 (FoxO3) are transcription 
factors involved in the regulation of cell cycle, 
apoptosis, metabolism and aging, and they are 
evolutionarily conserved from yeast to mam-
mals90. Specifically, SIRT6 deacetylates FoxO1 
leading to its exclusion from the nucleus and 
derepression of pdx1 and glut2 genes. Pdx1 medi-
ates the transcription of insulin and beta cell 
maintenance, whereas Glut2 function is neces-
sary for the glucose entry into the pancreatic beta 
cells to release insulin91, 92. Loss of SIRT6 in pan-
creatic beta cells leads to impaired GSIS and glu-
cose intolerance. These pancreatic cells also show 
defects in mitochondrial structure and oxidative 
phosphorylation93. Interestingly, SIRT6 absence 
has been associated with severe loss in circulat-
ing IGF-1 levels, which has been shown to have 
both overlapping and non-overlapping effects 
with insulin on organismal physiology89. Interest-
ingly, gain of function transgenic overexpression 
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of SIRT6 that manifests in a longevity phenotype 
has been largely attributed to an overall decrease 
in insulin/IGF signaling at an organismal level94. 
Again, the mechanistic and physiological under-
standing of how SIRT6 conrols IIS is still not 
available.

8.3  Is SIRT6 Acting as a Key Regulator 
of Cellular Secretion?

A recent report described a novel activity for 
SIRT6, namely, demyristoylation (ref). TNFa 
(tumor necrosis factor-alpha) is a direct target of 
SIRT6 which gets secreted in response to demyris-
toylation providing an important non-autono-
mous proinflammatory cue to the cells. Although, 
TNFa is currently the only identified target of 
SIRT6, considering that myristoylation is a pre-
dominant modification which mediates the 
membrane tethering of secreted factors, it is not 
difficult to imagine the existence of other tar-
gets95. Efforts to identify proteins that show 
altered secretion, specifically brought about by 
the de-fatty acylase activity of SIRT6 revealed, 
unexpectedly, ribosomal proteins. Specifically, 
using a catalytic mutant of SIRT6 that retains 
only its defatty-acylase activity showed it possibly 
exerts its action via exosomes96. It will be interest-
ing to see the tissue-specific control of such cellu-
lar outputs or if and how these would mediate an 
organism-wide phenotype.

9  Temporal Control of Signaling or 
Sensing by sirtuins

Although sirtuins in general, but more specifi-
cally SIRT1 and SIRT6, have been clearly associ-
ated with aging and age-related diseases, whether 
they control intracellular and extracellular signal-
ing in a temporal manner, is still unclear. In fact, 
it is likely that a significant amount of biology 
remains to be discovered or detailed in this con-
text. This is relevant because, SIRT1 and SIRT6 
expressions have been well documented to alter 
during development, growth and aging across all 
organisms studied thus far. Even in the context 
of intracellular signaling, the protein turn-over 
of sirtuins is still poorly characterized and it will 
be exciting to see if and how both short-term 
and long-term signaling and epigenetic memory 
is maintained by these two sirtuins. Since all sir-
tuins are known to be dependent upon NAD, it 
will be exciting to ask whether tissue- and orga-
nelle-specific alterations in NAD concentrations, 
across the lifespan of an organism, can elicit var-
ied sirtuin-mediated responses. Given the paucity 
of information in this context, in this section we 

Exosomes: They are extracel-
lular vesicles released from 
cells by fusion of multive-
sicular bodies (MVBs) with 
the plasma membrane. They 
contain membrane proteins 
and cytosolic components, 
including microRNAs.

have reviewed literature that hints at the exist-
ence of such temporal controls in a physiological 
setting.

