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Multiscale Methods for Fracture: A Review⋆

1 Introduction
The global response of a system is often governed 
by the material behaviour at smaller length scales. 
For example, the macroscopic properties of a 
material such as toughness, strength, ductility, 
thermal and electrical conductivity, and chemical 
diffusion are strongly influenced by defects like 
cracks and dislocations, which are initiated and 
evolved at the nano scales. In the ambitious objec-
tive to derive the overall full-scale global response 
using a bottom-up approach, the sub-scale behav-
iour has to be accurately computed. Therefore, 
understanding the phenomena of material failure 
across multiple length scales has been the major 
research focus in the material science and engi-
neering community for many years1. Although 
molecular dynamics (MD) simulations promise 
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Abstract | The global response of a system is often governed by the 
material behaviour at smaller length scales. Investigating the system 
mechanics at the smallest scale does not always provide the complete 
picture. Therefore, in the ambitious objective to derive the overall full-
scale global response using a bottom-up approach, multiscale methods 
coupling disparate length and time scales have been evolved in the past 
two decades. The major objective of the multiscale methods is to reduce 
the computational costs by coupling the inexpensive coarse-scale/con-
tinuum based models with expensive fine-scale models. The fine-scale 
region is employed in the critical areas, such as crack tips or core of the 
dislocation. To improve the efficiency the fine-scale domain is adaptively 
adjusted as the defects propagate. As a result, the accuracy of the fine-
scale model is combined with the efficiency of the coarse-scale model, 
arriving at a computationally efficient and accurate multiscale model. 
Currently, multiscale methods are applied to study problems in numer-
ous fields, involving multiphysics. In this article, we present an overview 
of the multiscale methods for fracture applications. We discussed the 
techniques to model the coarse- and fine-scale domains, details of the 
coupling methods, adaptivity, and efficient coarse-graining techniques. 
The article is concluded with comments on recent trends and future 
scope.
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to reveal the fundamental mechanics of material 
failure at nano scales by modeling the atom-to-
atom interactions, due to their small dimensions 
of the order of angstroms (Å), they are still pro-
hibitively expensive to be employed in industrial 
applications2,3. A plausible alternative to reduce 
the computational demand is to couple the con-
tinuum scale with the discrete scale using a mul-
tiscale approach. In such paradigms, defects are 
explicitly modeled at the sub-scales, whilst a self-
consistent continuum model elsewhere. Several 
numerical models dealing with multiple spatial 
and temporal length scales have been proposed 
in the past two decades1,4–12. Most of the coupling 
methods and simulations are focused on models 
of intact materials (without cracks). The trans-
fer of information through different length scales 
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for problems involving material failure and finite 
temperatures still remains a challenging task. In 
this paper, an overview of the multiscale methods 
for fracture applications is presented. We denote 
the sub-scale domain the “fine scale region” and 
the continuum domain the “coarse scale region”.

Multiscale methods are initiated through the 
quasi-continuum method (QCM)1,13, by directly 
coupling the fine-scale region to the coarse-scale 
region. In the QCM, the continuum degrees of 
freedom need to be exactly located at the posi-
tions of the atoms at the interface, which is 
achieved by fine grading of the continuum mesh 
around the coupling region. The QCM has also 
been very successful at linking two continuum 
scales, for example, for fibrous materials14 and 
is readily capable of including quantum effects 
through density functional theory (QCDFT)15. 
Beex et al.16 have investigated four variants of the 
quasi-continuum method for their use in planar 
beam lattices which can also experience out-of 
plane deformation. Different frameworks are 
compared to the direct lattice computations for 
three truly multiscale test cases in which a single 
lattice defect is present in an otherwise perfectly 
regular beam lattice. The virtual-power-based 
quasi-continuum method is adopted for lattice 
models in which bond failure and subsequent 
frictional fiber sliding are incorporated, which 
are of significant importance for fibrous materials 
such as paper, cardboard, textile, and electronic 
textile17. Bond failure and fiber sliding are non-
local dissipative mechanisms, which are treated 
with a mixed formulation in which the kinematic 
variables as well as the internal history variables 
are interpolated. Multiscale methods can be cat-
egorized into hierarchical18–23, semi-concur-
rent24–31 and concurrent methods4,6–12,32–43, see 
Fig.1.

In hierarchical multiscale methods, see Fig. 1a, 
the information is passed from the fine-scale 
to the coarse-scale; but not vice versa. Com-
putational homogenization31,44–52 is a classical 
up-scaling technique. Hierarchical multiscale 
approaches are very efficient. Therefore, hierar-
chical methods have been successfully applied to 
study various problems, ranging from multiphase 
flow in porous media53–55 to polymer nano-com-
posites (PNC). An iterative multiscale finite vol-
ume method for the simulation of multiphase 
flow in fractured porous media in the context of a 
hierarchical fracture modeling framework is dis-
cussed in18. A hierarchical multiscale approach is 
employed in21 to characterize the material behav-
iour of the heat-affected zone (HAZ) in welded 
connections. Liu et al.56 developed a regularized 

phenomenological multiscale model, where the 
elastic properties are computed using direct 
homogenization and subsequently evolved using 
a simple three-parameter orthotropic continuum 
damage model. A unified regularization scheme 
was employed in the context of constitutive law 
rescaling and the staggered nonlocal approach. 
A hierarchical higher order multiscale cohesive 
zone model (MCZM) is introduced in23, to simu-
late the fracture in crystalline solid, using up to 
third-order Cauchy–Born rules and Barycentric 
finite element method to construct shape func-
tions for hexagonal shaped cohesive zones.

Lawrimore et al.22 studied the mechanical 
responses of low volume fraction Polyvinyl Alco-
hol /Montmorillonite nano-composites using 
a hierarchical multiscale modeling method, 
by bridging the MD with finite element analy-
sis (FEA). MD computations of interfaces were 
used to calibrate a traction–separation relation, 
which was then upscaled based on a cohesive 
zone model (CZM)57–59. Paggi et al.20 estimated 
the influence of micro-cracking and power-loss 
in photovoltaic modules based on a global–local 
multi-physics multi-scale approach. The micro-
scale damage mechanisms, particularly matrix/
inter-phase fracture and fiber sliding in brittle 
ceramics, are studied in60 based on multiscale 
methods. Nguyen et al.50 have presented a com-
putational homogenization procedure for cohe-
sive and adhesive crack modeling of materials 
with a heterogeneous micro structure, for crack 
propagation under cyclic loading with numerical 
analysis of the convergence characteristics of the 
multiscale method and treatment of macroscopic 
snapback in a multiscale simulation. Greco et al.61 
have proposed a concurrent multiscale method 
to overcome the existing limitations on homog-
enization in the presence of strain localization in 
masonry structures. They adopted a multilevel 
domain decomposition approach equipped with 
an adaptive zooming-in criterion for detecting 
the zones affected by strain localizations.

However, hierarchical multiscale methods 
based on computational homogenization are not 
well suited to model fracture. One basic assump-
tion of homogenization theories is the existence of 
disparate length scales62: LCr ≪ LRVE ≪ LSpec , 
where LCr, LRVE and LSpec are the size of the: 
crack, representative volume element (RVE) 
and specimen, respectively. The first condition 
is violated for problems involving fracture, as 
LCr is of the order of LRVE. Furthermore, peri-
odic boundary conditions (PBC), often specified 
at the fine-scale, cannot be used when a crack 
touches a boundary as the displacement jump 
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in that boundary violates the periodic boundary 
conditions.

Figure 1b illustrates the basic idea of semi-
concurrent multiscale methods, where the 
information is passed from the fine-scale to 
the coarse-scale and vice versa. A classical semi-
concurrent multiscale method is the FE 224–27 
method, originally developed for intact materials 
and later extended to problems involving mate-
rial failure9,45,48,49,63. Oliver et al.64 discussed the 
computational strategies to affordably solve mul-
tiscale fracture problems using FE 2 approach. 
Computational efficiency of the semi-concurrent 
multiscale methods is similar to concurrent mul-
tiscale methods65. The key advantage of semi-
concurrent multiscale methods over concurrent 
multiscale methods is their flexibility, i.e., their 
ability to couple two different software packages, 
for example, MD software to FE software66. Zhu 
et al.30 introduced a nonlinear semi-concurrent 
multiscale method to model crack propagation 
evolving from micro-structure for non-linear 
material behaviour based on an asymptotic 
expansion homogenization combined with the 
semi-concurrent finite element approach. Modi-
fied periodic boundary conditions and spheri-
cal grains’ generation procedure are devised for 
nonlinear material model with post-failure stage. 
A semiconcurrent multiscale computational 
homogenization method for the simulation of 
hydro-mechanical problem for quasi-brittle 
materials is proposed in31, coupling MD-mod-
els with continuum models. Silani et al.29 have 
developed a semi-concurrent multiscale method 
to estimate the pre-localized damage initia-
tion and propagation in the fully exfoliated clay/
epoxy nanocomposite, where the methodology 
has been implemented in the commercial finite 

element software package ABAQUS. A macro-
micro model has been implemented in ANSYS 
software67, to predict matrix cracking evolution 
in laminates under in-plane loading by treating 
the transverse cracks as separate discontinuities 
in the micro-model. Kerfriden et al.68 discussed 
a technique to reduce the computational burden 
associated with the simulation of localized failure 
in global–local framework. Recently, Ojo et al.69 
have proposed a non-local adaptive discrete 
empirical interpolation method combined with 
modified hp-refinement for order reduction of 
molecular dynamics systems.

Numerous concurrent multiscale methods 
have been developed that can be classified into 
‘Interface’ coupling methods and ‘Handshake’ 
coupling methods, see Fig. 1c. The coupling hap-
pens along an interface in case of interface cou-
pling methods32, whereas, a definite region of 
coupling exists for the handshake coupling meth-
ods7. Interface coupling methods are not efficient 
for dynamic applications, as avoiding spuri-
ous wave reflections at the ’artificial’ interface is 
problematic. On the other hand, since the coarse 
region does not exist everywhere, adaptive adjust-
ment of the fine-scale region as the defects propa-
gate in the handshake method is cumbersome. 
Some of the concurrent multiscale methods have 
been extended to modeling fracture12,39,70. Talebi 
et al.43 have developed a concurrent coupling 
scheme coupling molecular dynamics to extended 
finite element method through the bridging 
domain method, to model three-dimensional 
cracks and dislocations at the atomistic level. 
Budarpu et al.70 have proposed a solid shell-based 
concurrently coupled three-dimensional adap-
tive multiscale method (3DAMM) to simulate 
complex crack growth patterns in thin-walled 
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Figure 1: Schematics of a hierarchical, b semi-concurrent, and c concurrent multiscale methods. In the 
hierarchical methods the information exchange happens only from fine scale to coarse scale, whereas 
the interaction is two way in case of semi-concurrent and concurrent multiscale methods. Note a definite 
region of coupling in the concurrent multiscale methods, which does not exist in the semi-concurrent mul-
tiscale methods.
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structures. The material in the bulk is modeled 
using a hybrid solid shell formulation relying 
on the combined use of the enhanced assumed 
strain (EAS) and the assumed natural strain 
(ANS) methods71–75. The authors developed a 
computational framework in MATLAB by trig-
gering Large-scale Atomic/Molecular Massively 
Parallel Simulator (LAMMPS)76 through sys-
tem command.

