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Recent Computational Advances in Denoising for 
Magnetic Resonance Diffusional Kurtosis Imaging (DKI)

1 Introduction
Diffusion magnetic resonance imaging (MRI) is a 
non-invasive and non-ionizing imaging method 
that quantifies the diffusion process of water 
molecules in biological tissues.1 Diffusion tensor 
imaging (DTI), the most commonly used dif-
fusion MRI technique, relies on an assumption 
that the water diffusion displacement probability 
density function (dPDF) has a Gaussian form.2 
While this assumption holds quite accurately 
for homogeneous solutions, the PDF in many 
biological tissues, including brain, can deviate 
substantially from Gaussianity, as a result of dif-
fusion barriers (e.g., plasma membranes) and of 
microscopic heterogeneity due to a diversity of 
cellular compartments.3, 4 Diffusional kurtosis 
imaging (DKI) extends DTI in order to capture 
non-Gaussian diffusion effects by estimating the 
kurtosis of the dPDF, and it has thus emerged as 
an advanced diffusion MRI technique for charac-
terizing tissue microstructure in brain, as well as 
in other organs.5–7 With DKI, promising results 
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this review, we refer to signal 
processing aspects as artifacts 
arising due to systematic 
noise such as low SNR, field 
inhomogeneities, etc.,
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Abstract | Magnetic resonance imaging (MRI) is widely used in clini-
cal practice and medical research for the assessment of disease. Mag-
netic resonance diffusional kurtosis imaging (DKI) is a specific MRI 
technique that is useful for quantifying microstructural properties of 
biological tissues, particularly in brain. However, images derived with 
DKI can be sensitive to noise, as the MRI sequences needed for DKI 
strongly attenuate the signal. To mitigate this inherent noise sensitivity 
of DKI, advanced denoising methods maybe applied. Although a vari-
ety of denoising approaches have been considered in the broad context 
of MRI, the specific performance of these methods for DKI has not yet 
been thoroughly investigated. In this review, we examine three different 
denoising strategies for DKI—Gaussian filtering, non-local means filter-
ing, and a local principal components analysis technique. These three 
denoising methods are compared qualitatively in terms of their abilities 
to increase image fidelity and to remove noise bias for the DKI-derived 
parametric maps.
Keywords: Diffusional kurtosis imaging, Denoising, Non-local means, Principal component analysis, 
Gaussian filtering
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in neurological applications have been obtained 
for brain tumors,8, 9 trauma,10, 11 Alzheimer’s 
disease,12, 13 attention deficit hyperactivity dis-
order,14, 15 stroke,16, 17 and epilepsy.18, 19 As DKI 
is being increasingly applied, it is important to 
optimize the signal processing aspects of this 
approach.

Diffusion MRI typically uses echo planar 
imaging (EPI) MRI sequences that suffer from 
relatively poor signal-to-noise-ratio (SNR), 
because the required long echo times and strong 
diffusion encoding gradient pulses attenuate 
the signal.20 Moreover, DKI tends to be more 
noise sensitive than DTI, as it uses higher maxi-
mum diffusion weightings (b values) and a more 
complicated signal model to fit the data.5–7 Low 
SNR may substantially impact both the precision 
and accuracy diffusion metrics estimated with 
DKI, with a noise bias arising since the metrics 
depend nonlinearly on the signal.7, 21 As a con-
sequence, several sophisticated strategies have 
been proposed to reduce noise contamination in 
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DKI measurements. One approach is to optimize 
the experimental design of the DKI acquisition, 
thereby increasing the precision of the estimated 
diffusion parameters.22, 23 Another approach is 
to repeat the data acquisition multiple times and 
increase the SNR by signal averaging.24 How-
ever, as the SNR only increases in proportion to 
the square root of the total acquisition time, such 
optimization techniques may not be a viable 
option from a clinical perspective. Alternatively, 
several post-processing techniques have been 
proposed that aim at reducing noise, which for 
diffusion MRI is both non-Gaussian (e.g., Rician) 
and spatially varying (the non-Gaussian nature 
of the signal noise should not be confused with 
the non-Gaussian nature of diffusion, as these are 
two independent statistical processes).

