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Geometric Methods in Analysis and Control 
of Implicit Differential Systems

1 Introduction
Differential algebraic equations (DAE) or implicit 
differential systems are of the form:

where x ∈ X is a smooth manifold, 
(x, ẋ) ∈ T (X)the tangent bundle, and u ∈ U

is a space of admissible controls. Further, 
dim(X) = n, dim(U) = m and rank ∂F

∂ ẋ = n− p,  
in a suitable open dense subset of T(X), with 
0 ≤ m, p ≤ n. A salient distinction from ordi-
nary differential equation (ODE) systems is that 
F need not be invertible with respect to ẋ, i.e., ∂F

∂ ẋ 
may not be of full rank. In case it is invertible, 

(1)F(ẋ, x,u) = 0,
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Abstract | In this article, we discuss the application of differential geo-
metric methods in analyzing the structure and designing control laws for 
implicit differential systems or differential algebraic equation (DAE) sys-
tems. While there have been several efforts toward numerical and quan-
titative analysis of DAE problems, the theoretical contributions especially 
in the case of nonlinear systems are scarce. We discuss two popular 
techniques from differential geometric control theory and bring out their 
merits in addressing implicit differential systems. In the first section, we 
review the theory of noninteracting control via input–output decoupling 
and its application in analyzing the intrinsic structure of DAE control 
problems. In particular, we focus on addressing the problem of well-pos-
edness of DAE systems as well as feedback control design through a 
regularization process which allows one to solve the DAE by express-
ing the constraint variable as a dynamically dependent endogenous 
function of the states, inputs, and their derivatives. Further, extensions 
of these techniques to stochastic differential algebraic equations have 
been presented. In the second section, we review the theory of differen-
tial flatness and its applicability to feedback control design for a class of 
DAE systems. Here, the DAE system is expressed as a Cartan field on a 
manifold of jets of infinite order, and necessary and sufficient conditions 
for its equivalence to a linear, controllable system have been derived in 
order to design globally stabilizing nonlinear feedback laws. Examples 
from constrained mechanics have been presented in order to demon-
strate the practical applicability of these methods.

then (1) can be rewritten as an ODE, by apply-
ing the implicit function theorem to express ẋ 
explicitly in terms of x and u as ẋ = F̂(x,u). The 
article by Petzold41 further illustrates the distinc-
tions between ODE and DAE systems with both 
analytical and numerical considerations. In par-
ticular, the following pertinent questions arise 
when addressing DAE problems:

•   Existence and uniqueness Given an initial 
condition (x0, ẋ0) satisfying (1) at t = 0, does 
there exist (at least locally) a unique trajectory 
(x(t), ẋ(t)) satisfying the DAE and initial con-
ditions ?
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•   Stability As in the case of ODEs, are there con-
ditions to check whether an equilibrium point 
of the flow is locally or globally stable (in the 
sense of Lyapunov)?

•   Nature of solutions Do the solutions exhibit 
bifurcations or impulses for certain initial 
conditions and parameters?

•   Numerical considerations When designing a 
numerical integration algorithm to solve DAE 
systems, in addition to considering the nature 
of solutions, it is also essential to determine 
whether the initial condition of the integra-
tor is consistent i.e., given x(n), u(n), does the 
numerical integrator generate a unique point 
x(n+ 1),u(n+ 1) which is along the expo-
nentiation of the flow of the original system 
along the constraint manifold?

Unlike ODEs, answering these questions is a non-
trivial task, and in the general case they remain 
unanswered.

DAEs appear in several engineering problems 
which are described as follows:

•   Control systems with servo constraints These 
problems are of the form: 

 Here, h(x) is an output function which is 
required to follow a reference trajectory r(t). 
g = [g1, . . . , gm] such that gi : U → Tx(M) 
are independent vector fields. This is a dynamic 
inversion problem, where a feedforward control 
uf (t) needs to be determined such that the servo 
constraint h(t) = r(t) is satisfied, while solving 
the ODE. When dim(h(x)) = dim(u) < n,  
this may lead to a unique control uf . When 
dim(h(x)) < dim(u) < n, there may be sev-
eral control solutions and one may deter-
mine a solution that optimizes an appropri-
ately defined cost. Works such as Blajer and 
Kołodziejczyk6 and Brüls et al.8 address this 
problem in the context of mechanical systems 
which are path constrained. In Baumgarte5, 
in addition to solving the dynamic inversion 
problem, a feedback is applied to stabilize the 
servo constraints. However, these works assume 
certain structural conditions on the dynamics, 
thereby restricting the class of problems they 
address.

•   Semi-implicit differential systems These prob-
lems are of the form: 

Mechanical systems: Me-
chanical systems with natu-
rally occurring holonomic or 
nonholonomic constraints 
are regular.

(2)
ẋ = f (x)+ g(x)u,

h(x)− r(t) = 0.

(3)
ẋ = f (x)+ g(x)u+ q(x)v

φ(x)− �(t) = 0

 Here q = [q1, . . . , qp] such that 
qi : V → Tx(M) are independent vector 
fields. v ∈ V  is a set of algebraic variables 
which intrinsically evolve so as to satisfy 
the constraint φ(x)− �(t) = 0, where �(t) 
is a constrained trajectory. u are controls 
that may be appropriately varied to regulate 
an output y. As described in Krishnan and 
McClamroch20, McClamroch31, and Yim 
and Singh61, an example of such a problem 
is a mechanical system with holonomic con-
straints. In these problems, the constraint 
manifold is described by φ(x) = 0, and v is 
a set of Lagrange multipliers or constraint 
forces whose evolution is intrinsic. Another 
class of control problems in which such 
DAEs appear are those that involve feedback 
design based on the immersion and invari-
ance principle4, which is widely applicable 
in adaptive control design. Here, a suitable 
submanifold M of X is identified such that 
the controlled vector field, when restricted 
to T(M), possesses certain desirable proper-
ties such as global exponential stabilizability 
and finite time reachability. The input space 
is then bifurcated into two components, 
one that achieves the desired system perfor-
mance when restricted to M, and another 
that asymptotically drives the system toward 
M and renders M invariant. Here, the former 
can be considered as u and the latter as v.