In this paper, we present a review of the 
recent trends in multiscale methods for fracture 
applications. The article is structured as follows: 
multiscale methods are introduced in Sect. 1. Var-
ious techniques to model fine- and coarse-scale 
domains are discussed in Sect. 2 and 3, respec-
tively. Section 4 is dedicated to the techniques on 
coupling the coarse- and fine-scale domains of 
concurrently coupled multiscale methods. Crack 
nucleation/growth criteria and the techniques 
for adaptive adjustment of the fine-scale region 
are discussed Sect. 5. Computer implementation 
steps of a three-dimensional enhanced bridging 
scale method based concurrently coupled mul-
tiscale method, in the MATLAB frame work are 
presented in Sect. 6. The article is concluded in 
Sect. 7 with a discussion on perspective future 
developments of multiscale methods.

2  Fine‑scale modeling
In this section, various techniques to closely 
analyze the mechanics of fracture, particularly 
around the crack tip at lower scales are sum-
marized. Popular techniques include atomistic 
models, virtual atom cluster models and repre-
sentative volume element approaches.

2.1  Atomistic models
The basic structure of solid materials at nano 
scales can be obtained by the periodic arrange-
ment of the unit lattice. Atoms in the lattice struc-
ture are bonded together by the van der Waals 
forces of attraction. Atomistic models are parti-
cle-based techniques, where the mechanics are 
simulated based on the atom–atom interactions. 
Furthermore, material characteristics depend on 
the arrangement of atoms in the crystal lattice 
and the forces of interaction such as mechanical, 
electrical, chemical, and thermal forces. There-
fore, various types of potential functions are 
required to model the atom–atom interactions of 
various materials.

Consider a material such as Silicon used in 
the photovoltaic (PV) applications. Atoms in 
the Silicon unit cell are arranged in the diamond 
cubic lattice structure, where each Silicon atom 

possesses four nearest neighbors. Therefore, 
two Silicon atoms share four outer most atoms 
to form covalent bonds. When the Sun light 
equal to or more than a photon is incident on a 
PV cell, electrons from the outermost orbit are 
excited and released from their regular orbits, 
creating holes and free electrons. The free elec-
trons are free to move throughout the crystal77. 
A photovoltage is generated by creating a poten-
tial barrier across the moving charges. On the 
other hand, micro-cracks in Silicon cells can lead 
to power losses up to 21%78–82. Therefore, the 
mechanics of a PV cell involves mechanical, ther-
mal and electrical fields, requiring multiphysics-
based techniques for accurate analysis20,83–85. 
Furthermore, MD simulations of multiphys-
ics models demand potential functions such as 
charge optimized many body (COMB) poten-
tial86, considering the combined effect of various 
fields.

The total potential energy (Etot(q, r)), consid-
ering the effects of charge transfer, is expressed 
in terms of the electrostatic energies (Ees(q, r)), 
short-range interactions (Eshort(q, r)), van der 
Waals interactions (EvdW(r)), and correction 
terms (Ecorr(r)), where q and r represent the 
charges and atom positions, respectively86:

The application of digital filters to split the 
energy spectrum of an atomistic zone simulated 
with molecular dynamics into low- and high-
energy components is discussed in87. The effect of 
the grain orientation on the fracture behavior of 
polycrystalline silicon in micro-electro-mechan-
ical systems has been investigated in88, based on 
a multiscale model combining the discontinu-
ous Galerkin method and extrinsic cohesive law 
describing the fracture process.

Techniques to simulate the fracture using 
atomistic models under static and dynamic sce-
narios are summarized in this section. Static con-
ditions are achieved by minimizing the system 
potential energy, whereas velocity Verlet scheme89 
is a popular technique to estimate the atom veloc-
ities and positions.

2.1.1  Molecular dynamics
In molecular dynamics, the objective is to deter-
mine the atom positions rα(t), velocities vα(t), 
and their accelerations aα(t), for the given initial 
conditions. Each atom is assumed to be a classical 
particle obeying Newton’s laws of mechanics. The 

(1)
E
tot(q, r) = E

es(q, r)+ E
short(q, r)

+ E
vdW (r)+ E

corr(r).



343

Multiscale Methods for Fracture: A Review

1 3J. Indian Inst. Sci. | VOL 97:3 | 339–376 September 2017 | journal.iisc.ernet.in

governing equations are derived from the Lagran-
gian equations mentioned below:

where nA represents the total number of atoms. 
The Lagrangian of the fine-scale domain can be 
estimated as follows:

where mα is the mass of the atoms and Uα(r) is 
the potential energy of the fine scale, which can 
be estimated as sum of all the bond potentials:

where φα is the potential energy associated with 
atom α and β’s denote all the neighbors of atom 
α. Therefore, substituting Eq. (3) in Eq. (2) yields 
the equations of motion in Newtonian form:

where Fα is the internal force vector acting on 
atom α. Considering the initial conditions, Eq. (5) 
is solved for the trajectories of the atomic motion 
in the current configuration. Brief Verlet algo-
rithm steps include the following: (1) solve Eq. 
(6) for the current atom positions

where (2) the atom velocites are estimated from

in which (3) the accelerations in the current time 
step aα(t +�t) in Eq. (7) are calculated from the 
interaction potential function and Eq. (5). There-
fore, knowing the accelerations, atom velocities 
and positions can be estimated using Eqs. (7) and 
(6), respectively.

2.1.2  Molecular statics
In molecular statics (MS), the aim is to determine 
the positions of the atoms for the given boundary 
conditions, by minimizing the system potential 
energy, expressed as

where W int represents the internal energy of the 
system and W ext is the external contribution. The 

(2)
d

dt

∂L

∂ ṙα
− ∂L

∂rα
= 0, α = 1, 2, 3, . . . , nA,

(3)L =
nA
∑

α=1

mα ṙ
2
α

2
+

nA
∑

α=1

Uα(r),

(4)Uα =
nA
�

α=1

φα =
nA
�

α=1





1

2

nA
�

β �=α

V (rαβ)



,

(5)mα r̈α = ∂U(rα)

∂rα
= Fα , α = 1, 2, 3, . . . , nA,

(6)rα(t +�t) = rα(t)+ vα(t)�t + 1

2
aα(t)�t2,

(7)vα(t +�t) = vα(t)+
1

2
[aα(t)+ aα(t +�t)]�t,

(8)� = W int −W ext,

system potential energy will be minimum when 
the first derivative of the potential function with 
respect to the positions of the atoms goes to zero. 
Therefore, the internal and external forces act-
ing on an atom � after the minimization of the 
potential energy are given by12: 

respectively. The residual forces on each atom are 
estimated as R = Fint − Fext. Details of deriva-
tion of Eq. (9) and the computer implementation 
steps are explained in.12

Molecular dynamics simulations became 
important tools to understand the key mecha-
nisms in wide range of applications. There-
fore, over the years MD simulations attracted 
researchers in several fields, starting from early 
simulations of Abraham et. al.2,90 for engineer-
ing applications to modern applications such as 
estimating the material properties91–99, simu-
late problems involving multiphysics20,100–105, 
model the mechanics of polymer nano compos-
ites22,106–109 and bio-medical applications110–114, 
to name a few. Therefore, several exclusive soft-
wares have been evolved in the recent years to 
carry out MD simulations in various fields. Some 
of the popular softwares include (1) the open 
source Large-scale Atomic/Molecular Massively 
Parallel Simulator (LAMMPS)76, with included 
potential functions to simulate the mechancis of 
soft and solid-state materials and coarse-grained 
systems. (2) Accelerated molecular dynamics 
simulations (ACEMD)115,116: an open source 
software to perform molecular dynamics simula-
tions of proteins, oligosaccharides, nucleic acids, 
and synthetic polymers consisting of Chem-
istry at HARvard Macromolecular Mechanics 
(CHARMM), Amber forcefields and can run 
on NVIDIA graphics processing units (GPUs) 
optimized with CUDA. CUDA is a parallel com-
puting platform and programming model that 
makes using a GPU for general purpose comput-
ing simple and elegant. (3) Abalone117, a general 
purpose open source molecular modeling pro-
gram focused on molecular dynamics of bio-
polymers, which can also interact with external 
quantum chemical programs ORCA, NWChem, 
CP2K, and PC GAMESS/Firefly. (4) GROningen 

(9a)

Fint
�

= 1

2

nA
∑

α=1

nA
∑

β �=�

−∂V (rαβ)

∂rαβ

∂rαβ

∂r�

= −
nA
∑

β �=α

∂V (rαβ)

∂rαβ

(

rα − rβ

rαβ

)

and

(9b)Fext
�

=− ∂W ext

∂r�
,
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MOlecular Simulation (GROMOS)110 is a soft-
ware for dynamic modeling of bio-molecules. 
On the other hand, GROningen MAchine for 
Chemical Simulation (GROMACS)118 is a par-
allel message-passing implementation of a MD 
program which is useful for bio(macro)molecules 
in aqueous environment. (5) AMBER119 is a open 
source package of computer programs for apply-
ing molecular mechanics, normal mode analysis, 
molecular dynamics, and free energy calculations 
to simulate the structural and energetic proper-
ties of molecules. Apart from the above simu-
lation softwares, there exist several supporting 
MD packages, for example, (1) PACKMOL120 is 
a package for building initial configurations for 
molecular dynamics simulations and (2) Visual 
molecular dynamics (VMD)121 is a popular visu-
alization software to post process the MD simula-
tion results.

2.2  Virtual atom cluster model
Virtual atom cluster (VAC) model is based on 
considering the symmetry of a crystal structure, 
where a cluster of atoms is taken as the represent-
ative model of the whole lattice structure122,123. 
As a result, all the calculations can be performed 
with reference to the representative cluster instead 
of the whole lattice, which leads to improved 
computational efficiency. Since the locations of 
atoms in the cluster do not represent the exact 
locations of the atoms, the representative cluster 
is called a virtual atom cluster (VAC). The same 
inter atomic potential as in the full-scale atom-
istic model can be used in the VAC model as 
well12,122,124. A full-scale atomistic model will be 
realized when the VAC assumes the structure of 
the underlying lattice. Therefore, VAC is an effi-
cient coarse-graining technique to improve the 
computational efficiency.

A schematic of VAC-based coarse-scale model 
in two dimensions is shown in Fig. 2. The total 
potential energy of a fine-scale system as shown 
in Fig. 2a is given by the sum of all bond poten-
tials φα, estimated using Eq. (4). Consider an 
equivalent coarse-scale model based on the VAC, 
illustrated in Fig. 2b. Since the fine-scale and 
coarse-scale models are equivalent, their potential 
energy must be equal. This is achieved by defin-
ing a distributed energy density function φρ

122.
Considering the periodic nature of the lat-

tice, φρ is defined as the potential energy of a VAC 
divided by the volume of the VAC. For a homoge-
neous lattice, each VAC consists of a single atom 
and its volume is that of the unit cell of the lat-
tice. Therefore, the distributed energy density 

function φρ for a triangular lattice (see Fig. 2) can 
be defined as12:

 Therefore, using the definition of φρ from Eq. 
(10), the internal nodal forces can be expressed as 
follows:12

The term ∂φρ
∂uCα

 in Eq. (11) can be evaluated for 
each atom α in the VAC as given below:

α = 1

α = 2–7

where i is the index of the coordinate axes. The 
detailed derivation of the term ∂φρ

∂uCα
 is given in 

appendix of12. Knowing the internal nodal forces 
in Eq. (11), the minimization problem can be 
solved for the coarse-scale solution by minimiz-
ing the potential energy for the given bound-
ary conditions. An extension of the VAC-based 
coarse-graining scheme to study the dynamic 
fracture through a multiscale model is developed 
in.124

2.3  Representative volume element 
approach

Representative volume element approach is pop-
ularly used in the semi-concurrent multiscale 
methods (see Fig. 1b) to bridge the meso-scale 
to the macro-scale29. For fracture analysis based 
on the micro-mechanical approach using RVE, 
a damage parameter is estimated in meso-scale, 
which will be sent back to the macro-scale for 
further analysis. The boundary conditions for the 
RVE are extracted from the macro-scale model. 
Huang et al.125 have analyzed the strain hardening 

(10)φρ = φVAC

V0
= 1

2

7
∑

β=2

V (r1β)√
3a2/2

= 1

2

7
∑

β=2

φ1β

(11)

FintI ≈ −
∑

G

wG

∂φG
ρ

∂u

∂u

∂uC
I

≈ −
∑

G

wG

7
∑

α=1

∂φG
ρ

∂uCα

∂uCα

∂uC
I

= −
nG
∑

G=1

wG

7
∑

α=1

∂φG
ρ

∂uCα
NI (Xα).