Denoising methods proposed by several dif-
ferent groups for diffusion MRI can be broadly 
classified into two categories. First, one may apply 
denoising directly to the complex k-space data 
available from the scanners. This approach gen-
erates diffusion-weighted (DW) images through 
appropriate image reconstruction algorithms 
that accounts for the statistical distribution of 
noise embedded in the complex k-space data.25–27 
Although this approach can be effective in terms 
of reducing noise in the DW images, it is compu-
tationally intensive. One of the main bottlenecks 
is with the reconstruction time associated in esti-
mating DW image volumes from each coil/chan-
nel and then combining them.26 To overcome 
this limitation, a second strategy aims to reduce 
noise only in DW images that have already been 
reconstructed by the MRI scanner. This approach 
is commonly called the post-processing denoising 
step in the calculation of diffusion parameters.

There are two main types of post-processing 
denoising techniques: (a) spatial-domain-based 
filters and (b) transform-based filters. The spa-
tial-domain-based filters are intended to work 
directly on the voxels of raw DW images obtained 
from the scanner. Some of the commonly used 
spatial domain filters include the Gaussian fil-
ters, which use a Gaussian probability den-
sity function to average voxels.28 An alternative 
approach developed by Rudin et al.29 to minimize 
the L1-norm of the gradient of the image (total 
variation norm) is effective in terms of preserv-
ing the edges in the anatomy.30 Yet another spa-
tial domain noise reduction technique that has 
received considerable attention is non-local 
means (NLM) filtering, which exploits the simi-
larities in structures within a slice (2D) or vol-
ume (3D) through weighted averaging.31–33 On 
the other hand, transform-based filters use an 

Gaussian probability den-
sity function: This Gaussian 
probability density function 
in this context refers to the 
distribution of the signal 
noise and not the diffusion of 
water molecules.

appropriate transformation basis on the pixels 
or voxels to perform denoising. Two transforma-
tions that have yielded effective results are prin-
cipal component analysis (PCA)34–36 and wavelet 
transformation-based denoising.37 These trans-
formations help in describing the image features 
spatially or spectrally by employing wavelet coef-
ficients or eigenvalues to filter unwanted signal.

It is important to note that these methods 
have primarily been applied to either just raw DW 
images or to DTI. Although one recent study has 
considered the NLM method for DKI,33 the com-
prehensive assessment of these approaches in this 
context is still pending. Here we consider denoising 
for DKI using three different methods: (a) Gaussian 
filtering, (b) NLM filtering, and (c) PCA denois-
ing based on the universal Marchenko–Pastur law. 
We discuss the underlying theory for these three 
techniques, including practical considerations, and 
we compare how they perform for in vivo human 
brain data by adding simulated noise.

2  DKI Signal Model
Diffusional kurtosis imaging is an extension of 
the familiar DTI technique that allows for the 
estimation of the diffusional kurtosis and related 
diffusion metrics. The signal model for DTI is 
simply monoexponential decay, 1, 2 given as

where S(n, b) is the DW signal with a diffu-
sion weighting b (the b value) along a diffusion 
encoding direction, n, and S0 is the DW signal 
with b = 0. Dapp is the apparent diffusion coef-
ficient (ADC) and η2 is the noise variance. Here a 
Rician noise correction has been added to the sig-
nal model according to the prescription of Gudb-
jartsson and Patz.39 Equation (1) is typically cast 
as a linear tensor estimation problem, where Dapp 
results in a directional diffusivity profile encoded 
by the 3 × 3 diffusion tensor.2 Tensor-derived dif-
fusion metrics for DTI include mean diffusivity 
(MD, average of directional diffusivities along all 
directions), axial diffusivity (D‖, the maximum 
ADC), radial diffusivity (D⊥ , average diffusiv-
ity perpendicular to the direction of maximum 
ADC), and fractional anisotropy (FA, measure of 
anisotropy for the ADC).

