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Computational Problems in Multi‑tissue Models 
of Health and Disease

1 Introduction
We are at a juncture where modern computer sci-
ence encourages taking a “computational or data 
science lens” to probe high-dimensional data 
in other sciences. Computational and statisti-
cal methods for instance play a central role in 
modern biological sciences by enabling system-
atic analysis of large biomolecular datasets, and 
thereby help build quantitative/predictive mod-
els of complex life processes and uncover their 
molecular underpinnings.8 Genome-wide (also 
known as genomic) data on genes, proteins, or 
other biomolecules have mostly been measured 
in a single tissue or cell type across several indi-
viduals; however, biomolecular data measured 
in multiple tissues of large groups of healthy/
diseased individuals are very recently and rap-
idly emerging. Such multi-tissue datasets open 
up rich problems relating to high-dimensional 
statistical inference/learning (two terms used 
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Abstract | A modern development at the interface of computer science 
and systems biology is being fostered by high‑dimensional molecu‑
lar data emerging on multiple tissues of the same individual collected 
across large groups of healthy/diseased individuals. We review compu‑
tational and statistical problems that arise in analyzing such multi‑tissue 
genomic datasets, specifically problems posing new challenges com‑
pared to their single‑tissue counterparts, such as ones related to missing 
data imputation, statistical learning of high‑dimensional network models 
capturing gene–gene correlations within/across tissues, and graph algo‑
rithms to identify genes clustering across many tissue networks. A recur‑
ring research theme is the potential to integrate or pool information from 
across tissues to enhance power of detecting signals shared across tis‑
sues while also accounting for tissue‑specific differences. We show how 
methods harnessing this integrative potential to address multi‑tissue 
problems ranging from correlation/causal network inference to graph 
algorithms are ushering in an era of integrated, whole‑system modeling 
of life processes.
Keywords: Bioinformatics, Computational systems biology, Genomic data science, Multi-tissue data, 
Biomolecular networks, Gene networks, Intra/inter-tissue networks, Graph algorithms, Whole-body/
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interchangeably in this text) and computational 
algorithms like graph algorithms, especially when 
we utilize the data to infer and analyze whole-
system network models of complex behaviors 
(Fig. 1).

Multi-tissue analysis faces unique computa-
tional and statistical challenges stemming from 
the high-dimensional, noisy, transposable, and het-
erogeneous nature of multi-tissue data. Some of 
these properties but not all are shared with sin-
gle-tissue data.

•   High dimensionality of genomic data refers to 
the “small n, large p” issue, where the number 
n of samples is typically much fewer than the 
number p of features (e.g., tens of thousands 
of biomolecules or millions of genetic vari-
ants). Therefore, we need additional a priori 
assumptions3 to infer the large number of 
system parameters (e.g., relationship strength 
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between all pairs of biomolecules) from small 
n, and computationally efficient methods that 
can scale well to inferring and analyzing large 
systems.

•   Noise arising from measurement noise, sam-
pling/coverage bias, false-positive/negative 
errors, and especially batch effects (i.e., bias 
from having to generate a large dataset over an 
extended period of time in distinct batches) 
affect data from large-scale genomic experi-
ments more so than data from small-scale ref-
erence experiments, and hence experimental 
design to data analysis strategies in genomics 
need careful thought.

•   Transposability of a multi-tissue data matrix 
refers to the property that both its rows (bio-
molecules) and columns (tissues) are features 
with dependencies,35 due to coordination of 
genes acting in the same biological process, 
developmental history of tissues, etc. Two-way 
dependent or transposable data may require 
extension of classic statistical methods, which 
typically deal with one-way dependent data 
matrices (e.g., single-tissue data with rows 
as dependent features/biomolecules and col-
umns as independent samples measuring the 
features).

•   Multi-tissue data integration is challenging 
due to heterogeneity (variation) in the molec-
ular processes governing different tissues, and 
incomplete knowledge on the extent (or lack 

thereof) of this heterogeneity. Therefore, new 
methods are needed to quantify the heteroge-
neity of biomolecular activities across tissues, 
strengthen inferences of activities within a 
tissue by borrowing information from other 
tissues found to have similar signals, and 
approach system-wide understanding by also 
inferring tissue–tissue communication from 
data.

This review highlights the diverse types of com-
putational problems that aim for non-trivial 
integration of data from different tissues and 
individuals by addressing the challenges above. 
Outside the scope of this review are works that 
repeat a single-tissue analysis on each tissue sepa-
rately and then summarize/compare results in 
the end—while these works are useful, we would 
like to focus on problems unique to multi-tissue 
data integration. We also do not cover single-
individual, multi-tissue data (also called “expres-
sion atlas”) in detail, as we are more interested in 
inferring network models from several individu-
als’ data. For each of the problem types unique 
to multi-tissue analysis that we discuss, we high-
light one or two recent methods that illustrate the 
problem best in our opinion to maintain brevity, 
and encourage interested readers to follow the 
illustrative methods’ publications and references 
therein to explore other related methods in this 
burgeoning field.