(12)

∂φρ

∂uC
1i

=
∂φ12

∂r12

r12i

r12
+

∂φ13

∂r13

r13i

r13
+

∂φ14

∂r14

r14i

r14

+
∂φ15

∂r15

r15i

r15
+

∂φ16

∂r16

r16i

r16
+

∂φ17

∂r17

r17i

r17

(13)
∂φρ

∂uCαi
= −∂φ1α

∂r1α

r1αi

r1α
,
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and multiple-cracking tensile fracture behavior 
of engineered cementitious composites, based on 
a multiscale method. The authors used a multi-
linear crack bridging relationship at a lower scale 
based on analytical crack bridging analysis for a 
single crack, whereas a representative volume ele-
ment model was used at the upper scale using the 
extended finite element method. A global–local 
multiscale finite element method is employed 
in126 to study the interaction of nanotubes and 
matrix at the nanoscale, based on building a 3D 
finite element model of a representative volume 
element around the crack tip. Paggi et al.20 devel-
oped a multi-physics and multi-scale approach to 
study micro-cracking and power-loss in photo-
voltaic modules.

The size of the RVE depends on the dimension 
of the heterogeneities (d), which are expected to 
be much smaller than the dimension of the RVE. 
Therefore, the suitable size of the RVE for a par-
ticular problem can be arrived after few succes-
sive entanglement tests. For example, consider 
the ensemble average of the elastic modulus esti-
mated based on different spatially random sam-
ples using different increasing RVE sizes, until the 
below stagnation condition is satisfied29:

where 〈E〉(1)l  is the ensemble average for an RVE 
of size l, �E�(1)l′  is the ensemble average for the RVE 
size of l′, and tol1 is a stagnation tolerance. A 
reasonable number of realizations for the estima-
tion of the ensemble average can be estimated 
based on the below saturation criterion29:

(14)
|�E�(1)l′ − �E�(1)l |

�E�(1)l

< tol1,

(15)
|�E�(2j) − �E�(j)|

�E�(2j) < tol2,

where 〈E〉(j) denotes the ensemble average based 
on j realizations, 〈E〉(2j) indicates the ensemble 
average obtained using twice the number of reali-
zations, and tol2 is a saturation tolerance. The 
convergence can be guaranteed for 4 realizations 
with a convergence error of less than 1%.

3  Coarse‑scale model
The coarse-scale domain might be discretized 
with classical techniques like the finite ele-
ment method, the Partition of Unity Finite 
Element Method (PUFEM)127,128, meshfree meth-
ods6,129–132 or partition-of-unity enriched meth-
ods such as the extended Finite Element Method 
(XFEM)133–141, the Smooth Finite Element 
Method (SFEM)138,142–144, the Generalized Finite 
Element Method (GFEM)145–150, the extended 
Element Free Galerkin method (XEFG)151–158, 
the Cracking Particles Method159–165, the Phan-
tom node method (PNM)166–172 or the Numerical 
Manifold Method (NMM)173,174, the phase-field 
methods102,175–178, Peridynamics179,180, to name 
a few, apart from the isogeometric analysis with 
high-order approximation techniques51,142,181–186 
with exact geometry.

Alternative techniques to model fracture 
in shells include a FEM-based computational 
method for the fracture of plates and shells on 
the basis of edge rotation and load control as 
described in187. Rabczuk et al.163 have developed a 
meshfree method for thin shells with finite strains 
and arbitrary evolving cracks, eliminating the 
membrane locking using a cubic or fourth-order 
polynomial basis. However, third-order com-
plete formulations lead to the large support sizes, 
increasing the computational cost188. An extrin-
sic basis to increase the order of completeness 
of the approximation reduces the support size at 
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Figure 2: A demonstration of VAC coarse-scale model in two dimensions. a Atomistic model with trian-
gular lattice as on the (111) plane of an fcc material. b Equivalent continuum model with the VAC being 
placed at a particular Gauss point. c Details of the VAC.
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the cost of adding more degrees of freedom per 
node. Nonetheless, numerical experiments show 
a reduced CPU time for several problems. On the 
other hand, linear dependence of the shape func-
tions deteriorates the conditioning of the final 
system of equations188. Reinoso et al.74 devised 
and implemented a 7-parameter shell element 
for geometrically nonlinear analysis of layered 
CFRP composites. Nguyen et al.189 proposed 
an extended isogeometric element formulation 
(XIGA) based on the Kirchhoff–Love theory, 
for the analysis of through-the-thickness cracks 
in thin shell structures based on Non-Uniform 
Rational B-Splines (NURBS).

Verhoosel et al.63 employed a partition of 
unity-based cohesive zone finite element model 
to mimic crack nucleation and propagation in a 
piezoelectric continuum, through a multiscale 
framework to appropriately represent the influ-
ence of the microstructure on the response of a 
miniaturized component. Plews et al.190 have 
proposed a generalized finite element approach 
for predicting localized, nonlinear, thermoplastic 
behavior and residual stresses and deformations 
in structures subjected to intense heating. A mul-
tiscale reduction technique to describe shale gas 
transport in fractured media is discussed in191. 
The matrix is described by upscaled models and 
the interaction between the matrix and the frac-
tures is modeled through the generalized multi-
scale finite element method192.

In this section, popular techniques to model 
cracks in the continuum, such as extended finite 
element method, meshless methods, phase field 
method and the phantom node method are dis-
cussed. Mathematical formulation of the last 
three methods are presented in detail.

3.1  Extended finite element method
Finite element methods, a powerful class of tech-
niques to study a wide range of problems, fail to 
model the problems involving strong and weak 
discontinuities with a jump in the displacement 
and strain field, because of their smooth interpo-
lation character. In other words, computational 
failure mechanics involving fracture related to the 
initiation and propagation of crack, which falls 
under the strong discontinuities, and interface 
problems involving interactions of solid–solid 
and fluid–fluid (weak discontinuities) and solid–
fluid (strong discontinuities) are cumbersome 
to simulate using the FE techniques. Therefore, 
to handle linear and nonlinear crack openings, 
a very flexible extended finite element method 
has been developed by Belytschko et al.193,194 

based on the partition of unity concept127,145 and 
through additional nodal parameters for the ele-
ments cut by the crack. The central idea of XFEM 
is to decompose the displacement field into a 
continuous part uC and a discontinuous part uD:

The discontinuous part (uD) is estimated intro-
ducing the additional information into the FE 
interpolation through the local partition of unity 
approach by adding an enrichment, whereas the 
continuous part (uC) is the standard FE interpo-
lation. The approximation of the displacement 
field for nC cracks with nT crack tips reads

where S is the set of nodes in the entire discre-
tization, SC is the set of nodes associated with 
completely cracked elements, ST is the set of 
nodes around the crack tip, NI is the standard 
shape functions, ψK

I (X) is the enrichment func-
tion of Kth crack, φT

PI is the enrichment function 
for the crack tip P, aI, and bPI are the additional 
degrees of freedom to be solved. Further details 
on XFEM and its applications can be found in 
the excellent review papers by Belytschko et al.195, 
Fries and Belytschko196, Karihaloo and Xiao197, 
Rabczuk66 or the book by Mohammadi198.

3.2  Extended Meshless methods
Meshless methods (MM) evolved after the intro-
duction of Element Free Galarkin (EFG) method 
by Belytschko130. They are based on the idea of 
using the nodes/particles in the zone of influence 
of a selected point to construct its approximation 
space. The particles are not connected; hence, it is 
particularly easy to simulate complex phenomena 
like fracture129,157,161,165,199–202. Popular meshless 
methods include Meshless Local Petrov-Galerkin 
(MLPG)203,204, the reproducing kernel particle 
method (RKPM)131,132, radial point interpolation 
method (RPIM)205,206, to name a few. A mesh-
less variational multiscale method for thermo-
mechanical material failure is discussed in101. The 
displacement and temperature fields are enriched 
with step-functions and appropriate crack tip 
enrichment accounting for fine-scale features.

Yang et al.207 have developed a meshless col-
location method based on the differential repro-
ducing kernel (DRK) approximation, where the 

(16)u(X) = uC(X)+ uD(X)

(17)

u(X) =
∑

I∈S
NI (X)uI +

nC
∑

K=1

∑

I∈SC

NI (X)ψ
K
I (X)a

K
I

+
nT
∑

M=1

∑

I∈ST

NI (X)

NP
∑

P=1

φM

PI (X)b
M

PI ,
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derivative of the shape function of reproduc-
ing kernel (RK) approximants is replaced by 
a set of differential reproducing conditions to 
avoid the complex direct differentiation. On the 
other hand, in the EFG130,208 method, the shape 
functions are directly differentiated. Therefore, 
the number of degrees of freedom are reduced 
in DRK approximation, improving the com-
putational efficiency of the DRKP method as 
compared to the RKPM. The Kronecker delta 
property is not satisfied by the shape functions of 
the RK approximants. To resolve the difficulty in 
the DRK approximation, a meshless collocation 
method based on the DRKP method has been 
introduced by ChingPing et al.104,105,209,210, satis-
fying the Kronecker delta property.

Consider a body � in two-dimensional vec-
tor space R2 with boundary Ŵ, as shown in Fig.  3. 
The crack is denoted by c on the surface Ŵc.

3.3  Displacement field
A displacement field that is discontinuous at the 
crack(s) and continuous elsewhere in the domain 
� is a proper choice to model fracture in meshless 
methods. Therefore, the total displacement field 
is decomposed into a standard/continuous and 
discontinuous/enriched part:

where ucont is the continuous component and 
uenr is the discontinuous component. The mesh-
free approximation of Eq. (18) is given by

where N cont
I  and N enr

I  are the displacement inter-
polation/approximation functions in the con-
tinuous and discontinuous domains, respectively, 
see Fig. 4. uI and qI indicate the nodal parameters 
associated with the continuous and discontinu-
ous displacement fields, respectively. The DRKP 

(18)u = ucont + uenr,

(19)uh(X) =
∑

I∈S
N cont
I (X)uI +

∑

I∈Sc

N enr
I (X)qI ,

interpolant function N cont
I (X) is defined ask 

follows:

where N̂ (s) is estimated based on the quartic 
spline function. N̄I (x) in Eq. (20), is introduced 
to impose the nth order reproducing conditions:

where the weight function wa(X − XI ) is cen-
tered at XI, defined by the normalized Gaussian 
function, and PT(X − XI ) are the nth order poly-
nomial functions. For an nth order complete pol-
ynomial basis, a set of reproducing conditions can 
be obtained to determine z̄i(X), i = 1, 2, . . . , nB , 
where nB are the total number of basis functions 
given by (n+ 1)(n+ 2)/2. Further details of esti-
mation of N̂I (X) and N̄I (X) functions are dis-
cussed in42.