•   Implicit forms of explicit control systems Con-
sider a control system 

 If 
∂f

∂u
 is of full rank, the implicit function 

theorem can be applied to express u as a 
function of x and ẋ, resulting in the implicit 
system 

 Here, rank
∂F

∂ ẋ
= dim(X)− dim(U). This 

form is later discussed in this article in the 
context of differential flatness as presented 
in Levine22, Fliess et al.16,17, and Rouchon 
et al.51.

Over the last two decades, deterministic dif-
ferential algebraic equations have been studied in 
the following literature from the geometric view-
point. For example, Reich46, Brenan et al.7, and 
Rheinbolt50 used the analysis of differential equa-
tions on manifolds for a qualitative treatment of 

(4)y = h(x).

(5)ẋ = f (x,u).

(6)F(x, ẋ) = 0.

Regularity: Regularity implies 
that the relative degree 
with respect to algebraic 
variables is not larger than the 
relative degree with respect to 
controls.
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 Here q = [q1, . . . , qp] such that 
qi : V → Tx(M) are independent vector 
fields. v ∈ V  is a set of algebraic variables 
which intrinsically evolve so as to satisfy 
the constraint φ(x)− �(t) = 0, where �(t) 
is a constrained trajectory. u are controls 
that may be appropriately varied to regulate 
an output y. As described in Krishnan and 
McClamroch20, McClamroch31, and Yim 
and Singh61, an example of such a problem 
is a mechanical system with holonomic con-
straints. In these problems, the constraint 
manifold is described by φ(x) = 0, and v is 
a set of Lagrange multipliers or constraint 
forces whose evolution is intrinsic. Another 
class of control problems in which such 
DAEs appear are those that involve feedback 
design based on the immersion and invari-
ance principle4, which is widely applicable 
in adaptive control design. Here, a suitable 
submanifold M of X is identified such that 
the controlled vector field, when restricted 
to T(M), possesses certain desirable proper-
ties such as global exponential stabilizability 
and finite time reachability. The input space 
is then bifurcated into two components, 
one that achieves the desired system perfor-
mance when restricted to M, and another 
that asymptotically drives the system toward 
M and renders M invariant. Here, the former 
can be considered as u and the latter as v.

•   Implicit forms of explicit control systems Con-
sider a control system 

 If 
∂f

∂u
 is of full rank, the implicit function 

theorem can be applied to express u as a 
function of x and ẋ, resulting in the implicit 
system 

 Here, rank
∂F

∂ ẋ
= dim(X)− dim(U). This 

form is later discussed in this article in the 
context of differential flatness as presented 
in Levine22, Fliess et al.16,17, and Rouchon 
et al.51.

Over the last two decades, deterministic dif-
ferential algebraic equations have been studied in 
the following literature from the geometric view-
point. For example, Reich46, Brenan et al.7, and 
Rheinbolt50 used the analysis of differential equa-
tions on manifolds for a qualitative treatment of 

(4)y = h(x).

(5)ẋ = f (x,u).

(6)F(x, ẋ) = 0.

Regularity: Regularity implies 
that the relative degree 
with respect to algebraic 
variables is not larger than the 
relative degree with respect to 
controls.

DAEs. More recently, Krishnan20 and McClam-
roch31 have studied the feedback stabilization of 
deterministic implicit control systems and have 
produced an explicit state space local realization 
under certain regularity assumptions which will be 
discussed later. In Yim and Singh61, the problem of 
feedback linearization has been considered after 
extending the input trivially, under similar regu-
larity conditions. Xiaoping59 and Liu* and WC 
Ho26, under slightly less restrictive assumptions, 
construct a static state feedback law for u so that 
the constraint is satisfied while simultaneously 
stabilizing certain outputs. In Xiaoping and 
Celikovsky60 and Liu et al.27, a dynamic state 
feedback for u is synthesized, which renders the 
system regular as described in Krishnan and 
McClamroch20, enabling feedback control design. 
In da Silva et al.13 and Pereira da Silva and 
Batista40, state space realizations of implicit con-
trol systems have been studied by applying the 
dynamic extension algorithm as described in 
Nijmeijer and Van der Schaft36 to the tracking 
output and constraints, in order to decompose 
the input into two components, one that tracks 
the output and another that independently satis-
fies the constraint. In Levine22, Fliess et al.17, Rou-
chon et al.51, and Antritter and Lévine1, a 
particular class of control problems whose 
implicit representation is differentially flat has 
been studied. The flatness property has been used 
to construct a dynamic feedback and diffeomor-
phism which transforms the system into a linear 
controllable canonical form, thereby enabling 
globally stable feedback design.

In the first section of this article, we consider 
control systems described by nonlinear DAEs of 
the form:

where x ∈ X is an n-dimensional smooth 
manifold, u ∈ R

m, v ∈ R
p, f ∈ V∞(X) , 

g = [g1, . . . , gm] where gi ∈ V∞(X) , 
q = [q1, . . . , qp] where qi ∈ V∞(X), and 
σ = [σ1, . . . , σd] where σi ∈ V∞(X). φ(x)− �(t) 
is an algebraic path constraint, describing a 
submanifold of the time-augmented manifold 
X × R, with φ(x) = [φ1, . . . ,φm]T : X → R

m 
and �(t) ∈ R

m being smooth. We may further 
assume that these fields are analytic and Lipschitz. 
We refer to u as the control input, which is exter-
nally applied and v as the constraint input which 
is intrinsically determined so that the constraint 
is satisfied. It can be seen that the equations (7) 
are not in a state space form, rather they are in an 
implicit form due to the constraints. The problem 