Figure 1: Multi‑tissue biological system viewed as a “genotype × environment → phenotype” map. 
Genetic (genotype) and environmental factors influence how genes and other biomolecules (g1,g2,…) in 
different tissues interact with and regulate each other as part of a whole‑system network (shown as links 
between genes) to produce a healthy trait or disease endpoint (phenotype). Note that gene activity or 
expression data are measured in each tissue as the same gene could be regulated differently in differ‑
ent tissues, whereas the genetic data are assumed identical across tissues as all cells in the body having 
descended from the same embryo are genetically identical (except for acquired mutations as in cancer).
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2  Biomedical Motivation and Background
We first provide biomedical motivation behind 
multi-tissue studies and the nature and scale 
of multi-tissue data, so as to provide a concrete 
context for understanding the computational 
problems.

2.1  Rationale for Multi‑tissue Network 
Models

Good health emerges from proper integrated 
functioning of all organs and tissues within our 
body. At the basis of healthy tissue function and 
proper inter-tissue (tissue–tissue) communica-
tion are the myriad genes, proteins, and other 
biomolecules that interact with and regulate 
each other in a concerted fashion. A collection or 
network of all such interactions among biomol-
ecules, which reside either inside cells compos-
ing various tissues or in surrounding body fluids 
connecting the tissues, could move us towards 
an integrated, whole-system view of complex life 
processes13 (Fig. 1).

Many complex diseases affect multiple tis-
sues, and a whole-system network model could 
also offer an integrated view of such a disease and 
thereby promote new strategies for its preven-
tion, diagnosis, and treatment. For instance, type 
2 diabetes is a chronic human disease that is not 
localized to any one tissue—the glucose–insulin 
imbalance is a systemic property of the disease 
involving interactions among various tissues 
including pancreas, liver, muscle, and adipose 
among others. A whole-system network model 
of diabetes would explain the complex cascade 
of dysregulation events in the disease (by clari-
fying for instance which genes in which tissues 
cause early stages of the disease, which gene prod-
ucts act at tissue–tissue interfaces to maintain/
worsen/propagate the disease, and which genes 
get affected in later disease stages), and enable 
simulations of the effect of perturbations like 
potentially new medicines or unstudied genetic 
variants.

2.2  Emerging Data in Multi‑tissue 
Genomics

Modern biology enables a data-driven approach 
to build increasingly system-wide (if not yet 
whole-system) network models of health and dis-
ease. With the help of modern high-throughput 
technologies, genome-wide biomolecular data on 
multiple tissues of an individual, collected across 
large groups of healthy or diseased individuals, are 
now being rapidly generated and released in the 
public domain. These genomic data collected from 

each individual could range from DNA sequences 
(genetic variants or genotype) of the individual to 
his/her tissue-specific data on expression (activity 
level) of all genes encoded in the genome, proteins 
translated from the expressed genes, or small-
molecule metabolites. Technologies that enable 
high-throughput measurement of DNA sequences 
or gene expression levels include microarrays and 
next-generation sequencing (DNAseq, RNAseq), 
and that of protein or metabolite expression levels 
include mass spectrometry.

In humans, the most recent and popular 
example of such multi-tissue genomics data is 
from the Genotype-Tissue Expression (GTEx) 
consortium—the pilot phase of this project 
released expression measurements of the roughly 
20,000 genes in the human genome across 175 
individuals in 43 tissues.18 Not all tissues could 
be profiled in each individual due to varying 
RNA quality in the postmortem tissue samples; 
however, nine high-priority tissues (adipose, 
artery, heart, lung, muscle, nerve, skin, thyroid, 
and blood) have been profiled more frequently 
than other tissues. Another example of a multi-
tissue dataset comes from a study of Alzheimer’s 
disease—genome-wide gene expression data in 
multiple brain regions (cerebellum, visual cor-
tex, and prefrontal cortex tissue samples col-
lected postmortem) are available for hundreds 
of healthy and diseased individuals.40 In another 
study, 856 twins were expression profiled using 
samples from three tissues (adipose, lymphoblas-
toid cell lines, and skin tissues).17 Moving beyond 
gene expression, metabolite expression data are 
also available for 2251 metabolites across 374 par-
ticipants in multiple body fluids (plasma, urine, 
and saliva).11 Many of these studies with expres-
sion data also have matched genetic data (genetic 
variants assayed or imputed at 6+ million vari-
ant sites across the genome) and clinical data 
(endpoints such as disease status, blood sugar or 
lipid levels, etc.), so that heritability, i.e., genetic 
control of expression and clinical traits can be 
studied. Similar multi-tissue genomic datasets are 
also available for other model organisms such as 
mouse.20, 37, 39