The enriched shape functions in Eq. (19) are 
expressed as the product of the standard shape 
function and the sign function H:

where

and fI (X) = n0 · (X − XI), n0 is the normal of 
the split nodes in the initial configuration, esti-
mated from the fine scale.

3.3.1  Variational formulation
The governing equations in weak form can be 
stated as follows: find u ∈ U , ∀δu ∈ U0, such that,

where u = ū on Ŵu and u ∈ H(�), δWint is the 
first variation of the internal energy, and δWext is 
the virtual work from the external forces. Let the 
test functions δuh(X) be defined as

(20)N cont
I (X) = N̂I (X)+ N̄I (X),

(21)N̄I (X) = wa(X − XI )P
T(X − XI )z̄(X),

(22)N enr
I (X) = N cont

I (X)H(fI (X)),

(23)H(ξ) =
{

1∀ξ > 0
−1∀ξ < 0,

(24)δW = δWint − δWext = 0,

u,
ut,

t

c, c n+

n-
+

-

c
+

c
-

(a)

(b)

Figure 3: Domain and surface descriptions of a body a displacements, tractions and the crack along with 
their surfaces b a closeup of the crack tip indicating the directions on the normals on the crack surfaces.
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Therefore, based on Eqs. (19), (24) and (25), the 
discrete system of equations can be obtained as42

where KIJ is the stiffness matrix, and f extI  indicate 
the external force vector, and dJ is the vector con-
taining the nodal parameters. The stiffness matrix 
is estimated as

where 

 where C is the matrix of material constants. The 
expressions for the nodal forces are given by159:

(25)

δuh(X) =
∑

I∈S
N cont
I (X)δuI +

∑

I∈Sc

N enr
I (X)δqI .

(26)KIJ · dJ = f extI ,

(27)KIJ =
∫

�0\Ŵ0
c

[

Kuu
IJ K

uq
IJ

K
qu
IJ K

qq
IJ

]

d�,

(28a)Kuu
IJ = ∂N cont

I (X)

∂X
C
∂N cont

J (X)

∂X
,

(28b)K
uq
IJ = ∂N cont

I (X)

∂X
C
∂N cont

J (X)H(fJ (X))

∂X
,

(28c)K
qu
IJ = ∂N cont

I (X)H(fI (X))

∂X
C
∂N cont

J (X)

∂X
,

(28d)

K
qq

IJ
=

∂N cont
I

(X)H(fI (X))

∂X
C
∂N cont

J
(X)H(fJ (X))

∂X
,

(29)

f extI =

∫

�0\Ŵ
c
0

N cont
I (X)Tbd�

+

∫

�0\Ŵ
c
0

N enr
J (X)Tbd�.

3.4  Phase‑field method for fracture
Phase field (PF) approaches have been extensively 
used over the years for several different engineer-
ing applications175,176,211–213. The PF approach has 
been proven to be very effective and accurate to 
simulate complex fracture patterns177,178,214–216, 
even at nano-scales217. On the other hand, PF 
model requires very fine discretizations to accu-
rately capture failure in solids, which is compu-
tationally expensive. Based on the value of the 
phase field parameter (d), the orientation of the 
crack surface and the approximate location of the 
crack tip can be identified. Giovanardi et al.218 
proposed a global–local approach by coupling 
XFEM in the caorse scale with the phase field 
model at the fine scale. Yingjun et al.217 developed 
a multiscale method based on PF approach, to 
simulate the microstructure evolution of materi-
als at nanoscales. They simulated the morphol-
ogy of microcrack propagation in single crystal 
materials under tensile strain with a fixed grip 
condition, by coupling phase field crystal with an 
external field method.

The central idea of the phase field approach of 
brittle fracture consists of regularizing the sharp 
crack topology within a diffusive crack zone of 
width l, see Fig. 5, where the regularization of the 
sharp crack representation is depicted. Therefore, 
it is possible to define a scalar-valued function 
that accounts for the stiffness degradation such 
that d, with d : �loc

0 × [0, t] → [0, 1], refer175,176 
for further details.

Within the framework of brittle frac-
ture211,214,215, the potential energy function for 
a cracked body can be defined as the sum of the 
deformation strain energy �(E) integrated over 
the domain �ph

0  and the critical fracture energy Gc 
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Figure 4: Shape functions in a the continuous domain and b the discontinuous domain. Picture repro-
duced with permission from42.
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integrated along the crack path Ŵc, which can be 
expressed as

where �ext is the contribution due to the pre-
scribed external actions (from the global level), 
and g(d) = [1− d]2 +K identifies the mono-
tonically decreasing degradation function, K ≈ 0 
being a residual stiffness parameter.

3.4.1  Finite element formulation
The first variation of Eq. (30) with respect to the 
independent fields E and u is given by175,176

(30)

�(u, d) =
∫

�loc
0

g(d)�(E) d�loc
0

+
∫

�loc
0

Gcl

2

(

d2

l2
+ |∇Xd|2

)

d�loc
0

+�ext(u),

(31)

G
u(u, δu, d) = G

u
int − G

u
ext

=
∫

�loc
0

g(d)
∂�

∂E
: ∂E
∂u

δu d�loc
0 + δ�ext(u)

= 0, ∀δu ∈ Vu
,

in which

where V
u =

{

δu ∈ [H1(�loc
0 )] : δu = 0 on

∂B0,u

}

 denotes the space of admis-
sible displacement variations, and 
Vd = {δd ∈ H1(B0) | δd = 0 on Ŵc} stands for 
the space of admissible test functions for the 
phase field. The second Piola-Kirchhoff stress 
tensor is defined as S := ∂E�.

In the global scale, the interpolation of the 
displacement field (u) along with its variation 
(δu ) and increment (�u) using the standard tri-
linear shape functions can be expressed as

The phase field interpolation (d), its variation 
(δd), and increment (�d) at the element level are 

(32)

G
d(u, d, δd) =

∫

�loc
0

−2(1− d)δd�(E) d�loc
0

+
∫

�loc
0

Gcl

[

1

l2
dδd+ ∇Xd · ∇X(δd)

]

d�loc
0

= 0, ∀δd ∈ V
d
,

(33)u ≈ Nd, δu ≈ Nδd, and �u ≈ N�d.

Figure 5: a Sharp and diffusive crack modeling. Left: discrete crack discontinuity in the continuum 
domain. Right: smeared discontinuity in the continuum domain based on the PF approach. b Diffusive 
crack modeling solution for the one-dimensional crack problem.
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approximated using the same shape functions 
corresponding to the kinematic field:

The gradient of the phase field (∇Xd), its varia-
tion (∇Xδd), and increment (∇X�d) are inter-
polated through a suitable operator Bd, as 
mentioned below:

Applying the displacement and the phase field 
discretization at the local level to Eqs. (31)–(32) 
and performing the consistent linearization of the 
residual vectors, a coupled system of equations 
can be obtained:

3.5  Phantom node method
In the phantom node method (PNM)166–169, 
when an element is completely cut by a crack, 
the displacement field can be represented as con-
tinuous on each part of the cracked element and 
discontinuous across the crack surface. There-
fore, the crack kinematics can be obtained by 
overlapping elements168–172 using the extra nodes 
known as phantom nodes. Therefore, (1) the dis-
placement field is discontinuous across the crack 
but independently continuous on each part of 
the cracked element. Hence, the discontinuous 
element is replaced by two elements with the 
additional phantom nodes, which requires only 
a small modification in existing finite element 
codes; (2) the associated shape functions in a 
cracked element are the same as the shape func-
tions of an intact element, and (3) the elements 
adjacent to the cracked elements do not require 
any modification. Because of the above advan-
tages, the computer implementation of the phan-
tom node method is particularly easy.

Consider an arbitrary continuous body with 
a surface of discontinuity Ŵc. According to the 
phantom node method170, the kinematics of 
a cracked element can be described by super-
imposing two separate displacement fields, 
which are active only in a determined region 
of the domain. Consequently, a completely 
cut element can be represented as an union: 
�elem

0 = �elem1
0 ∪�elem2

0  , of two elements sepa-
rated along the crack surface, see Fig. 6a–b. The 
superscript ‘elem’ refers to the considered phan-
tom element and ‘elem1’ and ‘elem2’ denotes the 
sub elements after splitting. This formalism is 
expressed by setting that the crack surface divides 

(34)d = Nd, δd = Nδd, and �d = N�d.

(35)

∇Xd = Bdd, ∇Xδd = Bdδd, ∇X�d = Bd�d.

(36)

[

Gu(u, δu, d)
Gd(u, d, δd)

]

!= 0.

the continuum domain into two sub-domains 
�0 = �0(+)

⋃

�0(−). Correspondingly, two phan-
tom domains are defined: �

p
0 = �

p
0(+)

⋃

�
p
0(−). 

Since the elements in the two sub domains do not 
share any nodes in common, their displacements 
are independent, resulting in the expected discon-
tinuity across the cross surface.

Through the definition of f as the signed 
distance measured from the crack surface, 
W+

0 ,W−
p ,W−

0 , and W+
p  as the nodes belonging 

to �0(+),�
p
0(−),�0(−), and �

p
0(+), respectively, the 

discontinuous interpolation of the displacement 
field is given by

where H is the Heaviside function. In line 
with167,219, the standard approximation of the dis-
placements on each part of the cracked element 
�0(+) and �0(−), which are extended to their cor-
responding phantom domains �

p
0(−) and �

p
0(+) 

introduces the continuous displacement field. 
The displacement jump between the two flanks 
of the crack can be computed by taking the dif-
ference of the displacement fields of the two 
domains of the cracked element.

4  Coupling techniques
In this section, we present the techniques to cou-
ple the coarse- and fine-scale domains. Two pop-
ular techniques, bridging scale method (BSM) 
and bridging domain method (BDM) to cou-
ple the continuum with atomistic domains are 
discussed.

4.1  Bridging scale method
An overview of the multiscale method based on 
the bridging scale concept is presented in220 with 
an emphasis on complex material systems. In this 
section, an outline of a three-dimensional multi-
scale method based on enhanced bridging scale 
method to model fracture is presented.

Consider a three-dimensional multiscale 
model shown in Fig. 7 for the adaptive simula-
tion of crack growth. The MD model in Fig. 7a 
assumes Silicon in the fine-scale domain. The 
material of the coarse-scale region is modeled 
based on a solid-shell as shown in Fig. 7b. In the 
diamond cubic lattice structure of Silicon shown 
in Fig. 7c, each atom possesses four nearest neigh-
bors. Fig. 7b shows the modeling details of the 
coarse-scale region highlighting the estimation 

(37)

u(X, t) =
∑

I∈{W+
0
,W

−
p }

uI (t)NI (X)H(f (X))

+
∑

J∈{W−
0
,W

+
p }

uJ (t)NJ (X)H(−f (X)),
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of stiffness matrix of a solid shell element. The 
phantom node method170 can be used to model 
the crack surfaces in the coarse-scale region.

Crack originates from the coarse-scale 
region and the crack tip is captured in the fine-
scale region. In Fig. 7a, c, the fine-scale region 
is formed by the atomistic model, made up of 
diamond cubic lattice structure of Silicon. Vari-
ous techniques to model the fine-scale domain 
are summarized in Sect. 2. The initial crack in 
the fine-scale region is created by deleting the 
bonds between the atoms on the crack surface 
and updating the neighbor list accordingly. Ghost 
atoms located on the boundary of the coarse 
region, but within the cutoff radius of the atoms 
in the fine region (see Fig. 7a), are used to enforce 
the boundary conditions for the fine-scale solu-
tion. A finite-discrete element method combining 
the advantages of both the finite element method 
and the discrete element method, coupling by 
means of ghost particles, is discussed in221.