(7)
ẋ = f (x)+ g(x)u+ q(x)v

φ(x)− �(t) = 0,

is to express the intrinsic evolution v(t) as an 
endogenous map of the states, and the externally 
applied input u, such that an explicit control 
system is obtained, for which the constraint 
φ − � = 0 is invariant. Equations of the form 
(7) represent an important class of mathematical 
control problems that have not been addressed 
in generality. (It will be shown that these equa-
tions generalize (1) using a dynamic extension.) 
We apply the geometric theory of input–output 
decoupling via dynamic extension to obtain a 
set of sufficient conditions on the DAE, in order 
to determine whether there exists an endoge-
nous state feedback law for v which dynamically 
depends on x and u such that the DAE is satisfied 
for a restricted set of initial conditions and con-
trol inputs. We apply dynamic precompensators 
such as those obtained by the dynamic extension 
algorithm as described in Isidori18, or the more 
general ones as in Martin30 and Respondek48. We 
state sufficient conditions on the Cartan prolon-
gation22 of the unconstrained system such that 
the local existence and uniqueness of solutions 
are guaranteed. Further, the DAE admits a local 
explicit representation which is used for control 
design. By this, we mean a submanifold N of the 
level set φ(x)− �(t) = 0 and an explicit control 
system on N with a local description

Further, we consider the system (7) along with 
nonlinearly coupled white noise and extend the 
above result to obtain conditions on the noise 
fields such that the stochastic DAE admits an 
explicit state space form, thereby enabling one 
to apply classical methods of stochastic stabiliza-
tion19. With the obtained local representations, 
questions about uniqueness, stability, nature of 
solutions, and consistency of numerical condi-
tions can be answered with ease.

In the second section of the article, we review 
the theory of differential flatness of DAEs and 
apply it in designing globally stabilizing con-
trol laws for a class of systems. Consider the 
implicit form of a control system as described in 
(6). By differential flatness, we mean the exist-
ence of a flat output function y = h(x, ẋ, . . . , xν) , 
where dim(y) = m, and a smooth map 
x = ϕ(y, ẏ, ÿ, . . . , y(µ)) such that

For this class of systems, we show that there exist 
a dynamic feedback

(8)η̇ = f̄ (t, η)+ ḡ(t, η)ū.

(9)F(ϕ(y, ẏ, ÿ, . . . , y(µ)), ϕ̇(y, ẏ, ÿ, . . . , y(µ+1)) = 0.

(10)
ż = α(x, z, v),

u = β(x, z, v)



394

Ashutosh Simha and Soumyendu Raha

1 3 J. Indian Inst. Sci.| VOL 97:3 | 391–411 September 2017 | journal.iisc.ernet.in

and a diffeomorphism Y = �(x, z) such that the 
push-forward of the dynamics (5), along with the 
above dynamic feedback, is of the form:

where (A,B) is in the linear controllable canoni-
cal form. This enables globally stabilizing feed-
back control design for the nonlinear system. 
There have been three salient mathematical 
approaches to analyzing differential flatness of 
implicit systems, i.e., finite dimensional differen-
tial geometric approaches9, 10, 52, 53, 56, differential 
algebra-based approaches2, 51, and infinite dimen-
sional differential geometry of jet bundles and 
prolongations11, 12, 17, 22, 43, 44, 58.

2  Explicit State Space Representation
2.1  Regularity
Consider the deterministic system given by

Definition The above system is said to be regu-
lar31 at x0 ∈ X if the following conditions are sat-
isfied in a neighborhood of x0: (Let Lf h(x) denote 
the Lie derivative of the function h(x) with respect 
to the vector field f and Lkf h(x) = Lf (L

k−1
f h(x))). 

∃ positive integers γ1, . . . , γp such that

A1.  LqiL
k
f φj(x) = 0, ∀k = 0, . . . , γj − 2, 

∀i, j = 1, . . . , p;
A2.  the p× p decoupling matrix A(x) whose 

entries are given by aji = LqiL
γj−1

f φj(x); 
is of full rank p at x0

A3.  LgiL
k
f φj(x) = 0, ∀k = 0, . . . , γj − 2, 

∀i = 1, . . . ,m, j = 1, . . . , p.

The above definition essentially says that φ has 
a strict relative degree with respect to v, which 
is not larger than its relative degree with respect 
to u. With this assumption, it is clear31, 36 that a 
(time-varying) state feedback law for the intrinsic 
evolution v(t) can be obtained as

where the p×m matrix Ā(x) is given as 
āji = LgiL

γj−1

f φj(x).
From Isidori18 and Nijmeijer and Van 

der Schaft36, we can show that the functions 
{Lkf φj(x), k = 0, . . . , γj − 1, j = 1, . . . , p} are 
differentially independent and can therefore 
be extended to a diffeomorphism by a set of 

(11)Ẏ = AY + Bv,

(12)
ẋ = f (x)+ g(x)u+ q(x)v

φ(x)− �(t) = 0.

(13)

v = A(x)−1([�1(t)(γ1), . . . , �p(t)(γp)]T

− [Lγ1f φ1(x), . . . , L
γp

f φp(x)]T − Ā(x)u(t)),

functions η1, . . . , ηk , where k = n− γ1 − · · · − γp.  
Define this diffeomorphism (Y , η) = �(x), where 
Y
j
i = Lkf φj(x), the derivatives of φj(x). A direct 

computation shows that the push-forward of the 
dynamics (12) under the above diffeomorphism 
and feedback law can be obtained as

The manifold on which the constraint dynamics 
evolve is given by

Therefore, the DAE system is locally well-posed 
and impulse free for any initial condition in N 
and any integrable u(t). Further, the local stability 
and nature of the DAE solutions can be analyzed 
by analyzing the ODE:

where Yr(t) is obtained by setting y(t) = �(t).
We consider the following model of a con-

strained robot system as discussed in Krishnan 
and McClamroch20:

 Example 2.1

where q ∈ R
n is the parametrization of gener-

alized displacement, M(q) is the inertia matrix 
which is symmetric and positive definite, H(q, q̇) 
is the vector of Coriolis, centripetal, and gravity 
forces, u ∈ R

m is a vector of generalized external 
forces, φ(q) is a constraint manifold, and v ∈ R

p 
are the intrinsically applied reaction forces that 
satisfy the constraint. J = ∂φ

∂q
 is of full row rank 

p. Since M is positive definite and symmetric, we 
can write M−1 = M̂M̂T, thereby obtaining the 
decoupling matrix as

which is of rank p uniformly. Thus, it can be veri-
fied that the regularity assumptions [A1], [A2], 
[A3] are uniformly satisfied. Therefore, (17) can 
be transformed into an explicit control system as 
given by (16).