Such multi-tissue data can be accessed from 
project-specific websites (e.g., https://www.
gtexportal.org for the GTEx project) or public 
database repositories where data from different 
projects get posted. Gene expression data, the 
most openly available data type, can be accessed 
from the NCBI GEO or EBI ArrayExpress 
repositories. Genetic and phenotypic data can 
be accessed from the NCBI dbGAP or EBI EGA 
repositories in a controlled fashion, which helps 

https://www.gtexportal.org
https://www.gtexportal.org
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to protect privacy of study subjects, by research-
ers who formally apply for data access. Meta-data 
capturing experimental and clinical context of 
these datasets may also be in these repositories, 
but could be incomplete or harder to retrieve due 
to fewer standards around reporting them. Still, it 
is important to strive to obtain meta-data such as 
processing date of each sample to mitigate batch 
effects that critically impact large-scale studies,24 
and patient medication history to properly inter-
pret analysis results. The scientific community is 
realizing the power of open data and meta-data 
in accelerating biomedical research, and many 
funders/journals are also mandating public data 
release when projects are funded/published by 
them. This trend bodes well for current and 
future research in the highly data-driven field of 
multi-tissue analysis.

3  Challenging Multi‑tissue Problems
3.1  Multi‑tissue Data Representation, 

Imputation, and Testing
A multi-tissue dataset can be represented as a 
3D matrix D, with Dijk indicating an individual 
i’s measurements of the expression level or activ-
ity of biomolecule j in tissue k. Biomolecules are 
often genes in the problems that we discuss, but 
could also be proteins or metabolites (so some-
times when the context is clear, we simply use 
the term gene to refer to a gene or any other bio-
molecule). If we consider each individual as a 
random sample from the population of all indi-
viduals (or subpopulations such as a healthy or 
diseased group of individuals), then 2D slices of 
this matrix corresponding to different individu-
als are a more natural representation for statisti-
cal analysis. In this scenario, individual i’s data is 
represented as the 2D slice X (i)=Di∗∗ and is con-
sidered as one realization of the matrix-valued 
random variable X.

Data imputation is a key problem in many 
multi-tissue studies, since all tissues are often not 
measured in all individuals (due to variability in 
accessibility of tissues, postmortem tissue qual-
ity, etc.), and imputing such unmeasured tissues 
(different columns of different X (i) matrices) 
to obtain complete data matrices can simplify 
and strengthen several downstream analyses. 
Single-tissue imputation methods like k-near-
est neighbor genes, applied as is to multi-tissue 
data, would only borrow information from other 
genes (based on gene–gene or row–row correla-
tions across individuals in X). Multi-tissue set-
ting offers the flexibility to borrow information 
from other tissues as well (based on tissue–tissue 

or column–column correlations in X) and fur-
ther utilize genetic data on the same individuals 
if available. MixRF is a recently proposed impu-
tation method that operates in this integrative 
fashion36—it couples a robust random forest 
approach with a mixed-effects model for each 
gene, whose outcome variable is the expression 
vector of the gene across all tissues in an indi-
vidual and predictor variables are genetic factors 
controlling gene expression, known covariates 
like gender of the individual, and top princi-
pal components of every tissue (which borrow 
information across genes to capture environ-
mental/developmental factors encoded in mul-
tiple tissues). MixRF was able to impute several 
unmeasured tissues in the GTEx data and could 
be applied to other studies beyond GTEx using 
GTEx data as the reference. The running time of 
MixRF scales linearly with the number of genes 
and predictor variables, and as O(nt log nt) with 
the number nt of observed tissues summed across 
all individuals.
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Problem: Data imputation

An earlier imputation study took a different 
approach to exploit the transposable or two-way 
dependence structure (row–row and column–col-
umn correlations) of X.1 It assumed the expres-
sion data X to follow a matrix-variate normal 
distribution, with the two-way dependence 
parameterized using separate row and column 
covariance matrices. Specifically, the covariance 
matrix of a strung-out vector of X is the Kro-
necker product of the positive-definite row and 
column covariance matrices �(r) and �(c) (i.e., 
Cov(X jk ,X j′k ′) = �

(r)
jj′ ×�

(c)
kk ′). There is also a 

matrix M of constants to specify the mean param-
eter of gene j in tissue k (i.e., E(X jk) = M jk).  
Under these multivariate normality assumptions 
and a penalized maximum likelihood approach 
whose penalties encourage sparsity or shrinkage 
of the inverse covariance matrices to deal with 
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the high-dimensionality, i.e., “small n, large p” 
issue, regularized estimators for the row/column 
parameters are derived and an EM-type algo-
rithm developed to impute missing multi-tissue 
data.1 The imputation algorithm has a prohibitive 
running time as it scales cubically with the num-
ber of rows or columns of X. The key contribu-
tion of this study, however, is the transposable 
regularized covariance models (TRCM), which 
paved the way for fruitful works on other multi-
tissue problems.