In the two-scale model, the total displacement 
field uα of an atom α is decomposed into coarse- 
and fine-scale components:

where uCα  is the coarse-scale component and uAα  is 
the fine-scale component. The fine-scale compo-
nent uAα  is the difference between the actual posi-
tion of an atom α and the interpolated position 
of the coarse scale. Therefore, uAα  is insignificant 
in the regions far away from the crack tip, and 

(38)uα = uCα + uAα ,

hence, uCα  is sufficient to model the deformation 
in the coarse-scale region. On the other hand, in 
the fine-scale region, both coarse- and fine-scale 
components are required. Let the coarse-scale 
(see Sect. 3) displacement uCα  of an atom α be rep-
resented by a set of FEM basis functions defined 
over a set of nC nodal points,

where NI (Xα) is the shape functions defined at 
node I, estimated at the αth atom with the mate-
rial coordinate Xα, and uCI  is the continuum dis-
placement vector at node I.

In the bridging scale method, the coupling 
conditions are realized by enforcing the displace-
ment boundary conditions on the ghost atoms, 
see Fig. 8. The positions of the ghost atoms are 
interpolated from the coarse-scale solution. Let β 
be the index of the ghost atoms; the correspond-
ing ghost atom displacements are estimated as

where NI (Xβ) are the shape functions defined at 
node I, estimated at the βth atom with material 
coordinates Xβ.

The bridging scale method has been applied 
to study various physical phenomenon. A meso-
scopic bridging scale (MBS) method, multiscale 

(39)uCα =
nC
∑

I=1

NI (Xα)u
C
I ,

(40)uCβ =
nC
∑

I=1

NI (Xβ)u
C
I ,

Figure 6: Schematic representation of a cracked element using the phantom node method, for a a 
straight and b angled cracks.
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procedure to couple a mesoscale discrete parti-
cle model and a macroscale continuum model 
to study the incompressible fluid flow, is pro-
posed in222. Li et al.223 developed a similar mul-
tiscale model, by combining the discrete element 
method (DEM) at micro scale and Cosserat 
continuum modeling using the finite element 
method at macro scale, to simulate dynami-
cal responses in geo-structures composed of 
granular materials. A bridging scale method is 
reported in224, for the analysis of localization 
problems. The micropolar-continuum model is 
used to describe the localized deformation in a 
small number of localized regions. A mathemati-
cal framework of the bridging scale method and 
the time history kernel technique to impose the 
dynamic interfacial boundary conditions are dis-
cussed in225. Farrell et al.35 employed the bridg-
ing scale method (BSM) to study intersonic crack 
propagation, including the formation of a daugh-
ter cracks and the sudden acceleration of the 
crack to a velocity exceeding the material shear 
wave speed. They also proposed the non-reflect-
ing boundary conditions which can adequately 
dissipate the strongly localized wave formed by 
the Mach cone after the crack accelerates beyond 
the material shear wave speed. The implementa-
tion algorithms as well as the development of a 
time history kernel (THK) for the non-reflective 
interface are discussed. A BSM-based model cou-
pling the space–time Finite Element Method with 
MD is developed in124 to simulate dynamic crack 
growth. A continuum-based sensitivity analysis 
of two-dimensional continuum-atomistic mod-
els using the bridging scale method is performed 
in226. The authors correlated the influence of 

material and size variables on the impact of 
design changes at the macroscopic level to the 
responses at the atomistic level.

However, extending the BSM to study 
dynamic crack growth by adaptively adjusting the 
fine-scale domain and simultaneously avoiding 
spurious wave reflections at the ‘artificial’ inter-
face is problematic. Budarapu et al.12 have devel-
oped an adaptive multiscale method (AMM) 
to concurrently couple the atomistic domain 
with continuum by enhancing the bridging scale 
method, to study crack propagation. They mod-
eled the coarse region based on the VAC model 
and employed PNM to model crack in the coarse 
region. Furthermore, a meshless adaptive multi-
scale method for fracture (MAMMF) has been 
reported in42, by coupling the atomistic domain 
with DRKPM-based meshless method in the 
continuum. Due to the absence of mesh in the 
continuum, complex fracture patterns can be 
captured with ease in the MAMMF. Recently, a 
solid-shell based three-dimensional concurrently 
coupled adaptive multiscale method has been 
introduced in70, to investigate the crack growth in 
thin-walled structures.

4.2  Bridging domain method
Belytschko and Xiao6,7 have introduced the bridg-
ing domain method for coupling the molecular 
mechanics (molecular models at zero tempera-
ture) and continuum models based on a domain 
decomposition technique. Coupling in the BDM 
happens over a definite region (see Fig. 1c), 
known as ‘handshake’ domain. Unlike the BSM, 
in the BDM, the continuum region does not exist 
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Figure 7: a Schematic of a three-dimensional coupled continuum-atomistic model. b Mechanics of 
coarse-scale domain modeled with solid shell element. c Fine-scale region showing the arrangement of 
atoms in the diamond cubic lattice structure of Silicon. Pictures reproduced with permission from70.
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in the atomistic domain. Second, in the BDM, 
coupling between the atomistic and continuum 
regions is based on a linear energy weighting in 
the bridging domain and is enforced by Lagrange 
multipliers. Therefore, the total energy of the 
system is a weighted contributions of the fine 
and coarse models in the bridging domain. This 
is achieved through a scalar weight function, w 
shown in Fig. 9, which is defined as unity out-
side, zero inside, the fine-scale domain and varies 
smoothly in the blending region6:

where �C,�B, and �A correspond to the con-
tinuum, bridging, and fine-scale domains, respec-
tively. At any point X in the bridging domain, 
w can be computed by a normalized distance 
function:

where l(X) is the orthogonal projection of X on 
the interior boundary of the coarse domain �C 
and l0 is the length of this orthogonal projec-
tion to the boundary of the fine scale �A, refer to 
Fig. 9.

The governing equations of the coupled 
model are derived from the Hamiltonian of the 
coupled system, H, which is the sum of the Ham-
iltonians of each sub-domain:

where HA and HC are the Hamiltonians of the 
fine- and coarse sub-domains, estimated as the 
total potential of coarse- and fine-scale domains. 
In the BDM, Lagrange multiplier method is 
employed to constrain the coarse- and fine-scale 

(41)w =







1 ∀X ∈ �C\�A

[0, 1] ∀X ∈ �B

0 ∀X ∈ �A\�C

,

(42)w = l(X)

l0
,

(43)H = (1− w)HA + wHC ,

domain in the bridging region �B. In other words, 
in the handshake region the fine-scale displace-
ments must conform coarse-scale displacements. 
Therefore, considering the Lagrange multipliers, 
the total Hamiltonian can be written as

where � is Lagrange multipliers vector and g is 
the gap vector between coarse- and fine-scale 
displacement. Derivation of explicit equations 
of motion for specific problems are explained in 
several articles, see6,7,10,11,36,39,43,227,228.

Belytschko et al.229 extended the BDM to cou-
ple continua with molecular dynamics, where 
the authors demonstrated the robustness of the 
methodology by avoiding spurious wave reflec-
tions at the molecular–continuum interface. A 
concurrent multiscale approach based on mul-
tigrid principles intended to solve large molecu-
lar dynamics systems is attempted in230. The 
authors estimated the effective stiffness matrix 
of the coarse model by variational restriction 
of the effective stiffness matrix of the atomistic 
model. The influence of the time step and the dis-
cretization of Lagrange multipliers on spurious 
wave reflection are investigated in231 by includ-
ing a damping term in the fine-scale equations 
of motion. Guidault et al.36,227 have enhanced the 
BDM by also enforcing the strain compatibility 
between the “atomistic” and continuum domains 
in the bridging domain, which can be useful for 
the development of error estimators to drive the 
adaptive refinement of the coarse scale. However, 
little gain in accuracy is reported compared to the 
much simpler L2 coupling. Xu et al.232 studied 
the influence of the enforced constraints through 
Lagrange multipliers by modeling (1) exact non-
diagonal Lagrange multiplier equations and 
(2) a diagonalized constraint form. Note that 

(44)HL = H + �
Tg,

(a) (b)

Figure 8: Schematic showing a close up of the region along the coupling boundary. Pictures reproduced 
with permission from70.
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the consistent constraint form conserves linear 
momentum, angular momentum, and energy, 
whereas the diagonalized constraint form dis-
sipates energy. Therefore, the diagonalized form 
is reported to be effective in suppressing spuri-
ous reflections at the interface. A variant of the 
BDM for composite lattices through a ‘relaxed’ 
bridging domain method is discussed in233, where 
the atom set is divided into primary and second-
ary atoms, and only the primary atoms are con-
strained in the coupling region. This will allow 
the internal modes of the composite lattice to be 
relaxed, otherwise suppressed by the homogene-
ous continuum displacement field in the coupling 
region.

Gracie et al.10 have extended the BDM for the 
modeling of dislocations and cracks based on a 
multiscale atomistic/continuum models. Fur-
thermore, they extended the multiscale model 
to develop an adaptive concurrent multiscale 
method228 for the dynamic simulation of dislo-
cations. Anciaux et al.234 have developed a BDM-
based multiscale method to study the contact area 
evolution of rough surfaces under normal load-
ing which can lead to the emergence of a strong 
temperature gradient in the bridging zone. A gen-
eralized bridging domain method is introduced 
in235, based on independent weight functions to 
weight the material properties in the coarse- and 
fine-scale regions, followed by the force equilib-
rium through imposing compensation forces esti-
mated by force and displacement compatibility 
requirements. They tested the methodology on a 
coupled continuum and discrete elements model.

5  Fracture criteria and coarse graining
A fracture criterion should determine whether 
a crack propagates/nucleates. It should further-
more provide the orientation and “length” of the 
crack advancement, apart from whether or not 
cracks branch or join. Considering the non-line-
arities and non-homogeneities around the crack 
tip, estimating all the above details based on con-
tinuum techniques alone is difficult, particularly 
when the “length” and direction of crack growth 
are not controlled66. This is because the fracture 
criterion is often satisfied at several quadrature 
points in front of the crack tip, and reliable crite-
ria to estimate branching cracks are still missing. 
Considering the approaches based on configura-
tional forces236–239, the four major cracking cri-
teria in LEFM are66 (1) Maximum hoop stress 
criterion or maximum principal stress criterion. 
(2) Minimum strain energy density criterion240. 
(3) Maximum energy release rate criterion241. 

(4) The zero KII criterion (Vanishing in-plane 
SIF (KII) in shear mode for infinitesimally small 
crack extension)242.

In the multiscale methods mechanics of 
crack growth around the crack tip are captured 
in the fine-scale region. Considering the atomis-
tic based multiscale methods, the crack growth 
is identified based on the distance between the 
atoms. The orientation and branching are arrived 
by following the path of the atoms on the crack 
surface. This information is passed back to the 
coarse scale. Therefore, estimating the “length” 
and orientation of crack growth and branching/
joining cracks is more accurate and relatively easy 
in multiscale methods. A two-scale approach to 
simulate degradation and failure in polycrystal-
line materials is proposed in243, where the macro-
continuum is modeled using a three-dimensional 
boundary element formulation in which the pres-
ence of damage is formulated through an initial 
stress approach to account for the local soften-
ing in the neighborhood of points experiencing 
degradation at the micro-scale. The two scales 
are coupled by transferring the macro-strains to 
the micro-scale as periodic boundary conditions, 
while overall macro-stresses are obtained as vol-
ume averages of the micro-stress field.

