
1 3J. Indian Inst. Sci. | VOL 97:3 | 313–324 September 2017 | journal.iisc.ernet.in

Review on Heart‑Rate Estimation 
from Photoplethysmography and Accelerometer 
Signals During Physical Exercise

1 Introduction
Real-time heart rate (HR) estimation from the 
photoplethysmography (PPG) signals is a key 
step in developing wearable devices that can 
monitor the HR in a non-invasive way.1 The PPG 
signal is obtained from pulse oximeters and its 
periodicity corresponds to the cardiac rhythm.2 
Oximeters are designed with a light source and 
detector placed either in reflection mode or in 
transmission mode (Fig. 1a). Light of wavelength 
between 500 and 900 nm is illuminated on the 
skin. The light transmitted or reflected by the skin 
is proportional to the blood flow (Fig. 1b).3 Blood 
flow in the vessels is mediated by the heart beat 
(Fig. 1c). In spite of the HR information available 
in the PPG signal, reliable estimation of the HR is 
not straightforward due to the fact that the PPG 
signals are vulnerable to motion artifacts (MA), 
which strongly interfere with the HR. Figure 1d 
shows a 3-s long PPG signal acquired when the 
subject is at rest and Fig. 1e shows the same when 
the subject is exercising on treadmill. Figure 1f, g 
shows the respective tri-axial accelerometer data. 
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Abstract | Non‑invasive monitoring of physiological signals during physi‑
cal exercise is essential to customize the exercise module. Photoplethys‑
mography (PPG) signal has often been used to non‑invasively monitor 
heart‑rate, respiratory rate, and blood‑pressure among other physiologi‑
cal signals. Typically, PPG signal is acquired using pulse oximeter from 
finger‑tip or wrist. Advantage of wrist‑based PPG sensors is that it is 
more convenient to wear. Other sensors such as accelerometer can also 
be integrated with it due to large area on the wrist. This article provides 
a review of the algorithms developed for heart rate estimation during 
physical exercise from the PPG signals and accelerometer signals. The 
datasets used to develop these techniques are described. Algorithms 
for denoising of PPG signals using accelerometer signals are either in 
time domain or frequency domain.
Keywords: Heart-rate monitoring, Spectral peak tracking, Accelerometer signal, Motion artifact, Physical 
activity
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In comparison, Electrocardiogram (ECG) sig-
nals shown in Fig. 1h, i are more robust to MA. 
MA in PPG during exercise is strong compared 
to the resting data. Depending on the type of 
physical activity of the user, the MA component 
can completely mask the HR information in the 
PPG signals causing the HR monitoring from the 
PPG signal challenging.4,5 Effective MA removal 
techniques are required for PPG signals acquired 
during physical exercise to accurately find the HR 
information. The steps involved in HR estimation 
using accelerometer information are shown in the 
block diagram (Fig. 1j).

A typical approach in estimating HR in the 
presence of MA is to first remove MA from the 
PPG signal. There are several techniques in the 
literature for removing MA from the PPG sig-
nal.6 Some of these techniques do not require 
motion information from an accelerometer while 
some others do. Independent component analy-
sis (ICA) is one technique where motion data are 
not required; however, it requires multiple PPG 
sensors.7 ICA has been proposed in both time 
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domain8 and frequency-domain.9 However, the 
assumption of statistical independence in ICA 
does not hold well in PPG signal contaminated by 
MA.10 On the other hand, when the acceleration 
data are available, the MA component is adaptively 
cancelled from the PPG signal using an adap-
tive filter following least mean square (LMS),11 
normalized LMS,12,13 fast transversal recursive 
least square (RLS) algorithms,14 as well as spec-
trum subtraction technique,15 and Laguerre basis 
function-based signal representation.16 Other MA 
removal techniques include electronic process-
ing methodology,17 time-frequency analysis,18 

wavelet denoising,19,20 higher order statistics,9 
empirical mode decomposition,21,22 and random 
forest-based method23 to name a few. However, in 
case of an intense physical exercise, most of these 
techniques do not work well.10 Acceleration data 
have also been used for the observation model for 
Kalman filter24 as well as for Kalman smoother25 
to remove MA. The acceleration data reflect the 
hand movement in 3-D space while MA in PPG 
signal also originates from other sources such as 
changes of the gap between skin and a pulse oxi-
meters surface which cannot be corrected by using 
acceleration data.10