Differential expression analysis or testing is 
one such multi-tissue problem that could be 
addressed with TRCM-like models. It con-
cerns statistical hypothesis tests about the mean 
parameter M in the model for X—we may want 
to know if the mean expression of a gene is the 
same or different between two groups of tis-
sues (e.g., identify genes that are differentially 
expressed in all brain-related tissues compared to 
the rest say, and thereby understand which genes 
and biological processes are brain-specific). Clas-
sic statistical tests like t test of a gene’s mean in 
two tissue groups assume independence of tissue 
samples, and classic multiple-testing procedures 
for controlling error rates across all tested genes 
also assume independence or weak dependence 
between the genes. Multi-tissue data could exhibit 
strong two-way dependence. One possible solu-
tion to this problem is to sphere or decorrelate 
the data before applying classic tests—a work 
transformed X using TRCM model estimates to 
make its rows and columns approximately inde-
pendent, and found that applying classic statisti-
cal methods on the transformed or decorrelated 
X yielded test statistics that better followed null 
distributions and multiple-testing procedures 
that better controlled error rates across all tested 
genes.2 Another work on hypothesis tests about 
the means of different row or column subgroups 
of X generalized the TRCM model along a non-
parametric direction (see references in 35). One 
of their contributions is the development of new 
regularized covariance estimators and hypothesis 
tests about the mean and also covariance matri-
ces, assuming a transposable covariance structure 
as in TRCM models but without assuming nor-
mality.35 Some related open problems mentioned 
in these studies include hypothesis tests about the 
mean of not just row or column subgroups but 
simultaneously predefined row and column sub-
groups, and efficient tests of whether the covari-
ance of a multi-tissue data, indeed, satisfies a 
Kronecker product structure to justify the appli-
cation of TRCM-based methods.
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Problem: Differential expression
analysis or testing

3.2  Statistical Inference of Multi‑tissue 
Models

Intra-tissue problems like inferring network 
models of biomolecular interactions within a spe-
cific tissue, which can be addressed using single-
tissue data, permit new approaches that borrow 
information from other tissues in a multi-tissue 
setting. Inter-tissue problems like inferring inter-
actions between genes in different tissues, which 
are simply inconceivable using only single-tissue 
data, are natural to pose in a multi-tissue study. 
We highlight both classes of multi-tissue prob-
lems here, and focus on methods that infer net-
works of correlated biomolecules (coexpression 
networks) from multi-tissue data and open prob-
lems that go beyond correlation to causation. As 
these problems benefit from the rich information 
and causal structure provided by simultaneously 
obtained genetic data, we start with problems on 
genetic control of tissue activities, an interesting 
topic in its own right.

3.2.1  Inferring Genetic Control of Tissue Gene 
Expression

Quantitative Trait Loci (QTL) is a locus or site 
in the genome whose variation at the DNA level 
across a population of individuals correlates with 
a specific phenotype like height. Finding QTLs 
for a disease phenotype (disease case–control 
status or related clinical endpoint like blood cho-
lesterol level), as done in several Genome-Wide 
Association Studies (GWAS), could be a powerful 
first step to discover genes proximal to the QTL 
that cause disease. Such causal discovery from 
observed correlations is justified if confounding 
factors are accounted for in the GWAS analysis or 
do not affect the individuals under independent 
random sampling assumptions. As such, GWAS 
offers a systematic approach to causality mapping 
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in a species like humans where perturbation 
experiments for causal discovery are limited for 
ethical reasons. GWAS analyses need to be com-
putationally efficient as millions of genetic factors 
in the genome are scanned for QTL associa-
tion to each studied phenotype. A genetic factor 
here refers to any site in the genome harboring 
a genetic variant—the most popular one being 
a single-nucleotide polymorphism or SNP. The 
human genome contains millions of SNPs, with 
each measured or imputed SNP in an individual 
typically coded as 0, 1, or 2 (or, respectively, as aa, 
aA, or AA) to indicate which parental variant was 
inherited by the individual at this SNP.