To account for the non-Gaussianity of the dif-
fusion process, an apparent excess kurtosis Kapp 
may be added to Eq. (1) in the following way:

(1)S(n, b) = ((S0e
−bDapp)2 + η2)

1
2 ,

(2)S(n, b) = ((S0e
−bDapp+ 1

6 b
2D2

appKapp)2 + η2)
1
2 ,

Post-processing techniques: 
Post-processing techniques 
do not alter the scan-time and 
are computationally efficient, 
making it a feasible approach.
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which is the standard signal model for DKI. By 
fitting to the experimental data, Eq. (2) can be 
used to estimate both Dapp and Kapp. The direc-
tional dependence of Dapp is once again described 
by the 3 × 3 diffusion tensor, while the depend-
ence of Kapp is characterized by a 3 × 3 × 3 × 3 
kurtosis tensor.7, 38 In addition to the metrics 
listed above based on the diffusion tensor, DKI 
also allows for diffusion metrics that are defined 
in an analogous fashion in terms of the kurtosis 
tensor, such as mean kurtosis (MK), axial kurtosis 
(K‖), radial kurtosis (K⊥), and kurtosis fractional 
anisotropy (KFA). In order for the DKI signal 
model of Eq. (2) to be sufficiently sensitive to 
non-Gaussian diffusion effects so as to facilitate a 
precise estimate of Kapp, higher maximum b val-
ues are typically needed with DKI than for DTI. 
Since stronger diffusion weightings decrease the 
DW signal, DKI is more prone to noise bias than 
DTI when the SNR is low.

3  Noise Characteristics in DKI
The complex raw DW data (k-space) acquired 
using the echo planar imaging (EPI) sequence is 
often influenced by various factors, namely bulk 
subject motion, eddy currents, inhomogenei-
ties in the main magnetic field, susceptibility-
induced distortion, signal dropouts, incomplete 
fat suppression, flow artifacts, etc.2, 5–7, 40 How-
ever, in many cases the principal confound-
ing factor that degrades the DW image quality, 
and consequently derived diffusion metrics, is 
thermal noise. The noise in k-space is generally 
assumed to be an uncorrelated Gaussian noise 
with zero mean and equal variance in real and 
imaginary part due to the linearity associated 
with the Fourier transform. However, the com-
mon practice is to discard the phase informa-
tion and reconstruct DW images just from the 
magnitude information. The truncation of the 
phase data (a nonlinear transformation) results 
in altering the probability density function of 
the noise and is found to obey a Rician distribu-
tion in a single-channel coil MRI setup and non-
central chi distribution in a multi-channel setup 
when the different channels are combined via 
sum of squares. Consequently, the noise in DWI 
is frequently modeled by a Rician distribution. If 
the DW image voxel intensity in the absence of 
noise is represented by X and the measured voxel 
intensity is Y, then the Rician probability distri-
bution for Y, 39 is given by

(3)pY (Y ) = Y

σ 2
e
− X2+Y 2

2σ2 I0

(

X · Y
σ 2

)

,

where I0 represents the zeroth order Bessel func-
tion of the first kind and σ represents the stand-
ard deviation of the Gaussian noise contained in 
the real and imaginary parts of the k-space. For 
high SNR (X/σ ≫ 1), pY(Y) is well approximated 
by a Gaussian distribution. However, for low 
SNR (X/σ ∼= 1), this Rician probability distri-
bution differs markedly from a Gaussian, which 
is the reason for the noise correction factors in 
Eqs. (1) and (2). Since DKI requires higher diffu-
sion weighting than DTI, and therefore uses DW 
images with lower SNR, non-Gaussian effects are 
typically more important for DKI.