Figure 1: a Acquisition of PPG signal,3 b illustration source and detector,3 c components of PPG signal 3,  
figures were reproduced with permission, d sample PPG signal for 3 s, e PPG signal with MA, f MA from 
tri‑axial accelerometer during rest, g MA from tri‑axial accelerometer during exercise, h ECG signal dur‑
ing rest, i ECG signal during motion, j block‑diagram of steps involved in HR estimation.
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In contrast to the adaptive filtering,26  Zhilin 
et al.10 have proposed a TROIKA (signal decom-
posiTion for denoising, sparse signal RecOnstruc-
tIon for high-resolution spectrum estimation, 
and spectral peaK trAcking) framework, where 
a high-resolution spectrum of the PPG signal is 
calculated using sparse signal reconstruction fol-
lowing signal decomposition using the singular 
spectrum analysis (SSA). Spectral peak tracking 
(SPT) is performed on the reconstructed PPG 
spectra to estimate the HR, which has been 
shown to be more accurate compared to other 
HR estimators. However, the SPT solely depends 
on the initialization of the HR in the first frame. 
When a wrongly detected spectral peak is used for 
initialization, the entire estimated HR trajectory 
could be different from the actual HR trajectory.

Different MA cancellation algorithms such 
as adaptive noise cancellation (ANC),27 Kalman 
filter (KF), Kalman smoother, as well as sparse 
reconstruction with SSA decomposition remove 
MA from the PPG signals to varying degrees. This 
depends on the nature of the MA cancellation 
algorithm, filter order, and other chosen param-
eters. The extent of MA cancellation further affects 
the SPT-based HR estimation performance.

Spectrum of the denoised signal was used to 
compute the HR.10 The initialization of the HR 
in the first few spectra of the PPG signal is done 
by selecting the frequency corresponding to the 
highest intensity, since the periodicity of the PPG 
signals in the first few seconds corresponds to 
HR. A window around the initialized HR is used 
to estimate the HR in future spectra. The window 
location is updated in each prediction. This leads 
to tracking of the HR in the successive spectra 
to lie within the given range of beats per minute 
(BPM).

In this review, pre-processing techniques are 
discussed. Pre-processing includes simple steps 
such as demeaning and bandpass filtering. This is 
done to remove baseline drift and mask the PPG 
and accelerometer signal within 20–210 BPM.28 
Removal of MA from PPG using accelerometer 
signal is done in either time domain or frequency 
domain. Time domain algorithms include fil-
tering techniques, whereas spectral subtraction 
is done in frequency domain. Different time 
domain and frequency domain algorithms devel-
oped for MA cancellation and advancements in 
SPT techniques are discussed. Datasets collected 
with subject on treadmill are detailed in the next 
section. The frequency and time domain algo-
rithms developed on the dataset are detailed in 
Sect. 2. Discussions and conclusion is detailed in 
Sects. 4 and 5, respectively.

2  Datasets
The extent of MA component in PPG signal is 
not measurable. Hence, comparing the effi-
ciency of PPG denoising algorithms remains a 
challenge. To estimate the efficiency of MA can-
cellation algorithms, MA is added to the PPG 
signal which is termed as synthetic dataset.29 
Algorthims developed on synthetic data do 
not perform well on real-world data. Real-world 
datasets were acquired while subjects were on 
treadmill.10 Algorithms developed for clinical 
dataset are beyond the scope of this article.30

2.1  Synthetic
Target PPG signal is mixed with MA in fre-
quency domain.29 PPG signal is obtained from a 
subject’s finger-tip in resting state. Two MA sig-
nals are extracted from PPG sources using tem-
porally constrained independent component 
analysis and adaptive filtering.31 MA signals are 
added to PPG signals in a proportion. To find 
the efficiency of the synthesized signal, signal-
to-noise ratio (SNR) is computed.

2.2  Real‑World
Well-documented and open-source data were 
collected and used by Zhang et al.10 The col-
lected dataset consists of PPG, tri-axial accel-
erometer, and ECG signals.10 All three signals 
were recorded simultaneously. Dataset 1 was 
collected from ten male subjects under the age 
of 18–33. Pulse oximeter of wavelength 609 nm 
was embedded into a wrist band which also 
incorporated accelerometer. Single-channel ECG 
was acquired from the chest. All the signals were 
sampled at 125 Hz. Signals were acquired for 8 
min on a treadmill. The first minute subject was 
at a speed of 2 km/h, next minute the speed was 
4 km/h, then at a speed of 10 km/h for a min-
ute after which the speed was increased to 15–17 
km/h for 1–1.5 min Fig. 2a. Then the whole cycle 
was reversed for next 3.5 min. Subjects were 
requested to perform intentional movements 
such as wipe sweat and button the shirt in addi-
tion to free swinging of the arm.