An example of such a system is that of a sim-
ple pendulum subject to a control torque about 

(14)

Y
γ1
1 = 0,

...,

Y
γp
p = 0,

η̇ = P(η,Y )+ Q(η,Y )u.

(15)

N = {x : Lkf φj(x), k = 0, . . . , γj − 1, j = 1, . . . , p}.

(16)η̇ = P(η,Yr(t))+ Q(η,Yr(t))u,

(17)
M(q)q̈ +H(q, q̇) = JT (q)v + u

φ(q) = 0,

(18)A(q) = J (q)M̂M̂T J (q)T
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the axis of rotation. The equations of motion are 
written in the constrained Euler–Lagrange form, 
where the Lagrange multiplier � corresponding to 
the circular constraint denotes the tension in the 
rod which maintains the constraint. The control 
input is given by u.

It can be observed that the above set of equa-
tions satisfies the assumptions [A1], [A2], [A3] 
with relative degree 2. Since the control force acts 
orthogonal to the constraint force, we can solve 
for � independent of u as

We refer the reader to Krishnan and McClam-
roch20 and Yim and Singh62 for the details of con-
trol design for such systems.

3  Dynamic Regularization of DAE 
Systems

We now generalize the above methods to systems 
which may not be regular.

Definition The implicit system (12) is said to 
be dynamically regularizable via a precompensa-
tion at x0 if there exists a dynamic precompensa-
tor � with state z ∈ R

ν:

where x̄ = (x,u, u̇, . . . ,u(µ−1)) contains a trivial 
input extension with µ being finite, such that the 
compensated system with state (x̄, z)T, constraint 
variable v̄, and input ū = u(µ) is regular at (x̄0, z0).

3.1  Cartan Prolongations
An important tool for characterizing the geom-
etry of regularizability is Cartan Prolongations or 
Cartan Fields.

Definition For the explicit system given by 
(12) without the constraint, we define its Cartan 
prolongation as the smooth vector (Cartan) field 
on the infinite dimensional manifold 
X = X × R

m
∞ × R

p
∞ with coordinates 

ζ = (x,u0, v0,u1, v1, . . .) as F ∈ V∞(X ), where

(19)

mẍ = 2�x + yu

mÿ = 2�y−mg − xu

x2 + y2 − l = 0

(20)�(x, y, ẋ, ẏ) = mgy−mẋ2 −mẏ2

2l
.

(21)
ż = α(x̄, z, v̄)

v = β(x̄, z, v̄),

Explicit system: The explicit 
system need not be a sub-
manifold of the original state 
space, but that of its associ-
ated higher order jet space.

where u0 = u, v0 = v, and u1, v1, . . . are subse-
quent derivatives.

With this vector field, we can describe the fol-
lowing system on X  as

which we will call �, denoting the flow of the 
vector field F. � is uniquely identified with the 
explicit system given by (12) without constraint 
and will be used interchangeably. It is well known 
that any smooth function on X  depends locally 
on only finitely many coordinates (due to its 
cylinder topology). Hence, we can define the Lie 
derivative of a smooth function LFh(x,u0, v0) and 
subsequent iterated Lie derivatives LkFh(x,u

0, v0) 
as before (the reader is referred to Levine22 for 
details).

Definition Given µ > 0, define the restricted 
Cartan prolongation Fµ as

For example, the system �0 denotes the 
unconstrained system in (12) with zero control 
input and �1 denotes the unconstrained system 
in (12) with the input u being an arbitrary con-
stant u0, which is given as an explicit system on 
X × R

m

Definition Following Martin30 and 
Respondek48, given the constrained output φ(x) 
and the restricted Cartan field Fµ, we define the 
following codistributions on S ⊂ X :

(22)

F(ζ ) =
n

∑

i=1

(

fi(x)+
m
∑

j=1

gij (x)u
0
j +

p
∑

k=1

qik(x)v
0
k

)

∂

∂xi
+

∑

l≥0

(

ul+1 ∂

∂ul
+ vl+1 ∂

∂vl

)

,

(23)ζ̇ = F(ζ )

(24)

Fµ := F/S(x,u0, . . . ,uµ−1
, v0, v1, . . .)

=
n

∑

i=1

(

fi(x)+
m
∑

j=1

gij (x)u
0
j +

p
∑

k=1

qik(x)v
0
k

)

∂

∂xi
+

∑

l≥0

(

vl+1 ∂

∂vl

)

+
µ−2
∑

s=0

(

us+1 ∂

∂us

)

.

(25)
ẋ = f (x)+ g(x)u0 + q(x)v

u̇0 = 0.



396

Ashutosh Simha and Soumyendu Raha

1 3 J. Indian Inst. Sci.| VOL 97:3 | 391–411 September 2017 | journal.iisc.ernet.in

where x̄ = (x,u0, . . . ,uµ−1).