4  Denoising Methods for DKI
4.1  Gaussian Filtering
Until recently, Gaussian filtering has been widely 
employed to denoise the raw DWI images in DKI, 
as it is a simple and fast denoising approach. 
Although the structure of the Gaussian filter is 
trivial, we still briefly introduce the probabil-
ity distribution associated with it. The filter is 
essentially a smoothing 2-D or 3-D convolution 
operator that blurs the images and removes high-
frequency components, using a kernel with a nor-
mal distribution of mean, μ = 0 and in a 2D case 
it is given as,39

where x and y are the distance of the pixels from 
the center of the kernel and σ is the standard 
deviation of the Gaussian kernel. The width of 
the Gaussian kernel is measured in terms of the 
full width at the half maximum (FWHM) given 
by 2

√
2 ln 2σ , with a common practice being to 

choose the FWHM to be equal to the pixel size of 
the image.39 The Gaussian filter is most effective 
when the DW images have sufficient SNR so the 
statistics are Gaussian, and it can be a poor choice 
to denoise DW images with low SNR, for which 
the statistics may be Rician as noted earlier.

4.2  Non‑local Means (NLM) Filtering
The NLM filter is based on taking advantage of 
the natural redundancy or spatial correlation 
present in the DW images to remove noise.31 If 
NLM(v)(xi) represents the restored intensity of 
a pixel or voxel size (xi) after the application of 
NLM filter, then the definition of NLM(v)(xi) is 
the weighted average of all voxel intensities in the 
image, given as

(4)p(x, y) = 1

2πσ 2
e
− (x2+y2)

2σ2 ,

(5)NLM(v)(xi) =
∑

xj∈I
w(xi, xj)v(xj),
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where v(xj) denotes the intensity of voxel xj and 
w(xi, xj) is the weight that is assigned to pixel, 
xi to recover xj. The weight is a similarity score 
between voxels xi and xj that ranges from 0 to 1. 
The similar voxels are searched over a neighbor-
hood called the patch. The usual choice to cal-
culate the weight is through finding the distance 
between xi and xj denoted as d(v(Ni), v(Nj)), 
where Ni and Nj are the neighborhoods around 
voxels xi and xj and w(xi, xj) is defined as

where σ̂ is the estimation standard deviation 
of the noise, h is the filtering parameter and 
Z(i) =

∑

j w(xi, xj) is the normalization con-
stant.32, 33 Finally, the distance d is typically the 
Euclidean distance given as

where yk and zk represent the kth voxels in the 
neighborhoods Ni and Nj. A recent work proposed 
a vector-based NLM (vNLM) that treated the set 
of DW images as multi-spectral image with each 
voxel being a (n + 1)-dimensional vector, ∆ was 
defined as �(v(yk), v(zk)) =

∣

∣

∣

∣vi(yk)− vi(zk)
∣

∣

∣

∣

2

2
, 

where vi(·) denotes the ith component of the vec-
tor v(·).

4.3  Marchenko–Pastur‑Based PCA 
(MPPCA)

Unlike Gaussian and NLM filtering, PCA-based 
filtering is a transform-domain approach that 
maps the redundant data in the spatial domain to 
eigenvalues and eigenvectors.34, 35 The objective 
of PCA is to discriminate between signal-carrying 
and noise-only components by thresholding the 
eigenvalues. However, one of the challenges asso-
ciated with a PCA-based approach is determina-
tion of the threshold values to distinguish signal 
and noise. Veraart and coworkers, proposed an 
extension to the traditional PCA-based technique 
by estimating the noise level, in turn overcom-
ing the limitation of choosing the threshold in an 
automated fashion.36 The estimation of the noise 
level relies on exploiting the fact that noise-only 
eigenvalues are expected to obey the universal 
Marchenko–Pastur law, which is derived from 
the random matrix theory for noisy covariance 
matrices. The noise-level estimation also accounts 
for Rician distribution in the data to threshold 
the eigenvalues.