To improve the computational efficiency, the 
fine-scale region is adaptively adjusted as the 
crack propagates. The adaptivity scheme con-
sists of adaptive refinement and coarse-graining 
operations. In order to activate the adaptivity 
algorithm, the position of the crack tip in the 
fine-scale region (�A) needs to be estimated. In 
multiscale methods, when atomistic models are 
used in the fine-scale region, the atoms on the 
crack surface are commonly identified based on 
the energy criteria10 or centro symmetry param-
eter (CSP)42,244,245. The crack tip is the ‘meeting 
point’ of atoms on either side of a crack sur-
face12. Subsequently, crack growth is monitored 

1=w0=w

l0

Xl

C

A

Figure 9: The weight function in the handshake 
domain in two dimensions.
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by comparing the location of the crack tip, in the 
previous load step to the current load step.

5.1  Energy criteria
The total potential energy of an atomistic system 
is estimated as the sum of all bond potentials φα . 
According to Eq. (4), the bond potential of a par-
ticular atom depends on the distance between the 
atom (α) and its neighbors (β)10. In the initial 
configuration, all the atoms are assumed to pos-
sess the same potential energy. The initial crack is 
created by deleting the bonds between the atoms 
and updating the neighbor list accordingly. Con-
tinuous increase in the external load leads to 
the stretching of the bonds of the atoms around 
the crack tip. Increase in bond length/distance 
between the atoms leads to increase in the system 
potential energy. A bond breaks when the bond 
length reaches a certain threshold, transferring 
the load to the immediate neighbors, see97 for 
further details of bond elongation and rotation in 
an initially notched Graphene system.

Therefore, the atoms around the crack tip 
possess the highest energy in the entire lattice. 
This is in agreement with the continuum theory 
as well, where the stress concentration is observed 
around the crack tip. Hence, potential energy 
provides an indication of the location of the 
crack tip. The energy criterion has been success-
fully applied to detect the locations of the crack 
tip12 and the core of the dislocation228. Let EHE

n  be 
the set of elements containing at least one atom 
with high potential energy, i.e.

where EA
n  is the set of total atoms and tolE is the 

specified energy tolerance. As a guideline, tolE can 
be specified in the range of 15 and 30% higher 
than the energy of an atom in equilibrium in a 
perfect lattice.

5.2  Centro symmetry parameter (CSP)
The centro symmetry parameter of an atom α is 
defined as follows76:

where rαβ and rα(β+nnb/2) are the distance between 
the atoms α and β and α and (β + nnb/2), respec-
tively, and nnb are the total number of nearest 
neighbors of atom α. Consider an atom α in the 
fine-scale region containing face-centered cubic 
(fcc) lattice structure. Let β denote the neighbors 

(45)

EHE
n = {e ∈ EA

n | energy of an atom in e > tolE},

(46)CSPα =
nnb/2
∑

β=1

|rαβ + rα(β+nnb/2)|2,

of α. In an fcc lattice structure every atom α is 
surrounded by 6 nearest neighbors (nnb). There-
fore, the CSP of the atom α in the fcc lattice is 
given by

From Eq. (47), the CSP of an atom α in the fcc 
lattice is the summation of square of the total dis-
tance between the opposing neighbors. In other 
words, the CSP of an atom in a periodic perfect 
lattice structure with symmetric atomic arrange-
ment is zero and the CSP values of the atoms on 
the defect surface/stacking fault is not equal to 
zero. This criterion is used to separate the atoms 
on the crack surface. Normalized CSP values for 
various defects are listed in Table 1. From Table 1, 
atoms on the crack surface can be distinguished 
as the atoms possessing normalized CSP values 
greater than or equal to 1.6881.

5.3  Adaptivity
To improve the computational efficiency, the fine-
scale region is adaptively enlarged with the defect 
propagation and the region behind the core of the 
defect (e.g., crack tip) is coarse grained. An adap-
tive concurrent multiscale methodology has been 
introduced in40 to handle the situations in which 
both macroscopic and microscopic deformation 
fields strongly interact near the tip of a crack. 
The method is based on the balance between 
numerical and homogenization error; while the 
first type of error states that elements should be 
refined in regions of high deformation gradients, 
the second implies that element size may not be 
smaller than a threshold determined by the size 
of the unit cell representing the material’s micro-
structure. Adaptive refinement algorithms for 2D 
peridynamic grids enhancing the concurrent mul-
tiscale methods are discussed in246. They applied 
the adaptive grid refinement to study dynamic 
crack propagation in two-dimensional brittle 
materials. An adaptive multiscale method cou-
pling the space–time finite element method with 
molecular dynamics is developed for the simula-
tion of dynamic fracture problems in124. Coupling 
between the fine- and coarse-scale simulation is 
achieved with the introduction of a projection 
operator and bridging scale treatment. An adap-
tive multiscale methodology based on the Hill-
Mandellemmainan FE2 sense is proposed to deal 
with localized deformations in247. The displace-
ment field of the fine-scale model was decom-
posed into a homogeneous part, fluctuations, 

(47)CSPα =
3

∑

β=1

|rαβ + rα(β+3)|2
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and a cracking part based on additional degrees 
of freedom the crack opening in normal and tan-
gential directions. Adaptive mesh refinement and 
coarsening schemes are proposed in248 for efficient 
computational simulation of dynamic cohesive 
fracture. The adaptive mesh refinement consists 
of a sequence of edge-split operators, whereas the 
adaptive mesh coarsening is based on a sequence 
of vertex-removal (or edge-collapse) operators.

The initial size of the fine-scale domain is cho-
sen such that all the mechanics of crack growth 
particularly around the crack tip are captured. 
Therefore, the initial domain size should be suf-
ficient to surround the region ahead and behind 
the crack tip. Furthermore, a large initial domain 
can lead to higher computational costs and the 
crack tip may jump out of very small fine-scale 
domains. Some of parameters that can influ-
ence size of the fine-scale region are as follows: 
(1) type of problem (static/dynamic), geometry 
and boundary conditions and (2) type and rate 
of loading and the type of fracture (brittle/duc-
tile). As a rule of thumb, a square domain is rec-
ommended: with areas behind and ahead of the 
crack tip in the range of 20–25% and 80–75% of 
the total domain size, respectively, which leads to 
≈25% of the area behind the crack tip.

Consider a fine-scale domain embedded 
within the ’boundaries’ of the nodes/particles 
around the crack tip. The refinement algorithm 
should be activated sufficiently often such that a 
buffer layer of elements/’regions’ is always main-
tained between the crack tip and the coupling 
boundary. The ‘regions’ refer to the area/volume 
generated by connecting the immediate neigh-
boring particles in meshless methods, such that 
they resemble the elements in the mesh-based 
techniques. Second, to ensure that the refine-
ment operation is not activated in the first load 
step itself, at least one layer of elements/regions is 
considered between the crack tip and the buffer 
element layer. Finally, the crack tip element layer 
is sandwiched by at least one layer of elements/
regions in the transverse direction. In other 

words, the minimum initial fine-scale region sat-
isfying the above conditions is embedded within 
a 3×3 discretization. Further details and applica-
tions to two- and three-dimensional crack growth 
problems are explained in12,42,70,245. The adaptiv-
ity scheme consists of an adaptive refinement and 
coarse-graining operations, as mentioned below:

1. Estimate the region in the coarse-scale 
domain �C to be refined. A refinement 
operation involves the expansion of the fine-
scale region by converting the estimated 
coarse region into a fine region, Fig. 10.

2. Estimate the region in the fine-scale domain 
�A to be coarsened. In a coarse-graining 
operation the coarse region is expanded by 
converting the estimated fine region into a 
coarse region, see Fig. 11.

In the above steps, when the sizes of the regions 
refined and coarse grained are similar, the net 
change in the size of the fine-scale domain is 
almost zero. As a result, the fine-scale region is 
adaptively moved with the propagation of the 
defect.

5.3.1  Adaptive refinement
The major steps of refinement (Fig. 10) proce-
dure are listed for a multiscale method based on 
an atomistic fine-scale model:

1. Identify the region to be refined (�ref).
2. Create and initialize the atoms in �ref.
3. Identify and update the newly cracked 

atoms.
4. Update the fine and coarse-scale regions.

Figure 10a shows the region identified for a 
refinement operation. The fine-scale region after 
the refinement is depicted in Fig. 10b. Let the 
nodes/particles (before a refinement operation) 
in the fine, coarse, and completely cracked regions 
be indicated by PA

n , PC
n , and P

split
n , respectively. 

The region containing split elements indicates the 
completely cracked region. The steps of a refine-
ment operation are summarized as follows:

•   Calculate the atoms on the crack surface based 
on the CSP and store the regions containing 
the atoms on the crack surface into the set 
P

csp
n .

•   Estimate the neighbours of the regions con-
taining the atoms on the crack surface in P

csp
n  

and store them in PminA
n+1 .

Table 1: Range of centro symmetry parameter 
for various defects, normalized by square of the 
lattice parameter a2

0
.

Defect cspα/a
2
0 Range �cspα/a

2
0

Perfect lattice 0.0000 cspα < 0.1

Partial dislocation 0.1423 0.01 ≤ cspα < 2

Stacking fault 0.4966 0.2 ≤ cspα < 1

Surface atom 1.6881 cspα > 1
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•   Calculate the regions to be refined, Prefine
n+1  by 

removing the fine-scale region PA
n  from the 

set PminA
n+1 .

•   Flag the regions to be refined and increase the 
atomistic domain by creating the atoms in the 
flagged elements.

•   Initialize the positions of the newly created 
atoms through interpolation based on the 
coarse-scale solution.

•   Update the fine and coarse regions after a 
refinement operation. Update the neighbor 
list (nlistn+1) of the fine-scale atoms in the 
current load step (n+ 1).

•   Identify the newly cracked particles in the 
fine-scale region and update the split and tip 
nodes and the nodal connectivity table.

A detailed algorithm of selecting the particles to 
be refined, initializing the newly created atoms in 
the region identified for refinement and propa-
gating the crack in the coarse-scale region in a 
multiscale framework, is explained in12,42.

5.3.2  Adaptive coarse graining
The major steps for the coarse-graining operation 
(Fig. 11) are as follows:

Figure 10: Sketch of the adaptive refinement operation. a Flagged particles to be refined are hashed. b 
Increased atomistic region after the refinement operation. Picture reproduced with permission from42.

Area to be refined

(a)

Crack

(b)

Figure 11: Schematic of the adaptive coarsening operation. a Flagged particles to be coarsened are 
hashed. b Reduced atomistic region after the coarsening operation. Picture reproduced with permission 
from42.
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(b)
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1. Identify the fine-scale region to be coarse 
grained (�coa).

2. Estimate the equivalent coarse-scale region 
of �coa, refer Sect. 5.4.

3. Delete the atoms in the region to be coars-
ened.

4. Update the fine- and coarse-scale particles/
nodes.

The process of an adaptive coarse-graining 
operation is explained in Fig. 11. Let PCS

n  be the 
regions containing atoms on the crack surface at 
load step n. Let PBA

n  be the regions lying in the 
fine-scale domain and attached to the coupling 
‘boundary’. The particles/nodes to be coars-
ened are the particles/nodes which are in both 
set PCS

n  and the set PBA
n  in front of the crack tip, 

Pcoarsen
n = PCS

n ∩ PBA
n . The steps of an adaptive 

coarsening operation are as follows:

•   Estimate and store the regions containing the 
elements on the crack surface (far away from 
the crack tip) into PLE

n .
•   Find the fine-scale regions attached to the 

coupling boundary, PBA
n .