3.2  Dynamic Extension Algorithm
An important tool for constructing a regularizing 
feedback which we will use is the dynamic exten-
sion algorithm. There are various versions of this 
algorithm, and we will use the version given in 
Martin49. The equivalence with other versions 
can be studied in Di Benedetto et al.14. We will 
state the algorithm when applying to the system 
�µ in brief. The reader is referred to Respondek49 
for more details. Consider the system �µ, and 
denote the Cartan prolongation Fµ as F0

µ. Let 
x̄ = (x,u0, . . . ,uµ−1), G0 = ∂

∂v.

•   Step 1 Let ρ0
i , 1 ≤ i ≤ p, denote the small-

est integer such that LG0L
ρ0i
F0
µ
φi �= 0, denote 

ρ0 = (ρ0
1 , . . . , ρ

0
p), D1(x̄, v) = LG0L

ρ0i
F0
µ
φ. 

Assume that r1(x̄, v) = rank D1(x̄, v) is con-
stant around (x̄0, v0). Now reorder φi such that 
the first r1 rows of D1 are independent and 
ρ0
1 ≤ · · · ≤ ρ0

r1
 is a minimal r1-tuple among all 

such re-orderings.
•   Step 2 Using the implicit function theorem, apply 

the invertible transformation v = α1(x̄,w1, w̄1) 

such that L
ρ0

F1
µ
φ =

[

w1

�1(x,w1)

]

, where 

F1
µ(x̄,w

1, w̄1) = F0
µ(x̄,α

1(x̄,w1, w̄1)).
•   Step 3 Denote y = (y1, ȳ1) = (φ1, φ̄1), where 

φ1 = (φ1, . . . ,φr1). Let ρ1 denote the subin-
dex of ρ0 corresponding to φ1. Change the 
V coordinates to W such that ẇ1,i = w1,i+1. 
Denote G1 = ∂

∂w1 and Ḡ1 = ∂
∂w̄1. (Here V and 

W denote the jet coordinates).
•   Step 4 Only consider the outputs ȳ1 and ana-

lyze the dependence on w̄1. Let ρ̄1
i  denote, for 

every i > r1, the smallest integer such that 

LḠ1L
ρ̄1i
F1
µ
φi �= 0. Denote ρ̄1 = (ρ̄1

r1+1, . . . , ρ̄
1
p) , 

D2(x̄,W 1) = LḠ1L
ρ̄1

F1
µ
φ̄1. Define 

r2(x̄,W
1) = rank D2(x̄,W 1), where W 1 con-

sists of w1 and the time derivatives appearing 
in the D2 expression.

•   Step 5 Assuming again that r2 is constant 
around (x̄0,V 1

0 ), reorder φi such that the first r2 
rows of D2 are independent. Apply an invert-
ible transformation w̄1 = α2(x̄,W 1,w2, w̄2) 

such that L
ρ̄1

F2
µ
φ̄1 =

[

w2

�2(x,W 1,w2),

]

 where 

Fµ2 is the modification of Fµ1 under static 

(26)

E−1
µ = span{dx̄}

E j
µ = span{dx̄, dφ, . . . , dLjFµφ}, j > 0,

feedback α. Denote φ̄1 = (φ2, φ̄2), where 

φ2 = (φr1+1, . . . ,φr1+r2), and correspondingly 

partition ȳ1 = (y2, ȳ2). Let ρ2 denote the sub-

index of ρ̄1 corresponding to φ2.
•   Step 6 Change the W coordinates such that 

ẇ2,i = w2,i+1, and let G2 = ∂
∂w2 and Ḡ2 = ∂

∂w̄2. 

The algorithm is iterated say k times until 

 Let r = r1+, . . . ,+rk. If r = p, then the com-
pensator obtained is regular. Since the algo-

rithm terminates, L
j

Fk
µ
φi does not depend on 

w̄k for any j ≥ 0 and i ≥ r. After k iterations, 
for the system which is affine in v, the com-
pensator is of the form: 

 and the closed loop system is of the form: 

 where x̃ = (x̄, z). The compensated system is 
denoted by �µ ◦�e. A point (x̄0,V0) is called 
a regular point of the algorithm if the con-
stant rank assumptions at each stage are valid 
in a neighborhood.

3.3  Conditions for Dynamic 
Regularizability

We are now ready to state the main result of the 
paper which states sufficient conditions for regu-
larizability of (12).

Theorem 3.1 Suppose there exists a finite µ, and 
the corresponding system �µ with restricted prolon-
gation Fµ, and the corresponding codistributions 
satisfy the following conditions around (x̄0,V0) :

C1.  En+µm is of constant rank in a neighbor-
hood of (x̄0,V0).

C2. dim(En+µm+1(x̄,V )/En+µm(x̄,V )) = p.

C3.  Further if the point (x̄0,V0) is a regular 
point of the extension algorithm, and at 
each kth iteration ∀1 ≤ l ≤ p

(27)L
ρi

Fk
µ
φi = wi, i = 1, . . . , k .

(28)
ż = α1(x̄, z)+ α2(x̄, z)w

v = β1(x̄, z)+ β2(x̄, z)w,

(29)˙̃x = f̃ (x̃)+ q̃(x̃)w,

(30)

{

∂

∂u
µ−1
l

}

inker

({dLγi
Fk
µ
φi, 1 ≤ i ≤ k , 0 ≤ γi ≤ ρi − 1})

+ span{q̃j , 1 ≤ j ≤ p},
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then the implicit control system is dynamically reg-
ularizable with a precompensator derived from the 
extension algorithm.