A genetic factor whose DNA variation across 
individuals correlates with the expression level 
of a gene is called an expression QTL or eQTL 
(Fig. 2). Many multi-tissue studies collect genetic 
data on the same individuals from whom gene 
expression data are collected. This multi-tissue 
setting enables mapping of tissue eQTLs for each 
tissue with gene expression data, and raises natu-
ral questions on whether eQTLs for the same gene 
in different tissues are shared vs. distinct, and 
whether statistical power to detect shared eQTLs 
of a gene could be improved by joint analysis of 
tissues. This leads to the Multi-tissue eQTL map-
ping problem, where the goal is to find eQTLs for 
a gene within each tissue, with a special emphasis 
on borrowing information from other tissues that 
share eQTLs for this gene (Fig. 2). The problem 

is challenging, because the identity of tissues that 
share eQTLs with the query tissue is not known a 
priori and has to be inferred from the data simul-
taneously when detecting the eQTLs.
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Problem: Multi-tissue eQTL
mapping

A Bayesian Model Averaging (BMA) approach 
was taken to address this problem in a study that 
models a tested eQTL as active or inactive in each 
of K input tissues for a total of 2K possible configu-
rations.14 Conditioned on a configuration vector 
that identifies the subset of tissues in which the 
eQTL is active, the authors developed a hierarchi-
cal linear regression model where the outcome 
variable is multi-tissue expression of a gene and 
predictor variable is the tested eQTL (SNP). The 
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Figure 2: Multi‑tissue eQTL example with hypothetical data. The genetic factor L is an eQTL for gene g2 
(i.e., correlated with the gene’s expression across individuals in a population) in Tissue A and B but not C. 
In other words, this eQTL‑gene association is shared between tissues A and B but not C. Note that L is a 
genomic locus/site with the variant inherited by each individual (each dot in the plot) at this site indicated 
as aa, aA, or AA as explained in the text. Expn. stands for expression.
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heterogeneity of the genetic effect of the eQTL 
across all active tissues is modeled using a prior 
distribution on the regression coefficient of the 
SNP. Bayesian inference in this model resulted 
in increased power for detecting shared eQTLs, 
and also yielded direct estimates of the propor-
tion of eQTLs shared by any number of different 
tissues (which is tricky to estimate from single-
tissue eQTL analysis repeated on each tissue due 
to incomplete power considerations). When the 
number of tissues K is large, the authors present 
a model that scales better than 2K under some 
restricting assumptions that an eQTL is active 
either in all tissues or only in one tissue. Devel-
oping multi-tissue eQTL models that use weaker 
assumptions to achieve tractable computational 
and statistical performance with large K is an 
open problem. Another important and actively 
researched open problem is to use multi-tissue 
eQTLs and their patterns of sharing and specific-
ity across different tissues to predict the relevant 
causal tissue(s) underlying a QTL for disease risk.32

3.2.2  Gene Network Inference Within and Across 
Tissues

Network representation of gene–gene and other 
biomolecular interactions have proven useful in 
various contexts, including discovery of new dis-
ease genes and processes.40 Interactions in a net-
work could be physical/chemical in nature (e.g., 

experimentally observed direct protein–protein 
or protein–DNA interactions) or statistical/func-
tional (e.g., data-driven gene–gene correlation 
or causal relations, which reveal coordinated 
functional regulation of the interacting genes). 
We focus on the latter here. For functional net-
work inference from single-tissue data, there are 
mature methods that address the high-dimen-
sionality challenge (of learning millions of net-
work parameters, one per pair of genes, from a 
small number of samples). For instance, Gauss-
ian Graphical Model (GGM) methods can use a 
penalized likelihood approach to learn a sparse 
network with few parameters,9 and Bayesian 
network methods3 can use prior information on 
physical/chemical or genetic interactions to com-
pensate small sample sizes.

Extending network inference to a multi-tissue 
setting brings new opportunities and challenges, 
similar in spirit to the eQTL mapping problem 
seen above. Intra-tissue network inference refers to 
the problem of utilizing multi-tissue data to infer 
a functional network that comprises correla-
tion/coexpression relations among biomolecules 
within a particular query tissue, and encourages 
borrowing of information from other tissues 
with shared signals (Fig. 3). Power to detect coex-
pression relations could be improved by integrat-
ing data from multiple tissues, while accounting 
for differences in these relations across tissues.

Figure 3: Intra‑tissue network coexpression example with hypothetical data. The expression levels of 
genes g4 and g5 are correlated across individuals (dots) in tissue A and C but not B. Among the tissues 
A and C sharing this association signal (i.e., significant gene–gene correlation), the exact strength of cor‑
relation/coexpression can vary. Expn. stands for expression.
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Problem: Intra-tissue network
inference

Inspired by earlier work on multi-class net-
work inference,9 a recent method addresses this 
problem by extending the GGM approach from 
single-tissue to multi-tissue data33. This method 
uses a tree-based hierarchy of relations between 
multiple tissues (derived from data or prior knowl-
edge) to “transfer” network relations learnt in one 
tissue to other nearby tissues in the hierarchy. To 
scale to thousands of genes in 35 GTEx tissues, 
they augmented their multi-tissue GGM algorithm 
with principled heuristics and identified steps that 
could be run in parallel; as a result, meaningful 
networks were inferred even for tissues with very 
few samples in GTEx data by pooling informa-
tion from related tissues. In detail, their multi-
tissue GGM method jointly learns all GGMs, one 
per tissue, by optimizing a single objective func-
tion with these additive components: single-tissue 