(6)w(xi, xj) =
1

Z(i)
e
−

d(v(Ni),v(Nj ))

(hσ̂ )2 ,

(7)d(v(Ni), v(Nj)) =

√

√

√

√

1

N

N
∑

k

�(v(yk), v(zk)),

The proposed algorithm had two objectives, 
one is to threshold eigenvalues and the other to 
reconstruct the denoised matrix. The algorithm 
is initiated by considering a redundant M × N 
data matrix X that has P(≪ min(M, N )) princi-
pal components calculated through the singular 
value decomposition of X:

where U and V are left and right singular uni-
tary matrices, respectively, and ∧ is the diagonal 
matrix with singular values.36 Veraart and cow-
orkers36 have derived a closed form expression for 
estimating the denoised matrix based on March-
enko–Pastur (MP) distribution given as

where ∧̃ is obtained by nullifying the singular or 
eigenvalues below a threshold, � ≤ �+. The last 
step of the algorithm is to simultaneously esti-
mate the noise level (σ) in the data matrix X and 
significant signal components P simultaneously 
that determines λ+.

In the following sections, we will analyze these 
three denoising techniques discussed above with 
the help of a human dataset and discuss their rel-
ative performance.

5  DKI Data and Post‑Processing
To compare how the three noise-removal 
approaches introduced above perform, we 
acquired a DKI dataset from a healthy volunteer 
(male, 30 years). The subject was imaged on a Sie-
mens Tim Trio 3T system using a single-shot DW 
EPI sequence with a twice-refocused spin echo. 
The protocol used for this study was approved 
by the Medical University of South Carolina and 
informed consent was obtained from the subject 
prior to participation in the scan. Three b values 
of 0, 1000, and 2000 s/mm2 and 64 uniformly dis-
tributed diffusion encoding directions were used 
to estimate the diffusion and kurtosis tensor. The 
acquisition parameters used were TR = 7200 ms, 
TE = 103 ms, voxel size = 2 × 2 × 2 mm3, num-
ber of slices = 59, matrix size = 110 × 110, band-
width = 1352 Hz/Px, parallel imaging factor of 2 
and a 32-channel head coil with adaptive com-
bine mode. To obtain a DKI dataset that has min-
imal bias of noise, we acquired DKI datasets with 
three averages, and 25 images with no diffusion 
weighting (b0 images). The total acquisition time 
for three averages was 48.0 min.

All the DWIs were coregistered to their cor-
responding averaged b0 images using SPM8 

(8)X =
√
NU ∧ V

T ,

(9)X̂ =
√
NU ∧̃VT ,
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(Wellcome Trust Center for Neuroimaging, Lon-
don, UK) 6-parameter rigid body transformation. 
An average DKI dataset was created by averaging 
the three DKI datasets. The averaged DKI dataset 
was processed with the freely available software 
Diffusional Kurtosis Estimator (DKE) imple-
mented in MATLAB (https://www.nitrc.org/pro-
jects/dke/). The diffusivity-based metrics MD, D‖,  
D⊥, FA, and kurtosis-based metrics MK, K‖, K⊥, 
and KFA were then estimated.

The DKI dataset with three averages was 
reconstructed with the DKE software to gener-
ate parametric maps for the four diffusivity-based 
and four kurtosis-based diffusion metrics. From 
now on, we will refer to this dataset and its corre-
sponding parametric maps as “gold standard”. In 
order to compare the performances of the three 
denoising algorithms, Rician noise was added to 
the raw DW images. Rician noise was added to all 
the DW images such that the SNR with respect to 
DW images at b = 2000 s/mm2 was progressively 
decreased. The DW images at b = 2000 s/mm2 are 
used as a reference since they have the lowest SNR 
compared to b = 0, and 1000 s/mm2. We evalu-
ated performance by considering three differ-
ent noise cases of SNR = 30, 15, and 8. The gold 
standard dataset was considered as ground truth 
for all the three cases, in analyzing the diffusion 
and kurtosis parametric maps. For the Gaussian 
filtering, we implemented the isotropic Gauss-
ian filter that is available with the DKE software. 
The NLM filter described by Zhou and cowork-
ers,33 VNLM-d was implemented using the DWI 
denoising software developed by Coupe (https://
sites.google.com/site/pierrickcoupe/softwares).34 
For the rest of the paper, we will refer to VNLM-d 
as just NLM filter. The search radius for NLM was 
chosen as [2 × 2 × 2]. Finally, the MPPCA filter 
was implemented by the MATLAB code provided 
by the authors (https://github.com/NYU-Dif-
fusionMRI/dwidenoise).36 The parameters for 
all the three methods were optimized based on 
the visual appearance for all the three cases of 