 Proof

Given µ, the original system � can be written after a 
trivial input extension and precompensation (28) as

where

and ū = uµ. Hence, � ◦�e can be written as 
the system �µ ◦�e with an additional exog-
enous input ū which is coupled to the system 

through the vector fields { ∂

∂u
µ−1
i

, i = 1, . . . ,m} . 
At each iteration, we know that the one-forms 

dL
γi

Fk
µ
φi 1 ≤ i ≤ k , 0 ≤ γi ≤ ρi − 1 are inde-

pendent36 and hence can be completed to a basis, 
yielding the diffeomorphism (Y , η) = �(x̄, z), 
where the partial coordinates Y are given by

In these new coordinates, the push-forward of the 
dynamics through the diffeomorphism �(x̄, z) 
can be obtained as

where ŵ = [w1, . . . ,wk ]T and (A, B) are in 
Brunovsky normal form as obtained in (27). 
Applying the push-forward through � to con-
dition [C3.], we obtain (using the identity 
�−1∗dh = d(h ◦�−1)

however, observe that �∗q̃j = Bj 

and �∗

(

∂

∂u
µ−1
l

)

= [cTl , c̄Tl ]T and 

dL
j

Fk
µ
φi(�

−1(Y , η)) = dy
j
i. Hence we obtain

Normal form: The normal 
form (14) expresses con-
strained outputs in the prime 
form, allowing them to be 
independently stabilized for 
any control input.

(31)

˙̄x = f̄ (x̄)+ q(x̄)v + ḡ ū

ż = α1(x̄, z)+ α2(x̄, z)w

v = β1(x̄, z)+ β2(x̄, z)w,

f̄ = f (x)+ g(x)u0 +
µ−2
∑

j=0

uj+1 ∂

∂uj
,

ḡ =
[

∂

∂u
µ−1
1

, . . . ,
∂

∂u
µ−1
m

]

(32)Y = y
j
i = L

j

Fk
µ
φi, 1 ≤ j ≤ ρi, 1 ≤ i ≤ r.

(33)
Ẏ = AY + Bŵ + c(η,Y )ū

η̇ = R1(η,Y )+ R2(η,Y )w + c̄(η,Y )(ū),

(34)

�∗

(

∂

∂u
µ−1
l

)

∈ ker{dLj
Fk
µ
φi(�

−1(Y , η))}

+ span(�∗q̃j);

From this, the partial dynamics of Y can be 
obtained as

It is thus evident that the regularity conditions 
[A1.] and [A3.] are satisfied. Further, [C1.] and 
[C2.] applied to the system �µ are the intrinsic 
conditions for input (v) and output (φ) decou-
pling by dynamic feedback as given in Martin30. 
However, it is well known18 that if the dynamic 
extension algorithm can be iterated at a regular 
point and any regularizing dynamic compensator 
exists, then the extension algorithm produces the 
one that is minimal. This implies that

Hence, the decoupling matrix A(x̃) = Idp, 
thereby satisfying condition [A2]. The invariant 
manifold can be obtained as the integral subman-
ifold of the distribution

i.e.

and the explicit system is given as

where Y�(t) = {�(j)i (t)}. It is evident that the feed-
back control structure does not explicitly depend 
on the constraint variable v as the compensa-
tor variables (hence η) are completely recovered 
by integrating w. Any output h(x) which is dif-
ferentially independent of {yji} and is completely 
determined by η coordinates as h ◦�−1(η) can 
be tracked with an appropriate feedback law ū in 
(85). The tracking however is subject to the case 
that the chosen output is minimum phase. In 
this case, any of the classical nonlinear control 
approaches can be applied (such as those in Isi-
dori18).  �

This theorem has an implication that the reg-
ularizing structure for a general implicit control 

(35)[cTl , c̄Tl ]T ∈ span

{

∂

∂η

}

+ span{Bj}.

(36)

ẏ1i = y2i

...

ẏ
ρi−1
i = wi + ci(Y , η)ū, 1 ≤ i ≤ r.

(37)r = r1 + r2 + . . .+ rk = p.

(38)N ∗ = span

{

∂

∂ηi

}

,

(39)N = {x̃ : Lj
Fk
µ
φi(x̃) = 0},

(40)

η̇ = R1(η,Y�(t))+ R2(η,Y�(t))w(t, η, ū)+ c̄(η,Y�(t))(ū)

w(t, η, ū) =









�
(ρ1)
1

− cρ1 (Y�(t), η)ū

.

.

.

�
(ρp)
p − cρp (Y�(t), η)ū








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system may be obtained through higher deriva-
tives of the control. The following simple exam-
ple illustrates this fact:

 Example 3.1

It can be seen that the conditions of the the-
orem fail for the Cartan prolongations Fµ for 
µ = 0 and µ = 1. ÿ ≡ 0 for the systems �0 and �1 . 
However, for µ = 2 the conditions are satisfied. 
This has an interesting implication that a DAE 
singularity is encountered when u̇ = 0. Also note 
that if the conditions of the theorem are satisfied 
for µ0, then they are satisfied for any µ > µ0.

3.4  Stochastic Implicit Control Systems
In this section, we will consider the problem of 
constructing a regularizing compensator for sto-
chastic differential algebraic control systems of 
the form:

where ξ is a d-dimensional white noise and σ is 
appropriately defined similar to g and q. We will 
present two cases, i.e., strong and weak state space 
forms. Here, by weak we mean that the stochas-
tic processes described by the solutions of the 
explicit stochastic system are to be interpreted 
as generalized (distribution valued) processes. It 
may be possible for some of the constraint vari-
ables v to be directly expressed in terms of white 
noise. A rigorous treatment of such processes 
using the Wick product can be found in the refer-
ence15. It is natural in several physical problems 
for such a situation to arise. For example, in the 
well-known DAE describing the simple pendu-
lum7, if an externally applied torque is mod-
eled as a white noise process, then the constraint 
variable, which is the tension in the rod, directly 
depends on the externally applied torque, i.e., 
white noise. In the strong case, none of the varia-
bles will depend on the noise directly, and further 
we will show that the explicit feedback structure 
does not depend on the constraint variables. The 
solution processes in this case can be interpreted 
in the strong stochastic sense.

Conditions of Theorem 3.1: 
The conditions of Theo-
rem 3.1 can be understood as 
follows: the structure of infin-
ity with respect to algebraic 
variables is no larger than the 
relative degree with respect to 
controls.