GGM objective functions, one per tissue; and L2 
“transfer” penalties, one per pair of nearby nodes 
in the tissue hierarchy, to encourage similarity of 
inferred networks between related tissues. Note 
that the single-tissue GGM objective function is 
of the form n

2 (log{det(S)} − tr(�S))− �||S||1,  
with the first term capturing the log likelihood of 
a multivariate Gaussian distribution that the genes 
are assumed to follow (n denotes the sample size, 
S the inverse covariance matrix parameter, and � 
the empirical covariance matrix), and the second 
term being a �-weighted L1 penalty that enforces 
S and, therefore, the intra-tissue networks defined 
by the non-zero entries of S to be sparse (note 
that Sjj′ entry captures the partial correlation 
between gene j and gene j′ conditioned on all other 
genes).19 This objective function can be optimized 
by the so-called graphical lasso algorithm, which 
takes O(p4) running time to learn a dense network 
defined over p genes and O(p3) time for a reason-
ably sparse network (under the high-dimensional 
setting p ≫ n with density determined by the 
value of the penalty parameter �).15, 27

A natural goal of any multi-tissue study is to 
discover biomolecular interactions that medi-
ate tissue–tissue or inter-tissue communication, 
but confounding factors pose a challenge. Two 
genes in two different tissues could be correlated 
to each other due to confounding from com-
mon genetic factors (shared eQTLs driving the 
genes independently in their corresponding tis-
sues; Fig. 4, left panel) or common environmental 
factors (food intake of the individual, circadian 

Figure 4: Inter‑tissue network coexpression example with hypothetical data. Gene g1 in Tissue A is cor‑
related with gene g2 in Tissue B solely due to a confounding genetic factor (shared eQTL L), as there is 
no evidence for correlation within each genotype group aa, aA, or AA. However, the same g1 in Tissue A 
is correlated with g2 in Tissue C within each genotype group, suggesting that factors other than L (e.g., 
inter‑tissue communication between tissues A and C specifically) may drive this correlation structure. 
Expn. stands for expression and Geno.@L for genotype at locus L, with both also shown in Fig. 2.
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rhythm cues from the brain, etc., that affect both 
tissues).25 Control of such confounding to infer 
genes in two different tissues that are coexpressed 
(Fig. 4, right panel) due to direct communica-
tion between the two tissues via exchange of hor-
mones or other biomolecular signals constitute 
the inter-tissue network inference problem.

WHOLE-BODY 
SYSTEM

TISSUE A

TISSUE B TISSUE C

PHENOTYPE

ENVIRONMENTGENOTYPE

Problem: Inter-tissue network
inference

One approach to this problem is to adjust gene 
expression data to remove contributions from 
confounding genetic factors, and use the adjusted 
data to derive inter-tissue coexpression relations 
employing standard procedures.25 One could for 
instance include all shared eQTLs driving gene j 
in tissue k (whose expression is denoted X jk) and 
j′ in another tissue k ′ (whose expression is X j′k ′) 
as covariates in a separate linear regression of X jk 
or X j′k ′, and take the fit residuals as the adjusted 
expression data. However, mapping shared eQTLs 
for every gene pair is a non-trivial problem on its 
own. An alternate approach adjusts each gene’s 
expression for all genetic factors in the genome by 
modeling them in a linear mixed model (LMM) 
as a random effect term, estimating the term’s 
covariance matrix using the observed genetic 
similarity between every pair of individuals, and 
performing these steps using computationally 
efficient LMM methods from GWAS literature 
(which typically take O(n3 +mn2 + kpn2) time 
with n individuals, m genetic factors, and p genes 
measured in k tissues 38) to eventually build inter-
tissue networks.25 Open problems on addressing 
important LMM pitfalls 38 in an efficient fashion 
for all gene pairs remain. One pitfall concerns the 
LMM assumption that all genetic factors have 
small additive effects on expression—so we may 
decide to model a large-effect eQTL as a fixed 
instead of random effect term in the LMM, and 
this decision may be gene or gene-pair specific.

The network inference problems discussed thus 
far refer to gene–gene correlation/coexpression 

networks, and it could prove quite useful to extend 
them to infer causal relations from large observa-
tional datasets (rather than data from small-scale 
perturbation experiments traditionally used for 
causal discovery). Researchers have developed tests 
of causality between two correlated genes within 
a single tissue based on utilizing natural genetic 
variation across individuals as “causal anchors” or 
“instrumental variables”. A genetic variant driving 
gene expression (eQTL) could serve as an anchor 
or instrument, since the variant is determined at 
conception after random assortment of the paren-
tal variants (the so-called Mendelian randomiza-
tion concept that mimics randomized controlled 
trial setup) and, therefore, not affected by any 
environmental or phenotypic confounding factors 
(with some exceptions like in cancer).10 Multi-tis-
sue causality inference is an open field, as there are 
no current methods to the best of our knowledge 
that can strengthen inference of gene–gene causal 
relations within a tissue by borrowing shared sig-
nals from other tissues, or build inter-tissue causal 
networks by viewing eQTLs as instruments for 
causal discovery and not just as confounders of 
inter-tissue coexpression relations as seen above. 
Building such intra/inter-tissue causal networks 
could help resolve questions like whether a disease 
affects genes in a tissue-independent fashion vs. 
inter-tissue inter-linked fashion, and thereby reveal 
key causal tissues for disease intervention.