•   The regions to be coarse grained (Pcoarsen
n+1 ) are 

given by PLE
n ∩ PBA

n .
•   Flag the regions to be coarse grained and 

delete the atoms in the flagged regions.
•   Update the particle/nodal set in the fine- and 

coarse-scale regions and the neighbor list of 
the fine-scale atoms, after a coarsening opera-
tion.

More details can be found in references12,42.

5.4  Efficient coarse‑graining techniques
Upscaling the fracture-related material informa-
tion from the fine scale to the coarse scale is a 
major difficulty in multiscale methods for frac-
ture, particularly for complex crack patterns. 
Belytschko et al.249 developed a coarse-graining 
approach named multiscale aggregating dis-
continuity method. A robust and simple coarse-
graining technique in the context of multiscale 
modeling for fracture is developed by Budarapu 
et al.245 The major steps in245 to develop an equiv-
alent model of the �A

def, the coarse-graining (CG) 
method (Fig. 12), are as follows:

1. Determine the atoms on the crack surface, 
e.g., using the CSP.

2. Identify the regions containing atoms on the 
crack surface, based on the positions of the 
atoms on the crack surface and the positions 
of the particles/nodes of the background 
discretization, see Fig. 12b.

3. Estimate the normal and center of gravity 
(CoG) of the atoms on the crack surface. 
Calculate the effective CoG of a crack region 
by averaging the CoGs of the atoms on the 
crack surface in the considered crack region.

4. Approximate the crack path in each crack 
region by joining the effective normal and 
CoG of the atoms on the crack surface, refer 
Fig. 12d and Sect. 5.4.1.

5. Estimate the nodes or particles on either side 
of the crack surface or around the tip, see 
Fig. 12c.

5.4.1  Crack surface orientation
Consider a deformed configuration of the fine-
scale model, superimposed with a discretized 
coarse-scale model as shown in Fig. 12a. The 
atoms in the fine region can be separated into 
small rectangular cells surrounded by four nodes/
particles in the coarse region. The center of grav-
ity of a cell containing the atoms on the crack 
surface can be calculated by averaging the posi-
tions of center of gravities of the atoms on the 
crack surface (r

cog
α ) in that cell245:

where r
cog
cell is the approximated position of the 

center of gravity of the atoms on the crack sur-
face and ncs are the total number of atoms on 
the crack surface, in a crack region. The normal 
of the approximated crack surface in the crack 
region is computed as the average of the normals 
of the atoms on the crack surface:

where n
cog
cell is the normal vector of the approxi-

mated crack surface in a crack region. There-
fore, the crack surfaces in the crack regions are 
obtained based on the planes passing through 
r
cog
cell, whose normals are estimated from Eq. (49). 

Finally, the approximated crack surface in the CG 
model are obtained by joining the crack surfaces 
in each crack region.

In order to generate a smooth and continu-
ous crack surface in the CG domain, the start/
end positions of the crack surfaces on the verti-
cal edges of the crack regions are averaged, as 

(48)r
cog
cell =

∑ncacr

α=1 r
cog
α

ncs
,

(49)n
cog
cell =

∑ncs

α=1n
cog
α

ncs
,
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illustrated in the schematic Fig. 13. As a rule of 
thumb, a cell containing at least 12 atoms on 
the crack surface is observed to be considered 
as crack region245. Therefore, the minimum size 
of the cell can be adopted as 13 times the lattice 
parameter. The cell size or the size of fine-scale 
domain in general could be determined by a-pos-
teriori error estimators. An example of generation 
of a continuous crack surface in the coarse region 
is demonstrated in Fig. 13. Consider the vertical 
edge containing points C, D, E, and F. The points 
D and E correspond to end points of two crack 
surfaces and the points C and F are the starting 
points of new crack surfaces. The largest distance 
between these points is the distance between the 
points C and F which is larger than the domain of 
influence. Thus there exists more than one point 
on the equivalent crack surface on this particular 
edge. The total number of points on the equiva-
lent crack surface on this vertical edge can be 
estimated by recursively checking if the distance 
between the neighbors of points C, D, E, and F 
falls within the domain of influence. Figure 14 
shows the equivalent coarse-grained model of 
an atomistic model245. The deformed configura-
tion of the atomistic model for a dynamic double 
edge crack propagation after 108 pico-seconds is 
shown in Fig. 14a. The corresponding equivalent 
coarse-grained model is shown in Fig. 14b.

6  Computer implementation
In this section, we discuss the numerical imple-
mentation details of a three-dimensional multi-
scale method for fracture. The atomistic model 
in the fine region is assumed to be modeled using 
LAMMPS. The whole computational framework 
is developed in MATLAB, where the LAMMPS is 
triggered through system command.

6.1  Codes and algorithms
Consider a coarse-scale model implemented in 
MATLAB coupled to a fine-scale model in the 
LAMMPS software. Since the LAMMPS software 
can be triggered from MATLAB, a versatile and 
robust multiscale strategy can be developed in the 
MATLAB frame work. To develop such numerical 
methodology, the system command in MAT-
LAB, which triggers an executing system opera-
tion, is used as described below70:

where ‘lmp_mpi’ indicates the LAMMPS execut-
able file generated by compiling the parallel ver-
sion of the LAMMPS code. The command ‘.../.../
input_file_name’ is used to identify the exact 
location of the input file.

(50)

system(‘lmp_mpi − in . . . / . . . /input_file_name − loglog .ini′);

Figure 12: Schematic of meshless equivalent coarse-scale model. a Meshfree particles superimposed 
on the atomistic model, b regions containing the atoms on the crack surface are highlighted along with 
the normals of the crack surface in each region, c calculation of level sets and d approximation of crack 
surface by joining the crack path in the regions containing the crack. Picture reproduced from245 with per-
mission.

(a) (b) (d)

(c)
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6.1.1  Implementation in LAMMPS
Algorithm 1 describes the key steps in a 
LAMMPS input file to estimate the atom posi-
tions through energy minimization. LAMMPS 
commands are highlighted in blue. The load is 
assumed to be prescribed in several steps through 
‘nsteps’(=100) variable, and the atom positions 
at each load step are estimated based on the mini-
mum energy. ‘step_c’ indicates the current load 
step and the amplitude of the displacement in 

the current step is represented by ‘ubary’(=0.05) 
variable. The atoms in the groups ‘top’ and ‘bot’ 
are uniformly displaced by an amount of ‘ubary’ 
through the ‘displace_atoms’ command. Com-
mand ‘fix’ helps in maintaining the bound-
ary conditions of the specified group of atoms 
through ‘setforce’ option, where a ‘NULL’ value 
indicates no constraint and ‘0.0’ denote a con-
straint in that direction. For example, the line “fix     
2     top     setforce     NULL     0.0     NULL”, reads 

Figure 13: Schematic of averaging the approximated individual crack surface orientation in each crack 
region, to generate a smooth continuous equivalent crack surface. Picture reproduced from245 with per-
mission.
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Figure 14: Development of an equivalent coarse-scale model of a given fine-scale model, for a dynamic 
crack propagation of double edge crack model. a Deformed configuration after 108 pico-seconds along 
with the highlighted atoms on the crack surface, crack regions, and their normals. Approximated crack 
surface showing the corresponding approximated equivalent crack surfaces. Pictures reproduced from245 
with permission.
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as follows: fix number 2, where the ‘top’ group of 
atoms are constrained along the ‘y’ direction and 
free to move in the ‘x’ and ‘z’ directions. Finally, 
the energy minimization is carried out through 
the ‘minimize’ command until the convergence 
of atom positions within the prescribed limits. 
The process is repeated in the next load step. The 
results are stored in the specified file through the 
‘dump’ command before proceeding to the next 
load step.

Fig. 16b, indicates a corresponding drop in the 
force. After breaking the initial bonds, the mate-
rial resisting the external load will be continuously 
diminishing as the material separation continues.

6.1.2  Multiscale model
The major steps of multiscale model for fracture 
are summarized in Algorithm 2. The split and tip 
elements are identified in the discretized domain 
based on the geometry of the crack(s). This is 

Consider the simulation of punching a hole in 
a rectangular panel through molecular dynamics. 
This is achieved by specifying a uniform out-of-
plane displacement along the z-direction to the 
upper side of the plate in a specific area. Due to 
symmetry, a quarter of the plate is considered. 
The hole is punched using a quarter circle with 
a prescribed radius. The quarter circle is further 
extruded to a quarter cylinder along the thick-
ness direction. Atoms on the upper side of the 
quarter cylinder portion are subjected to uniform 
displacements along the z-direction. Figure 15a–c 
shows the initial and deformed configuration 
after 100 and 1530 load steps, respectively. The 
entire material is separated from the plate mate-
rial after 1530 steps. The evolution of the potential 
energy versus the strain is plotted in Fig. 16a. The 
potential energy fluctuates after exceeding a strain 
of 0.48. The load–displacement curve plotted in 

followed by generating the initial configuration of 
the atomistic model including initial notches (if 
applicable). In the third step, a for loop applies 
the boundary conditions on the coarse-scale in 
several load steps providing the coarse-scale solu-
tion uCI , in each step. The ghost atom positions 
are interpolated from the coarse-scale solution 
using Eq. (40). They are the boundary conditions 
for the fine scale. The LAMMPS executable can 
now be triggered again to minimize the poten-
tial energy of atomistic domain by fixing the 
updated ghost atom positions. In each load step, 
the latest atom positions at the end of the energy 
minimization along with their energy and centro 
symmetry parameter (CSP) are stored an output 
file. The crack tip is identified by using either the 
energy or the CSP criteria. The adaptivity scheme 
is activated if the crack tip location is close to the 
boundary of the atomistic domain.
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Consider the simulation of Mode I crack 
growth of two through-the-thickness edge cracks, 
located in the middle of the plate. The cracks in 
the coarse-scale domain are modeled by employ-
ing the phantom node method. Displacement 
loads are prescribed on the top and bottom row 
of atoms. Deformed configurations after 28 and 
38 load steps are plotted in Fig. 17a, b, respec-
tively. Cracks propagate in the opposite directions 
after 28 load steps. Figure 17c shows the cou-
pled model after an adaptive refinement after 39 
load steps. Since the available space between the 
initial fine-scale regions in Fig. 17a is small, the 
two fine-scale regions are merged in the adaptive 
refinement. Simultaneously, the adaptive coars-
ening scheme coarse grains the fine-scale regions 
behind the crack tips. The deformed configu-
ration of the multiscale model at the end of the 

simulation is shown in Fig. 17d, where almost a 
complete merging of the two cracks and hence 
the separation of the fine-scale region into two 
parts can be noticed. Some key contributions 
towards the multiscale methods for fracture in 
the past two decades are summarized in Table 2.

7  Future prospects and conclusions
Most of the problems in real-time involve mul-
tiple field and disparate time and length scales. 
Based on the significant advancement of the 
multiscale methods in the past two decades, mul-
tiphysics multiscale methods are rapidly grow-
ing to simulate fracture in various applications, 
such as heterogeneous porous medis and/or 
hydralic fracture253, polycrystalline254 and com-
posite materials255,256 design, batteries257,258, nano 

Figure 15: Deformed configurations based on the atomistic model, during punching a hole in Silicon. 
Distribution of the potential energy at various instances of the punching process. a Initial, b after 100 load 
steps, and c after 1530 steps. Pictures reproduced with permission from70.
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Figure 16: a Distribution of the potential energy with strain and b load-displacement diagram generated 
based on the MD simulations of punching a hole in a rectangular panel. Pictures reproduced with permis-
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materials259, bio applications260, to name a few. 
In this section, we outlined the current status of 
latest multiscale techniques based on quantum 
mechanics, peridynamics, and techniques for bio-
logical applications, apart from some comments 
on future prospects.