(41)

ẋ1 = sin(x22u)+ sin(x23u)

ẋ2 =
x4

2 cos(x22u)x2u

ẋ3 =
−x4

2 cos(x23u)x3u

ẋ4 = v

φ(x) = x1 = 0

(42)
ẋ = f (x)+ g(x)u+ q(x)v + σ(x)ξ

φ(x)− �(t) = 0,

We will now extend Theorem (3.1) of the pre-
vious section to the stochastic case.

Theorem 3.2 Given the implicit stochastic con-
trol system (42), suppose there exist a finite µ and 
the corresponding deterministic system �µ with 
restricted Cartan prolongation Fµ for which the 
conditions [C1], [C2], and [C3] of Theorem (3.1) 
hold at a regular point (x̄0,V0) of the extension 
algorithm applied to �µ, and moreover the follow-
ing condition is satisfied around (x̄0,V0):

then the implicit stochastic control system is 
regularizable with a canonical precompensation 
obtained from the extension algorithm and has 
an (possibly weak) explicit state space form. Fur-
ther, if the following is satisfied:

then we obtain a strong explicit state space form.

 Proof

On the lines of the proof of (3.1), the system (7) 
along with a precompensator obtained after k steps 
of the extension algorithm can be written in the 
Stratonovich form as

which is (31) along with the noise ξ coupled with 
the noise fields in σ(x), along with the Itô drift 
correction term37. The term σ(x) ◦ ξ is to be 
interpreted in the sense that

which is a standard Stratonovich integral37. As 
before, we consider the push-forward of the 

Theorem 3.1: Here (Theo-
rem 3.1), controls are con-
sidered as disturbances with 
measurement feedthrough.

(43)

σl(x),

(

∂σl(x)

∂x
σl(x)

)

∈ ker({dLγi
Fk
µ
φi, 1 ≤ i ≤ k ,

× 0 ≤ γi ≤ ρi − 1})
+ span{q̃j , 1 ≤ j ≤ p},

(44)

σl(x),

(

∂σl(x)

∂x
σl(x)

)

∈ ker({dLγi
Fk
µ
φi, 1 ≤ i ≤ k ,

× 0 ≤ γi ≤ ρi − 1}),

(45)

˙̄x = f̄ (x̄)+ q(x̄)v + ḡ ū

− 1

2

d
∑

i=1

∂σi(x)

∂x
σi(x)+ σ(x) ◦ ξ

ż = α1(x̄, z)+ α2(x̄, z)w

v = β1(x̄, z)+ β2(x̄, z)w

∫

σ(x) ◦ ξdt =
∫

σ(x) ◦ dW
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dynamics under the diffeomorphism � which are 
given by the following equations:

where

where σ̂ = − 1
2

∑d
i=1

∂σi(x)
∂x σi(x).

We again apply the push-forward of 
the map � to condition (43) obtaining 

[sT1 , s̄T1 ]T , [sT2 , s̄T2 ]T ∈ span

{

∂
∂η

}

+ span{Bj} .  

Hence, we obtain the partial dynamics of Y as

Further, note that rewriting the stochastic dynam-
ics in the Itô form with a corrected drift does not 
change the structure of the partial Y dynamics, 
i.e.

where ŝ1 is s1 along with the Itô drift correction. 
We have used the fact from Pan38 that the drift 
correction commutes with the push-forward 
under a diffeomorphism. We now solve for the 
constraint variable as before to obtain

Denote

(46)

Ẏ = AY + Bŵ + c(η,Y )ū

+ s1(η,Y )+ s2(η,Y ) ◦ ξ
η̇ = R1(η,Y )+ R2(η,Y )w + c̄(η,Y )(ū)

+ s̄1(η,Y )+ s̄2(η,Y ) ◦ ξ ,

(47)

[

s2
s̄2

]

= �∗σ ,

[

s1
s̄1

]

= �∗σ̂ ,

(48)

ẏ
1
i = y

2
i

.

.

.

ẏ
ρi−1

i
= wi + c

i(Y , η)ū+ s
i

1(Y , η)

+ s
i

2(Y , η) ◦ ξ , 1 ≤ i ≤ r.

(49)

ẏ
1
i = y

2
i

.

.

.

ẏ
ρi−1

i
= wi + c

i(Y , η)ū+ ŝ
i

1(Y , η)

+ s
i

2(Y , η)ξ , 1 ≤ i ≤ r,

(50)

w(t, η, ū) =











�
(ρ1)
1

− cρ1 (Y�(t), η)ū− ŝ
ρ1
1
(Y , η)− s

ρ1
2
(Y , η)ξ

.

.

.

�
(ρp)
p − cρp (Y�(t), η)ū− ŝ

ρp
1
(Y , η)− s

ρp
2
(Y , η)ξ











.

S1 =









�
(ρ1)
1

− cρ1(Y�(t), η)ū− ŝ
ρ1
1
(Y , η)

.

.

.

�
(ρp)
p − cρp(Y�(t), η)ū− ŝ

ρp
1
(Y , η)









,

S2 =







−s
ρ1
2
(Y , η)
.
.
.

−s
ρp
2
(Y , η)






.