3.3  Computational/Algorithmic Analysis 
of Multi‑tissue Models

Inferred models in genomics like the coexpres-
sion networks seen above often contain hundreds 
to thousands of variables (genes). Extracting bio-
logical insights from a large genomic model, unlike 
a statistical model over a few variables, requires 
further computational analyses that organize, 
visualize, and dissect the model structure. Such 
analyses have been developed to study biological 
networks mostly in a single-tissue/celltype set-
ting. Popular network analysis examples in this 
setting, which are based on graph-theoretic con-
cepts and reviewed in detail elsewhere,28 include: 
partitioning all genes in a network into smaller 
modules of well-connected genes corresponding 
to tightly regulated biological processes via graph 
clustering, finding key regulator genes in a network 
using graph-theoretic measures like between-
ness centrality, searching for “active” subnetworks 
that optimally connect predefined disease genes 
via Steiner-like graph problems, and mining for 
overrepresented network substructures like feed-
back motifs to uncover organizing principles of 
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networks using triangle-counting or similar graph 
algorithms. There are introductory books on 
algorithms for such single-network analysis prob-
lems arising not only in biology but also in other 
sciences.30

Network analysis problems take a new role in 
the multi-tissue context, as they call for integra-
tion not only of multiple networks but also of 
intra-tissue with inter-tissue networks to find for 
instance key genes mediating tissue-tissue cross-
talk. Multi-tissue network analysis can benefit 
from emerging nascent research in the broader 
field of multi-layer networks, where many layers 
each containing an intra-layer network are cou-
pled to each other via inter-layer connections.4, 23 
Some early works on multi-tissue network analy-
sis exist;11, 12 however, this research area is not as 
mature as its single-tissue counterpart and so ripe 
for new developments.

To give a flavor of the challenges in integrating 
even just the intra-tissue networks, we consider 
extending graph clustering from single to multiple 
graphs. Simultaneous clustering is the problem of 
jointly clustering multiple graphs—each encoding 
a distinct set of edges (gene–gene relations within 
a tissue in our case) over the same set of nodes 
(genes)—where the aim is to identify subsets of 
nodes that form well-connected clusters across 
the collection of graphs. This problem applied on 
the intra-tissue networks would reveal gene clus-
ters that are robustly coexpresssed within multi-
ple tissues. One may wonder if this problem could 
be trivially solved by single-graph clustering of a 
shared network that is derived by a simple edge-
by-edge overlap of all intra-tissue networks. How-
ever, incomplete power of detecting coexpression 
relations would preclude this approach by making 
the intra-tissue networks non-overlapping at the 
edge level but robustly overlapping at higher levels 
of organization like clusters.33
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Problem: Simultaneous clustering

The biological criteria used to assess the 
well-connectedness or quality of a cluster could 

determine the computational complexity of 
the simultaneous clustering problem29 and a 
related problem from literature called network 
alignment;34 hence, approaches ranging from 
provably efficient algorithms to principled heu-
ristics have been developed for these problems 
in a different context of multi-environment or 
multi-species networks.34 One approach called 
JointCluster is a provably efficient approxima-
tion algorithm when cluster quality is measured 
by conductance.29 A cluster is well connected 
with conductance at least α if every two-way 
partition or cut of the cluster has conductance 
at least α, with conductance defined as the ratio 
of edges crossing the cut to the edges incident at 
the smaller side of the cut and α being an user-
specified cutoff. JointCluster offers an approxi-
mation solution to the optimal partitioning of 
the nodes in the graph into clusters that satisfies 
two criteria: conductance of each cluster is at 
least α and the fraction ǫ of edges lost between 
the clusters is minimized. The algorithm extends 
spectral techniques from an earlier single-graph 
clustering study21 to the case of multiple graphs 
to obtain theoretical guarantees on the detected 
clustering’s quality and running time. These 
guarantees, specifically polylogarithmic approxi-
mation guarantees on the two-criteria quality 
measure involving α and ǫ and worst-case run-
ning time bound of O(kp3) (suppressing factors 
of log p) for k graphs each defined over p genes, 
coupled with an effective scaling heuristic and 
the flexibility to handle multiple heterogeneous 
networks, would make JointCluster applicable to 
integration of intra-tissue networks. Still, many 
open problems exist in simultaneous cluster-
ing of multi-tissue networks, such as integrative 
clustering of both intra- and inter-tissue net-
works and explicitly modeling the differences 
besides similarities between tissue networks via 
a development-based hierarchy of tissues. Com-
bined information in intra- and inter-tissue 
networks may also prompt fresh rethinking of 
network analysis problems beyond clustering 
such as key regulator and active subnetwork 
analyses.