7.1  Quantum mechanics and molecular 
mechanics

Estimation of mechanical and fracture prop-
erties of the nano scale structures such as car-
bon nanotubes, two-dimensional materials like 
Graphene and MoS2 through experiments is 

Figure 17: Crack propagation of a double-edge notched specimen. a Deformed configuration after 28 
load steps. Activation of adaptive refinement and coarse graining of the fine-scale region as the crack 
grows. b Deformed configuration after 38 load steps, before refinement and c after an adaptive refine-
ment operation after 39 load steps. Adaptive refinement and coarse-graining algorithms (see12) are acti-
vated after 39 load steps as the cracks grow. As a result, the two fine-scale regions are merged after 
39 load steps and the combined fine-scale region is adaptively coarse grained, as shown in d. Pictures 
reproduced with permission from70.
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extremely challenging261. Hence, as an alternative 
to experiments, quantum mechanics (QM)based 
techniques can be primarily employed to predict 
the fracture, bond breaking, and bond formation 
in particular262, and when using the simulation 
techniques that consider electrons, i.e., quantum 
modeling is indispensable. In spite of significant 
progress in the computational resources, the 
computational expenses of simulations based on 
QM still remains a challenging task. Therefore, 
MD simulations are computationally more eco-
nomical compared to that of QM. However, due 
to small dimensions of atoms, full-scale atomis-
tic models for day-to-day engineering calcula-
tions are prohibitively expensive. In this context, 
multiscale methods coupling quantum mechan-
ics, molecular mechanics (MM), coarse graining 
(CG), and continuum mechanics (CM) tech-
niques seem to be efficient, coupling the advan-
tages and surpassing the disadvantages of each 
technique individually.

ONIOM263 is a technique coupling QM and 
MM based on overlapping domain scheme. 
The basic idea of ONIOM scheme is to apply 
the coarse-scale model like MM to the entire 
domain and the more accurate QM-based fine-
scale model in the critical regions where bond 
breaking is expected. A higher order correction, 
estimated as the difference between the QM and 
MM energies of the fragment domain, can be 
applied to cancel the effect of the complete MM 
model assumption in the coupling domain that 
is overlapped by the QM model. Therefore, the 
total energy of the system can be written263 as 
follows:

where EMM is the energy of the MM domain, 
E
QM
F  is the energy of the fine-scale sub-domain 

calculated based on QM, EMM
F  is the energy 

estimated using MM in the fine-scale region, xα 
is the vector of current atom position, and cα is 
the set of basis function coefficients used in the 
representation of the electronic wave function. 
On the other hand, the quantum to molecular 
mechanical overlapping domain (QtMMOD) 
method264 requires a partial overlap between the 
MM and the QM sub-domains. Therefore, the 
QM model is used in the interesting area, whereas 
the underlying MM model is employed on the 
sub-domain excluding the interesting region. 
In other words, the MM domain does not exist 
in the entire domain as in the case of ONIOM 
method. Park et al.265 propose another multiscale 

(51)

E(xα , cα) = E
MM(xα)+ E

QM

F
(xα , cα)− E

MM

F (xα),

approach by concurrently combining the QM, 
MM, and CG techniques. They identified two 
distinct interfaces, MM/CG and QM/MM, where 
the QM domain does not interact with CG 
domain and MM and CG regions are coupled by 
quasi-continuum.

7.2  Peridynamics based multiscale 
methods

Peridynamics266–269 is a nonlocal computational 
formulation of continuum mechanics, equivalent 
to a coarse-grain model in multiscale perspec-
tive. The main difference between the continuum 
mechanics and the peridynamics is the nonlocal 
interaction between material points. Consider 
a fixed material point rα in the current con-
figuration, which can interact with neighbor-
ing particles rβ within a compact support called 
as horizon, which is similar to the concept of 
‘domain of influence’ in the meshless methods 
or ‘cutoff range’ in molecular dynamics. The 
nonlocal equilibrium equations of motion can 
be derived by considering the balance of linear 
momentum at the material point rα, as men-
tioned below180:

where ρα is the average density of the material at 
point α

is the nonlocal stress divergence vector acting on 
the αth material point by neighboring macroscale 
points β, equivalent to a local divergence term in 
continuum mechanics180.

A peridynamics based multiscale method has 
been developed in180, using the multiscale micro-
morphic molecular dynamics (MMMD) theory 
to couple the molecular dynamics in the fine-
scale region. To address the issue of wave reflec-
tion on the interface, the authors proposed a 
filter by turning on and off the MMMD dynamic 
equations at different scales. A coupled model 
embedding peridynamics within a molecular 
dynamics code is available at270. A peridynamics 
based hierarchical multiscale modeling scheme 
coupling peridynamics with the atomistic model 
has been employed in271, to model a complex het-
erogeneous polymer, ultra high molecular weight 
polyethylene (UHMWPE). Refer to179,252 for a 
multiscale strategy coupling peridynamics with 
continuum based finite element method. Differ-
ent methods are compared in272, to estimate the 

(52)ρα r̈α = L(Rα , t)+ ραb(Rα),

(53)

L(Rα , t) =
∫

Hα

(Tα�Rβ − Rα� − Tβ�Rα − Rβ�)dVβ
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tangent-stiffness matrices in a massively parallel 
computational peridynamics code.

7.3  Multiscale methods for biological 
applications

Many biological materials, such as nacre, tooth, 
and bone are composite materials made up of 
stiff brittle ceramics and compliant organic 
materials like polymer. Compared to their con-
stituents, natural organic/inorganic composites 
exhibit much enhanced strength and toughness 
properties. Based on this inspiration, several bio-
mimetic composites are proposed in an attempt 
to synthesize materials with superior mechanical 
properties. However, most current synthetic com-
posites have not exhibited their full potential of 
property enhancement compared to the natural 

prototypes they are mimicking. The main rea-
son being the weak junctions between stiff and 
compliant phases, which need to be optimized 
according to the intended functions of the com-
posite material273.

Investigating biological system mechanics at 
the smallest scale does not always provide a com-
plete picture274. Therefore, understanding the 
influence of multiphasic interfaces and hierarchi-
cal organizations across length scales on macro-
scale properties in natural systems will help in 
developing a materials-by-design approach for 
novel engineering materials, such as nanocom-
posites with tailored interfaces and programmed 
microstructures, e.g., the brick-and-mortar 
arrangement of stiff filler and soft matrix phases 
observed in nacre275. Niebel et al.276 conducted 

Table 2: Key contributions on multiscale methods for fracture based on BSM and BDM techniques.

No. Address Title Comments

1 Wagner et al., J Comp Phy, 
190:249–279, 2003

Coupling of atomistic and contin-
uum simulations using a bridging 
scale decomposition32

Introduction to BSM

2 Park et al., Phil Mag, 85:79–113, 
2005

The Bridging Scale for Two-
Dimensional Atomistic/Continuum 
Coupling33

Wave relections and time history 
kernel in BSM

3 Tang et al., IJNME, 65:1688–1713, 
2006

A mathematical framework of the 
bridging scale method225

Modified interfacial conditions 
based on THK

4 Farrell et al., IJNME, 71:583–605, 
2007

Implementation Aspects of the 
Bridging Scale Method and 
Application to Intersonic Crack 
Propagation35

Computer implementation 
algorithms and shear dominant 
failure using BSM.

5 Budarapu et al., CMAME, 319:338–
365, 2017

Concurrently coupled solid shell-
based adaptive multiscale method 
for fracture70

Solid shell-based multiscale 
method for adaptive crack 
growth, using BSM.

6 Belytschko et al., CMAME, 
193:1645–1669, 2004

A bridging domain method for 
coupling continua with molecular 
dynamics229

BDM to simulate dynamic frac-
ture.

7 Gracie et al., IJNME, 86:575–597, 
2011

Adaptive Continuum-Atomistic 
Simulations of Dislocation Dynam-
ics228

Adaptive XBDM for dislocation 
dynamics.

8 Talebi et al., Comp Mech, 53:1047–
1071, 2014

A Computational Library for 
Multiscale Modelling of Material 
Failure11

Multiscale framework for 3D 
dynamic fracture using XBDM.

9 Miller et al., MSMSE, 17:053001, 
2009

A unified framework and perfor-
mance benchmark of fourteen 
multiscale atomistic/continuum 
coupling methods250

Comparison of accuracy and effi-
ciency of 14 multiscale methods 
on a test problem.

10 Nair et al., JMPS, 59:2476–2487, 
2011

ACoupled quantum-continuum 
analysis of crack tip processes in 
aluminum251

Coupled quantum-continuum 
analysis of crack.

11 Liu et al., CMAME, 245:163–175, 
2012

A coupling approach of discretized 
peridynamics with finite element 
method252

Coupled FEM and Peridynamics 
model.

12 Giovanardi et al., CMAME, 2017 A hybrid XFEM-Phase field (Xfield) 
method for crack propagation in 
brittle elastic materials218

Coupled XFEM-Phasefield method.



366

P. R. Budarapu and T. Rabczuk

1 3 J. Indian Inst. Sci.| VOL 97:3 | 339–376 September 2017 | journal.iisc.ernet.in

experimental and numerical studies to under-
stand the influence of the polymer properties on 
the mechanics of nacre-like composites contain-
ing an intermediate fraction of mineral phase and 
reported that the stiffer polymers can increase 
the strength of the composite by reducing stress 
concentrations in the inorganic scaffold. A finite 
element based analysis is carried out in273, to 
estimate the improvement in the mechanical 
properties of nacre like biomimetic composites. 
Awaja et al.277 summarized the recent develop-
ments on the topics of cracks and microcracks 
initiation and propagation in polymer struc-
tures along with the techniques for detection 
and observation. Moreover, repair of cracks and 
microcracks through bio-mimetic self-healing 
techniques is also discussed along with surface 
active protection.

Mechanisms of energy dissipation in struc-
tural molecules at nanoscales can be estimated 
based on the sacrificial bonds and hidden length 
(SBHL). The presence of SBHL leads to greater 
fracture toughness as compared to the materials 
without such features. The increase in interface 
toughness as a function of polymer density and 
number of sacrificial bonds has been investigated 
in278, based on the mechanical properties of the 
polymeric system. Tessellation is a structural 
motif involving periodic soft and hard elements 
arranged in series which appears in a vast array of 
invertebrate and vertebrate animal biomaterials. 
Tessellation of a hard, continuous surface, con-
nected by a softer phase results in maximization 
of material toughness, with little expense to stiff-
ness or strength279.

Dental enamel is a hybrid material consisting 
of brittle fibers and compliant organic materials 
like protein matrix. Enamel exhibits high frac-
ture toughness and stiffness due to a complex 
hierarchical and graded microstructure, opti-
mally organized from nano to macroscale. The 
deformation and damage behavior of the fibrous 
microstructure is studied in280 using a 3D RVE 
and continuum damage mechanics model cou-
pled to hyperelasticity for modeling the initiation 
and evolution of damage in the mineral fibers as 
well as protein matrix. Ural et al.281 simulated the 
bone fracture based a multiscale method using 
cohesive finite elements. A failure mode transi-
tion in nacre and bone-like materials has been 
demonstrated in282.

To summarize, based on the rapid progress 
in multiscale methods, the expensive and time-
consuming experiments can be avoided in future 
either completely or partially. Moreover, since 
the real-time problems involve multiphysics, an 

interdisciplinary collaboration among differ-
ent groups is required to accurately predict and 
understand the physics/mechanics across the 
scales. This is a good sign, which helps not only 
to quickly understand the fundamental mechan-
ics of failure, but also to bring in revolutionary 
changes in the material design and analysis.
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