noise and are summarized in Table 1. Note that 
the patch size and window size for NLM and 
MPPCA, respectively, are indicated in terms of 
number of voxels, while the Gaussian kernal size 
is given in millimeters.

6  Results
In Fig. 1, representative slices before and 
after denoising the DW images are shown for 
b = 2000 s/mm2 using Gaussian, NLM, and 
MPPCA at three different SNRs, 30, 15, and 8. 
The first and second columns indicate the images 
before and after adding noise. The third, fourth, 
and fifth columns give the denoised images at 
varying SNRs after applying Gaussian, NLM, and 
MPPCA filters, respectively. From visual appear-
ance, the capability of each denoising method is 
clearly visible, where MPPCA and NLM evidently 
outperforms Gaussian filtering (especially at 
SNR = 8). Between MPPCA and NLM, the effi-
cacy of MPPCA is visible in the case of SNR = 8, 
for example, in the ventricles.

The goodness criterion of denoising lies in 
the ability to estimate reliable diffusion metrics 
from the denoised images. Representative maps 
of diffusion metrics (both diffusivity and kur-
tosis based) are given in Figs. 2 and 3. The first 
row gives the parametric maps estimated from 
the gold standard dataset, which is considered as 
ground truth. The second row indicates the dif-
fusion and kurtosis maps obtained after adding 
noise (SNR = 30) and without any denoising. 
Finally, the last three rows give the results of diffu-
sion metric maps after using Gaussian, MPPCA, 
and NLM methods. Similar to Figs. 2 and 3, 
Figs. 4, 5, 6, and 7 are representative diffusion 
and kurtosis maps for SNR = 15 and SNR = 8. 
Figures 2, 3, 4, 5, 6, and 7 reveal the superior-
ity of the non-linear filters such as MPPCA and 
NLM compared to the traditional Gaussian filter. 
Moreover, these results also illustrate the higher 
sensitivity to noise of the kurtosis metrics (MK, 
K‖, K⊥, KFA) relative to diffusivity metrics (MD, 
D‖, D⊥, FA), presumably due to the kurtosis met-
rics stronger dependence on the higher diffusion 
weightings as suggested by Eq. (2).

As far as diffusivity metrics are concerned, the 
most noise-sensitive metric is FA, as is apparent 
in Figs. 2, 4, and 6. On the other hand, for the 
kurtosis metrics, the most sensitive is KFA, and 
the least sensitive is MK. The signal-preserving 
abilities of each method is reflected through the 
diffusivity and kurtosis metrics, in which, Gauss-
ian filtering clearly suppresses the high-frequency 
components resulting in blurring of the edges 

Table 1: Parameters used for the three denoising 
methods.

Gaussian NLM MPPCA

Kernel size Patch size Standard 
deviation

Sliding win-
dow size

[2.5 2.5 2.5] [10 × 10 × 10] 0.5 [5 × 5 × 5]

https://www.nitrc.org/projects/dke/
https://www.nitrc.org/projects/dke/
https://sites.google.com/site/pierrickcoupe/softwares
https://sites.google.com/site/pierrickcoupe/softwares
https://github.com/NYU-DiffusionMRI/dwidenoise
https://github.com/NYU-DiffusionMRI/dwidenoise
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in the anatomy. MPPCA and NLM on the other 
hand demonstrate the high accuracy of denois-
ing and edge preservation. However, we find that 
MPPCA is robust even under low SNR conditions 
(SNR = 8); KFA in Fig. 7 is better estimated by 
MPPCA than by NLM, which appears noisy com-
pared to gold standard in Fig. 1.