Dataset 2 consists of two-channel PPG signals, 
both at wavelength 515 nm which was embedded 
into wrist band (which also has accelerometer) to 
collect the data from 12 subjects on treadmill. 
Each of the PPG data was acquired for 5 min. 
Subjects were at rest for first 30 s, then speed was 
6 km/h for 1 min and 12 km/h for the next min-
ute after which the speed was slowed to 6 km/h 
and then increased to 12 km/h for 1 min before 
resting for 30 s. For one of the subjects, the speed 
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was 8 and 15 km/h Fig. 2b. ECG signals were also 
collected during exercise and annotated for heart 
rate in beats per minute (BPM) over every 8-s 
time-window which overlapped by 6 s. The 
advanced dataset was made publicly available as a 
part of 2015 IEEE signal processing cup (SPC) 
challenge. This review focusses on the HR estima-
tion algorithms developed for SPC data.101

Third set of data were recorded using the set-
up by Zhang et al. from eight subjects.32 Seven 
subjects were healthy male, while the other female 
subject had abnormal heart rhythm and blood 
pressure. Female subject and 3 other subjects 
performed type 1 exercise which was forearm 
and upper arm exercise. Six healthy subjects per-
formed type 2 intense exercise such as boxing air. 
These ten recordings were the test set to validate 
the algorithms by entrants of the challenge. The 
HR annotated from ECG is also available. Data-
set was developed by Peng et al., with a differ-
ent set of motions on treadmill. To estimate the 
efficiency of the MA removal techniques, PPG 
was acquired from right index finger during four 

1 http://www.zhilinzhang.com/spcup2015.

different motions which are bending of finger at 
90 ◦, waving of hand, pressurizing probe clip, and 
walking each for 20 s.29 These data were collected 
from 18 males and 13 females. These activities 
were performed after 5 min of rest, using two 
pulse oximeters on each hand at a frequency of 
200 Hz. The left hand was stationary on treadmill 
during the acquisition at a speed of 5 km/h.

3  Methods
During the rest state, the periodicity in PPG sig-
nal corresponds to the heart beat, but this peri-
odicity is disturbed when the motion artifact 
interferes. HR estimation, which is a three stage 
process, begins with bandpass filtering to remove 
the noise beyond the range of heart beat. The 
bandpass filtered signal is denoised to remove the 
motion artifact. Denoising techniques, which are 
dependent on accelerometer signals, vary from 
simple filtering to complex sparse reconstruction. 
Heart rate tracking is the crucial step. HR track-
ing is done in the frequency domain.

Figure 2: a Representation of dataset 1, b Representation of dataset 2, c TROIKA framework,10 block dia‑
gram of (d) CARMA35 and, e Empirical mode decomposition.36

http://www.zhilinzhang.com/spcup2015
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3.1  Pre‑Processing of PPG Signal
Photoplethysmography (PPG) signal is band-
pass filtered from 0.5 to 8 Hz.29 For SPC data-
set, PPG signals and accelerometer signals are 
bandpass filtered from 0.4 to 7 Hz. Usually, HR 
varies from 40 to 120 BPM, which corresponds 
to 0.6–3.5 Hz.10 Butterworth IIR filter was used.33 
This bandpass filtering increases the sparseness 
in the signals which is an advantage for spar-
sity-based algorithms and reduces the wander-
ing of HR tracks beyond range. Since PPG was 
prone to baseline drift due to electronic inter-
ference, demeaning and normalizations were 
also done as a part of pre-processing.34

3.2  Motion Artifact Removal and HR 
Estimation

3.2.1  Frequency Domain
TROIKA framework is robust to strong motion 
artifact.10 Signal decomposition, sparse signal 
reconstruction (SSR), and spectral peak track-
ing (SPT) formed the basis (Fig. 2c). For signal 
decomposition, the PPG signal is segmented 
into smaller, overlapping components. Singular 
spectrum analysis (SSA), single-channel inde-
pendent component analysis, and empirical 
mode decomposition are some of the techniques 
used in the literature; SSA was used in TROIKA. 
This time domain decomposition involves 
embedding, singular value decomposition, 
grouping, and reconstruction. Focal underdeter-
mined system solver algorithm which is used in 
source localization and direction-of-arrival esti-
mation was used for SSR. SPT involves initializa-
tion, peak selection, and trend verification. The 
verification is dependent on the characteristics 
of the recorded data and the nature of heart rate. 
TROIKA is also performed on signals down-
sampled at 25 HZ.