3.4  Towards Whole‑Body Models
An ultimate goal that all multi-tissue problems 
seen so far converge upon is to build a whole-body 
or whole-system model that is both predictive of 
a complex phenotype like disease and mechanis-
tic or non-black-box-like in terms of revealing 
its underlying biomolecular network structure. 
To manage the complexity of the whole-body or 
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whole-system model building problem, researchers 
have taken a component/object-oriented mod-
eling approach, wherein they first build model 
components like within-tissue models for all bio-
molecules and tissues relevant to the studied phe-
notype, and then integrate these components into 
a single model using additional information like 
inter-tissue communication. To clarify, we provide 
a concrete example of a system-wide multi-tissue 
model of human metabolism based on ODEs 
(Ordinary Differential Equations, with one ODE 
per relevant metabolite/biomolecule to model its 
rate of production/loss).
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Problem: Whole-body model
building

Many whole-system modeling efforts have 
focused on metabolism, since genome-wide ODE 
models of single-celltype or single-tissue metabo-
lism are quite mature and popular. For instance, 
one can: (1) reconstruct the network of all meta-
bolic reactions in an organism from well-studied 
metabolic networks in microbial organisms by 
exploiting the high evolutionary conservation of 
metabolic reactions and their enzymes encoded 
by genes, (2) write down the ODEs readily from 
the reconstructed metabolic network by apply-
ing law of mass action, and (3) circumvent the 
infeasible estimation of thousands of kinetic 
ODE parameters using Flux Balance Analysis 
(FBA), which derives the rate or flux of all reac-
tions under the assumption that cellular metabo-
lism is in steady state and optimizes a biological 
objective like growth rate or a tissue endpoint.5 
FBA can be implemented using linear program-
ming methods, since the steady-state and other 
constraints and the biological objective function 
can be written in terms of linear combinations of 
the reaction fluxes in most cases. FBA can also be 
viewed as a generalization of the maximum flow 

problem in graphs, since we are essentially opti-
mizing the flow of metabolites through the met-
abolic network subject to conservation of flow 
(steady-state) and other constraints.

Researchers have built a large-scale model of 
steady-state human metabolism involving liver, 
adipose, and muscle tissues by tailoring a human 
metabolic network to each of these tissues using 
tissue specificity of proteins, integrating them in 
a non-trivial fashion that goes beyond a trivial 
union of the three tissue-specific models by add-
ing a blood compartment with buffers, and vali-
dating the integrated model via FBA of known 
human metabolic cycles that utilize these tis-
sues.5 Analyzing the resulting system-wide model 
using multi-tissue expression data from obese 
vs. diabetic obese individuals revealed differen-
tially active metabolic reactions that could not be 
found from expression data alone. This whole-
system undertaking5 and similar work on plant 
systems (described in an easily comprehensible 
paper16) suggest several open problems such as 
ones related to integrated models of metabo-
lism and gene/protein expression,26 personalized 
models of metabolism6 tailored to an individu-
al’s multi-tissue expression data, and analyzing 
dynamical instead of steady-state behaviors of 
whole-body systems.31

The field of whole-body modeling is much 
broader than the system-wide models of metabo-
lism and gene expression discussed above, as life 
processes can happen at multiple space/time scales 
from molecular to cellular, tissue-level, and organ-
ismal. A multi-scale model of heart function for 
instance may involve modeling not only metabo-
lism/expression within heart cells, but also bio-
physics of heart rhythm, dynamics of blood flow, 
and interactions with lung or other tissues41—
building it would be a huge collaborative under-
taking involving clinicians, experimentalists, and 
analysts with many open challenges; however, the 
incentive would also be huge in delivering a model 
that can predict the effect of any drug or molecu-
lar perturbation on heart function and failure.41 
A more comprehensive discussion of multi-scale 
modeling approaches can be found in special 
journal issues on this topic.7, 22

4  Conclusion
We reviewed computational and statistical 
problems pertaining to analysis of multi-tissue 
genomic data, which comprises genome-wide 
data on biomolecular activities collected from 
multiple tissues of several individuals. These 
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problems constitute an active area of research as 
large multi-tissue studies with this new type of 
data are recently emerging, and progress in meth-
ods solving these problems is ushering in an era 
of whole-system predictive models—the holy 
grail of systems biology.
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