7  Discussion
In this review, we have demonstrated the appli-
cation of advanced denoising algorithms in DKI 
with two state-of-the-art denoising techniques, 
MPPCA and NLM, and a traditional Gaussian 
filtering technique. Since DKI employs relatively 
high diffusion weightings, the SNR is typically 
low so that denoising is often crucial. The use 
of Gaussian-based filters can be ineffective, both 
because they do not take into account Rician 
noise statistics and because they blur edges. This 
leads to systematic bias in the anisotropy (both 
FA and KFA) in particular. We found that Gauss-
ian filter was particularly inadequate for the 

b = 2000 set of images with the strongest depar-
ture from Gaussian noise. However, Gaussian 
filtering has the least computational complexity, 
generating a denoised image in about a minute 
for our implementation.

In contrast, both MPPCA and NLM account 
for Rician noise in DW images. However, the two 
methods differ in the way denoising is performed. 
MPPCA is a transform-based denoising method, 
while NLM is a spatial domain-based denois-
ing method. NLM’s performance is determined 
by the “similarity measure” (Eq. 6) that finds a 
similar patch in the neighborhood and estimates 
the standard deviation of the noise level, indi-
cated as threshold in Table 1. In order to have an 
optimal performance, these two parameters need 
to be tuned by the user. The advantage of NLM 
lies with retaining the high-frequency compo-
nents (edges) unlike Gaussian filtering. We found 
NLM filter to be on par with MPPCA at moder-
ate SNR levels (SNR = 30 and 15), but NLM had 
a suboptimal performance for higher noise levels 

Figure 1: Performance comparison of the three denoising techniques at SNR levels 30, 15 and 8. First 
column represents the gold standard slices (reference dataset) at b = 2000 s/mm2, second column rep-
resents slices after adding Rician noise at SNR levels, 30, 15, and 8 (SNR was measured with respect to 
b = 2000 s/mm2). Third, fourth and fifth columns indicate the denoised images obtained by Gaussian, 
MPPCA, and NLM methods, respectively, at varying SNR levels.
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compared to MPPCA. This may be because of 
heuristic selection of standard deviation (thresh-
old parameter in Table 1). The computational 
time for the NLM is decided by the patch size 
(Table 1); for a patch size of [10 × 10 × 10], the 
total time was about 6 min.

Finally, MPPCA exploits the multi-directional 
redundancy in DWI patterns than using local spa-
tial image patches (e.g., NLM). MPPCA approach 
eliminates the need for searching similar patches 
that can result in faster processing. A local 3D 
patch is selected from the multi-directional data 

Figure 2: Parametric axial maps for MD, D‖, D⊥, and FA for SNR = 30. The first and second rows rep-
resent the parametric maps with the gold standard dataset and maps from the noisy dataset without 
any denoising, respectively. The third, fourth, and fifth rows indicate the maps after applying Gaussian, 
MPPCA, and NLM filters. The scale bars for the three diffusivities are in units of µm2/ms, and FA is dimen-
sionless.
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and the default size of [5 × 5 × 5] was used for 
all the noise cases.36 Further, the eigenvalues of 
this 3D patch are computed, from the eigenval-
ues, signal-carrying principal components and 
noise-carrying components are separated. The 
noisy-only eigenvalues are thresholded using the 
Marchenko–Pastur (MP) law, which is essentially 

nothing but estimating the standard deviation 
of the noise distribution. Once the threshold-
ing is performed, an inverse transformation is 
applied to project the 3D patch back to the spa-
tial domain. An attractive feature of MPPCA 
is just providing the size of the local patch, and 
we found that the default choice of [5 × 5 × 5] 

Figure 3: Parametric axial maps for MK, K‖, K⊥, and KFA for SNR = 30. The first and second rows rep-
resent the parametric maps with the gold standard dataset and maps from the noisy dataset without 
any denoising, respectively. The third, fourth, and fifth rows indicate the maps after applying Gaussian, 
MPPCA, and NLM filters. The scale bars for kurtosis metrics are all dimensionless.
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was robust for all the noise cases considered and 
outperformed the other methods. The drawback 
of MPPCA approach is that the noise level is 
assumed to be constant within the kernel. How-
ever, if parallel imaging is adopted the noise 
might be spatially varying and MPPCA can have 
suboptimal performance. The computational 
time for MPPCA, at about 8 min, was a little 
longer than for NLM.