TROIKA framework which was considered 
gold standard was modified for better accuracy.33 
SSA was followed by real-time clustering (RTC), 
frequency points selection, and prediction fol-
lowed by multiple-way selection. In the spectrum 
of denoised signal obtained after SSA, three peaks 
which were two-thirds the intensity of the maxi-
mum were retained. The selected peaks were clus-
tered. Due to the smoothness in the HR, when 
the cluster of peaks is not close to the previous 
peak, the previous peak is considered for BPM 
calculation. BPM for the current frame (beyond 
first three frames) were dependent on the BPM of 
two previous HRs. In multiple-way selection, the 
previous computed HRs were corrected. TROIKA 
was the first algorithm to use singular spectrum 

analysis for MA removal in PPG signals which 
was improvized further for better accuracy.

CARMA (closest subspace algorithm for 
reducing motion artifact) depends on singular 
value decomposition (SVD) of the Hankel matrix 
obtained after preprocessing the PPG and acceler-
ometer signals (Fig. 2d).35 Key assumption of this 
technique was that the arifact and heart rate lie in 
different subspaces. Adaptive peak tracking was 
used for HR estimation. Spectrum subtraction is 
combined with ensemble empirical mode decom-
position (EEMD). EEMD decomposes the PPG 
signal and acceleration signals into intrinsic mode 
functions (Fig.  2e).36 Spectrum subtraction is 
used to remove the spectrum of acceleration sig-
nal from PPG signal. In order to increase the res-
olution of the spectrum for better HR estimation, 
zero-padding Discrete Fourier Transformation 
(DFT) followed by KF for tracking of HR.37 This 
technique does not require pre-processing, and 
hence, it is computationally simple. SPECTRAP 
algorithm has spectrum subtraction, peak track-
ing, and post-processing. The down-sampled 
signals were filtered and subjected to symmet-
ric least square-based spectral subtraction. MA 
spectrum is subtracted from PPG spectrum.38 
Cumulative spectrum (CUMSPEC) technique 
sparsifies the signal using iterative method adap-
tive thresholding, followed by median filtering of 
HR estimates. Genetic algorithm was used for HR 
tracking.39 These algorithms were compared with 
TROIKA.

Gridless spectral estimation and SVM-based 
peak selection (GRESS) is another algorithm for 
Zhang’s advanced dataset.40 The conventional 
estimation of HR in a spectrum which is pixe-
lated is modified. Grid-less spectral estimation is 
dependent on sparsity of the signal. Peak-to-peak 
separation distance and amplitude peaks were 
used to train a two-class support vector machine 
(Fig. 3a). Gridless spectral estimation helped to 
overcome the basis mismatch. Basis mismatch 
was observed in other algorithms which assumed 
sparsity aligned to specific frequency grids. Spec-
tral peak selection was formulated into a pat-
tern classification task, and hence user-defined 
parameters were reduced. This algorithm per-
formed better than TROIKA framework for few 
subjects, but was not as efficient as joint sparse 
spectrum reconstruction (JOSS). JOSS was once 
again proposed by Zhilin Zhang. Multiple meas-
urement vector model was used for joint spectral 
analysis which was followed by spectral subtrac-
tion.41 The peak verification process was inten-
sified as compared to TROIKA.42 After the peak 
verification steps of TROIKA, the peak discovery 
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is incorporated which smooths the selected peak 
(Fig. 3b). Instantaneous fundamental frequency 
of acceleration signal is computed using finite 
harmonic sum (HSUM) (Fig. 4a).3 The com-
puted fundamental frequency is fitted to the PPG 
signal, where one of the harmonic sums corre-
sponds to the HR while the harmonics are of MA. 
In Multi-channel spectral matrix decomposition 
(MC-SMD) technique, the spectra of PPG signal 
are divided by the spectrum of acceleration sig-
nal (Fig. 4b).43 This algorithm is compared with 
25 Hz JOSS and TROIKA results. MC-SMD is 
computationally cheap because it does not have a 
noise-removal module. Short-time Fourier trans-
form (SFST) and spectral analysis is also com-
bined.44 SFST was robust to frequency variation 
compared to wavelet transform techniques. Add-
ing a average filter increased the HR estimation.