9.1  SIRT1
SIRT1 and its homologs in lower organisms like 
yeast (Sir2), C. elegans (Sir 2.1) and D. mela-
nogaster (dSir2/SIRT1), have been shown to 
increase lifespan and mediate the beneficial 
effects of calorie restriction on organismal physi-
ology29, 30, 97, 98. Multiple pathways such as rDNA 
and telomere maintenance, insulin signaling, 
stress resistance, mitochondrial functions, repres-
sion of transposable elements and genomic stabil-
ity have been implicated as mediators for the role 
of Sir2/SIRT1 in regulating lifespan and health-
span99, 100. SIRT1 has been shown to maintain 
heterochromatin by regulating multiple factors 
like SUV39H1, MECP2 and HP1101, 102. A recent 
report in Drosophila has shown the importance 
of SIRT1 in suppressing the age-associated trans-
position of mobile elements in fat body of aged 
fly103. SIRT1 has been shown to relocalize across 
the genome during stress to repair the damaged 
DNA. This relocalization causes altered gene 
expression similar to that of aging brain, and 
overexpression of SIRT1 counters the abrogated 
transcription104. This supports the chromatin 
theory of aging which suggests that derepression 
of heterochromatinized regions caused by relo-
calization of chromatin factors leads to aging105. 
Multiple studies have shown that muscle func-
tions get altered during aging and loss of mito-
chondrial functions and insulin resistance has 
been the major causes attributed to this. During 
aging, SIRT1 levels decrease in muscles, causing 
decreased expression of nuclear-encoded mito-
chondrial complex components, but not mito-
chondrial-encoded mitochondrial components. 
This leads to nuclear–mitochondrial asynchrony 
and loss of muscle functions, which can be res-
cued by pharmacological activation of SIRT1106. 
Apart from autonomous regulation, non-auton-
omous regulation of skeletal muscle by SIRT1 
in brain has also been shown. In brain-specific 
SIRT1-overexpressing mice, there is increased 
lifespan and it is partially mediated via Nk2 
homeobox-1 (Nkx2-1) and orexin type 2 recep-
tor (Ox2r)-dependent regulation of sleep–wake 
cycles and skeletal muscle functions107.

9.2  SIRT6
Loss of function studies of SIRT6 in mice have 
shown accelerated aging phenotype. The mice, 
which develop normally up till 3 weeks of age 
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show acute degenerative phenotype and succumb 
to death by postnatal day 2489. Gain of function 
studies have shown the role of SIRT6 to improve 
overall healthspan of the organism including pro-
tection against age-related decline in glucose toler-
ance. The livers of these mice are more proliferative 
and the adipose tissue shows reduced inflamma-
tion which is predominantly attributed to reduc-
tion in age-associated macrophage activation108.

SIRT6 has been shown to be a positive regu-
lator of longevity with transgenic male mice 
overexpressing SIRT6 showing a mean lifespan 
extension by 16%. These mice show better glu-
cose tolerance, attenuated IGF-1 signaling via 
increased expression of IGFBPs and altered phos-
phorylation levels of major Insulin/IGF pathway 
components including IGF-R, Akt and FOXO94.

SIRT6 also functions in maintaining genome 
integrity via silencing of retrotransposons. The 
silencing of these mobile elements becomes less 
efficient with age and their activation leads to 
development of age-related disorders, like cancer 
and neurodegeneration109, 110. SIRT6 mono-ADP 
ribosylates KAP1, a nuclear co-repressor protein, 
to maintain L1 elements in the silenced state111. 
Indicating its role in linking chromatin, gene 
expression and nuclear architecture, SIRT6 has 
been shown to regulate the expression of many 
age-associated genes such as cell cycle inhibitor 
cdkn2a and laminA via the NFkB subunit RelA112.

10  Conclusion
Given the enormous heterogeneity in terms of met-
abolic inputs and tissue-specific functions, it makes 
perfect evolutionary sense to encode mechanisms 
that synchronize organ systems. At a cellular level, it 
ultimately boils down to metabolic sensing within 
cytoplasm, mitochondria and the nucleus. By virtue 
of their mostly ubiquitous expression across tissues 
(and across species), in addition to being localized 
to the key cellular compartments, and dependence 
on NAD+ for their activity, sirtuins emerge as one 
of the key factors that play a central role in estab-
lishing and maintaining regulatory networks.
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