As a word of caution, it is important to 
avoid performing denoising as a first step in the 

post-processing pipeline as coregistration, eddy 
current correction, etc., can change the noise 
characteristics. We noticed a significant bias and 
potentially misleading diffusion metric maps 
if the denoising was performed subsequent to 
any other correction schemes. Finally, there are 
a number of factors that can potentially influ-
ence the denoising results of the three filters 
such as image artifacts, incorrect image registra-
tion or Gibbs ringing. Veraart and coworkers41 
have investigated Gibbs ringing in diffusion MRI 

Figure 4: Parametric axial maps for MD,D‖, D⊥, and FA for SNR = 15. The first and second rows represent 
the parametric maps with the gold standard dataset and maps from the noisy dataset without any denois-
ing, respectively. The third, fourth, and fifth rows indicate the maps after applying Gaussian, MPPCA, and 
NLM filters. The scale bars for the three diffusivities are in units of µm2/ms and FA is dimensionless.
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due to the truncation of high-frequency compo-
nents (because of limited bandwidth) using total 
variation (TV) based denoising. The use of TV 
resulted in suppressing ringing near sharp edges 
such as boundaries of tissues, thereby increas-
ing the anatomical accuracy of the reconstructed 
images. The limitations of this review also include 
not considering the local and global effects of the 

discussed denoising algorithms within the con-
text of DKI tractography.

8  Conclusion and Future Work
The effectiveness for estimating diffusivity and 
kurtosis metrics of the two state-of-the-art 
denoising techniques of NLM and MPPCA has 

Figure 5: Parametric axial maps for MK, K‖, K⊥, and KFA for SNR = 15. The first and second rows rep-
resent the parametric maps with the gold standard dataset and maps from the noisy dataset without 
any denoising, respectively. The third, fourth, and fifth rows indicate the maps after applying Gaussian, 
MPPCA, and NLM filters. The scale bars for kurtosis metrics are all dimensionless.
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been investigated here and compared with the 
performance of conventional Gaussian filtering. 
For an in vivo human DKI dataset, we have dem-
onstrated that both NLM and MPPCA generally 
outperform conventional Gaussian filtering in 
improving the fidelity of diffusion metric maps. 
Moreover, our results indicate MPPCA to be the 
overall better choice, particularly for low SNR 
data.

Recent DTI studies have introduced alterna-
tive denoising techniques that exploit rank and 

edge constraints to enhance the apparent SNR of 
the DW images.42 A total Kullback–Leibler prin-
ciple has also been proposed for simultaneous 
denoising and estimation of diffusion tensors, 
in which denoising is performed directly on the 
tensor instead of on the images.43 Alternatively, 
a recent method, collaborative filtering, also 
termed as Block matching and 4D filtering, has 
been shown to be effective in retaining fine struc-
tures in MR images.44 Further study in the con-
text of DKI focusing on comparing these other 

Figure 6: Parametric axial maps for MD, D‖, D⊥, and FA for SNR = 8. The first and second rows represent 
the parametric maps with the gold standard dataset and maps from the noisy dataset without any denois-
ing, respectively. The third, fourth, and fifth rows indicate the maps after applying Gaussian, MPPCA, and 
NLM filters. The scale bars for the three diffusivities are in units of µm2/ms and FA is dimensionless.
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denoising techniques with those investigated here 
could provide a better understanding of their rel-
ative advantage for improving DKI data analysis.
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