3.2.2  Time Domain
Spectral peak search-comb filtering (SPS-CF) was 
developed which is dependent on the weighted 
sum of the delayed signal and bandpass time 
domain signal.29 The feed-forward comb fil-
ter was evenly spaced peaks in the magnitude 

frequency response. Adaptive filters were esti-
mated for removal of MA from PPG signals.45 
The authors used normalized least mean square 
(NLMS) filter to denoise each of the two PPG 
signals in advanced Zhang dataset. This leads to 
six denoised PPG signals. STFT of these signals 
were multiplied for a single spectrum. HR was 
estimated from the STFT spectrum by picking the 
highest intensity representing 40–170 BPM. To 
maintain the trend, the threshold was set for the 
chosen BPM. The efficiency of the adaptive filter 
technique is compared with TROIKA.

Multiple initialization spectral peak track-
ing (MISPT) has an denoising technique based 
on adaptive noise cancellation filter and empha-
sis is laid on peak selection (Fig. 5a).46 FFT of 
denoised time domain signal was taken for HR 
estimation. Initialization was done in each spec-
tral window and the trajectory was generated by 
back tracking. The trajectory was based on selec-
tion of location of maximum intensity within a 
given window. The HR which corresponded to 
trajectory of maximum strength was the recorded 
BPM. This algorithm outperformed TROIKA and 
JOSS in both 25 and 125 Hz PPG signals.

Figure 3: a Block diagram of GRESS40 and b flow‑chart of JOSS.41
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One of the three accelerometer signals are 
chosen based on their highest bandpower. The 
chosen accelerometer signal is used to filter the 
PPG signal using RLS filter.47 Bandpass filtered 
signals were normalized and averaged (Fig. 5b).48 
These averaged PPG signals and accelerometer 
signals are down-sampled to 25 Hz. After which 
DFT is performed and Wiener filtering (WF) is 
applied to remove MA. To increase the HR esti-
mation accuracy, phases of the chosen peak and 
the previous peaks are refined. Time-varying 
spectral comparison of PPG acceleration signal 
enables the removal of peaks due to MA (SpaMA) 

(Fig. 5c).49 RLS filter and Blackman-Harris-Win-
dow was used as pre-processing steps to estimate 
HR in HEAL-T (Fig. 6a).50 MURAD- MUltiple 
Reference ADaptive noise cancellation for HR 
estimation is the algorithm where the denoising 
of PPG using RLS filter is done individually by 
the three accelerometer signals and once again by 
the signal obtained by difference between the two 
PPG signals.51 RLS and spectral decomposition 
(SD) technique was combined for better perfor-
mance.32 The key of this algorithm was the use of 
Bayesian decision for HR estimation. This algo-
rithm is compared with 25 Hz TROIKA results.

Figure 4: Block diagram of a HSUM3 and b MC+SMD.43

Figure 5: a Flow‑chart of MISPT,46 figure is reproduced with permission, b block diagram of WF+PV,48 c 
flow‑chart of SpaMA.49
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Result of NLMS algorithm was further band-
pass filtered with discrete oscillator-based adap-
tive notch filter (OSC-ANF) for instant tracking 
of changing frequency (Fig. 6b).52 HR estimation 
was done using recursive filtering after EEMD.53 
SVD is used for MA cancellation (MAC) and HR 
was estimated from denoised signal using spectral 
analysis.54 Since MA is minimal for the first few 
seconds, HR estimation in the spectral domain 
is simple.41 The frequency corresponding to the 
maximum spectral intensity converted to beats 
per minute (BPM) is the heart rate. A window is 
taken around the initial heart rate while estima-
tion of the HR in the subsequent windows. This 
is based on the fact that rate of change of HR is 
gradual. The window location is adaptive over 
each spectral window to enable gradual rise or fall 
in the HR. The frequency of optimized spectral 
peak within the given denoised spectral window 
is the HR.29 Estimated HR is also compensated 
for the directional trend of BPM.

4  Discussion
The results of the existing algorithms are tab-
ulated in Table  1. Performance of both the 
domains across 12 subjects (dataset 2) is listed. 
Twelve frequency domains and twelve time 
domain algorithms are shown. Least error by  
frequency domain denoising techniques is 0.73 
BPM and time domain is 0.97 BPM. Consistently,  
the error in HR estimation by all the algorithms  
for subject ten is high. The only exception is 
HSUM technique.3 HSUM outperforms all the 
other algorithms, because it depends on the 
harmonics of the PPG signals. The harmonics  
are suppressed by all the other algorithms by  
bandpass filtering.

This review article is confined to the dataset 
collected by Zhang et al., because it is specific to 
the HR estimation when on treadmill. The other 
algorithms which are developed on datasets 
which are not available publicly are not discussed 
in this review.56–59 The algorithms for which the 
performance across 12 subjects are not discussed 
is also excluded from the review since it con-
fines the comparison across algorithms.60,61 PPG 
signals were also used to estimate other physi-
ological parameters such as blood pressure and 
oxygen saturation.62,63 The details of the algo-
rithms for computation of other physiological 
parameters are beyond the scope of this review. 
Heart-rate estimation from PPG acquired using 
other devices such as mobile phones and laptop 
cameras from other regions of interest for exam-
ple forehead, ear is interesting and has its own 
unique challenge. However, it is beyond the scope 
of this review here.64,65

Estimation of HR from PPG is validated using 
HR estimated from ECG which is the electri-
cal activity of heart. Since an error of 1 BPM is 
accepted clinically, three of the discussed algo-
rithms have the potential to replace ECG for 
heart-rate estimation. PPG is widely used in 
clinic, and hence, it is safe to use. With advance-
ment of wearable devices, acquisition of PPG sig-
nals is getting simpler than acquisition of ECG 
which has to be collected from a minimum of 
three electrodes.66 Another important point to 
be noted is, with good denoising of PPG signals, 
that other physiological parameters such as blood 
oxygen saturation, respiratory rate, and anaesthe-
sia monitoring can also be measured unlike those 
from ECG.

Figure 6: Block diagram of a HEAL‑T50 and b NLMS+AFT.55
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5  Conclusion
Electrocardiogram (ECG) is the gold standard for 
HR estimation. The algorithms discussed here are 
evaluated with HR estimated from ECG. Hence, 
the evaluation method of these techniques is 
proven. The drawback of the current techniques 
is that it is not validated across different PPG 
datasets. Since these algorithms developed are 
independent of the previous estimates, increase 
of the data acquisition in time may not affect 
the accuracy. However, the discussed algorithms 
are not robust to subjects during other tasks or 
patients data. The performance is expected to 
vary considerably. The monitoring of the HR 
is more essential in subjects with cardiac disor-
ders. The robustness of the proposed algorithms 
across patient database is yet to be validated. Even 
though the numerous algorithms developed are 

real-time, porting these to the embedded device 
still remains a challenge.
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   MISPT (125)46 1.58 1.80 0.58 0.99 0.74 0.93 0.73 0.45 0.41 3.60 0.88 0.68 1.11

   MISPT (25)46 1.53 2.08 1.30 1.01 0.74 0.97 0.72 0.46 0.42 4.28 0.88 0.69 1.26

   RLS47 1.34 1.28 0.82 1.37 0.90 1.31 0.95 0.96 0.73 3.01 1.28 0.85 1.23

   WF + DFT48 1.23 1.26 0.72 0.98 0.75 0.91 0.67 0.91 0.54 2.61 0.94 0.98 1.04

   SpaMA49 1.23 1.59 0.57 0.44 0.47 0.61 0.54 0.40 0.40 2.63 0.64 1.20 0.89

   HEAL-T50 3.96 1.73 0.91 2.21 0.32 1.19 0.32 0.47 0.26 4.22 0.87 1.41 1.49
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   RLS + SD32 1.66 1.56 0.65 1.48 0.77 1.12 0.72 0.91 0.42 2.35 1.45 0.78 1.16

   OSC-ANF52 1.95 1.89 1.64 2.10 1.25 1.62 1.23 1.72 1.27 2.98 1.49 1.37 1.71

   EEMD + RLS53 1.70 0.84 0.56 1.15 0.77 1.06 0.63 0.53 0.52 2.56 1.05 0.91 1.02

   MAC54 1.72 1.33 0.90 1.28 0.93 1.41 0.61 0.88 0.59 3.78 0.85 0.71 1.25

   NLMS + AFT55 1.75 1.94 1.17 1.67 0.95 1.22 0.91 1.17 0.87 2.95 1.15 1.00 1.40
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