Finally, the explicit stochastic control system is 
obtained as an Itô stochastic differential equation 
after incorporating the drift correction in ˆ̄s1 as

This is to be interpreted in the weak sense (as a 
generalized process) as the constraint variable 
now depends directly on the white noise15. It can 
be verified that if the stronger conditions (44) 
hold then S2 = 0, and the stochastic dynamics 
are to be interpreted in the strong sense, further 
in this case the feedback structure is independent 
of the constraint variable as in the deterministic 
case. However, it is important to mention that 
this characterization is only local in a neighbor-
hood where the regularity assumptions are valid. 
Moreover, in the stochastic case, the solutions are 
valid only up to an explosion time, further only 
till such time when the solutions stay within the 
regularity regions. We will not explicitly state the 
methods to stabilize the outputs of the system; 
however, once an explicit local state space form 
has been obtained, any of the classical stochastic 
control and stabilization methods can be applied 
to the outputs of the system (such as those 
described in Khasminskii19, van Handel57).  �

 Example 3.2

Consider the following Itô stochastic differential 
algebraic control system:

where v1 and v2 are the algebraic constraint vari-
ables, u is the control variable, φ1(x) = x1 = 0 
and φ2 = x2 = 0 are the algebraic constraints, y is 
the tracking output, and W is a standard Brown-
ian motion. It can be verified that the conditions 
of (3.1) are violated for µ = 0 and µ = 1. How-
ever, all the conditions of (3.1) and (3.2) are sat-
isfied for µ = 2 and higher. Hence, the following 
equations are appended to the dynamics (with 
u0 := u ):

(51)

dη = [R1(η,Y )+ R2(η,Y )S1 + c̄(η,Y )ū+ ˆ̄s1(η,Y )]dt

+ (R2(η,Y )S2 + s̄2(η,Y ))dW .

(52)

dx1 = (x3 + 2v1 + u)dt

dx2 = (x4 + v1 + u)dt

dx3 = (x21 + x5)dt

dx4 = (x22 + x5)dt

dx5 = v2dt + sin(x3)dW

x1 = 0

x2 = 0

y = h(x) = x4,
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with ū being the new control. And the follow-
ing regularizing compensator is appended to the 
dynamics:

where w1 and w2 are the new constraint variables 
which are determined using (50) as follows:

Substituting this equation together with (53) and 
(54) into (52) gives the explicit stochastic control 
system after using ξdt = dW . The new coordi-
nates and diffeomorphism (Y , η) = �(x̄, z) are 
computed as

The controlled invariant manifold N is obtained 
as the integral submanifold of

The dynamics on N is obtained as

with the differentially independent out-
put y = η1 along a trajectory yd(t). A dynamic 
feedback control law for u is designed as 
ū = ÿd − (η3 − ẏd)− (η1 − yd) and ü = ū, which 
results in a closed loop stochastic DAE.

Some engineering examples of nonregular 
DAE control systems are as follows. A broad class 
of chemical processes modeled by high-index, 
irregular DAE systems consists of multiphase 

(53)
du0 = u1dt

du1 = ūdt

(54)

dz1 = z2dt

dz2 = w1dt

v1 = z1, v2 = w2,

(55)

[

w1

w2

]

=
[

1 −1

−1 2

] [

−2x1x3 − 2x1z1 − 2x1u
0 − ū− ξ

−2x2x4 − 2x2z1 − 2x1u
0 − ū− ξ

]

.

(56)

y01 = x1

y02 = x2

y11 = x3 + 2z1 + u0

y12 = x4 + z1 + u0

y21 = x21 + x5 + 2z2 + u1

y22 = x22 + x5 + z2 + u1

η1 = x4

η2 = u0

η3 = u1.

(57)N ∗ = span

{

∂

∂η1
,
∂

∂η2
,
∂

∂η3

}

.

(58)

dη1 = η3dt

dη2 = η3dt

dη3 = ū

systems where the individual phases are in ther-
modynamic equilibrium. Kumar and Daoutidis21 
and Liu et al.28 present an example of a two-phase 
vapor–liquid reaction system with the two phases 
in physical equilibrium. The irregular system is 
first regularized via a dynamic extension obtained 
through an application of extension algorithm, 
followed by feedback control design for stabiliz-
ing the state of the system on the constraint man-
ifold given by the conservation law.

Lu and Liu29 present an example of a two-
link robotic manipulator with two flexible joints, 
where the end-effector is in contact with a con-
straint surface. They demonstrate that an appli-
cation of the extension algorithm reveals all the 
“hidden” constraints corresponding to the alge-
braic variable, thereby regularizing the DAE sys-
tem. They further show that the algorithm based 
on dynamic extension results in a feedback con-
troller such that the closed loop system admits an 
explicit local representation, which is used to ana-
lyze the stability of the system.

4  Differential Flatness‑Based Control
Consider the implicit nonlinear control system as 
in (12) with �(t) ≡ 0 and dim(X) = n+ p:

such that [g(x), q(x)] has full rank m+ p in a 
suitable open, dense subset. The implicit function 
theorem can be applied here to eliminate the con-
trols and constraint variables by expressing them 
as u = U(x, ẋ) and v = V (x, ẋ) to yield the fol-
lowing implicit representation:

Since m+ p variables were eliminated, it can be 
verified that rank

∂F

∂ ẋ
= n−m, therefore result-

ing in a fully implicit DAE system. For this sys-
tem, we analyze whether there exist a smooth 
function y = h(x, ẋ, . . . , xν) and a smooth func-
tion ϕ(.) with dim(y) = m such that the following 
is satisfied:

Here, y is called a flat output. While there have 
been various efforts toward analyzing this condi-
tion (as briefed in Sect. 1), the approach discussed 
here is that of the generalized Euler–Lagrange 
operator which was presented in Antritter and 
Lévine1.

(59)
ẋ = f (x)+ g(x)u+ q(x)v

φ(x) = 0

(60)
ẋ − (f (x)+ g(x)U(x, ẋ)+ q(x)V (x, ẋ))

= F(x, ẋ) = 0.

(61)

F(ϕ(y, ẏ, ÿ, . . . , y(µ), ϕ̇(y, ẏ, ÿ, . . . , y(µ+1)) = 0.

Stochastic DAE: Stochastic 
DAE systems are realizable 
if the relative degree with 
respect to diffusion fields is 
no smaller than the structure 
at infinity with respect to 
algebraic variables.
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4.1  DAEs on Manifolds of Jets of Infinite 
Order

As defined earlier, consider the infinite dimen-
sional manifold X = M × R

n
∞, where M is the 

submanifold φ(x) = 0 which is of dimension 
n+ p− p = n ,

with local coordinates x̄ = (x, ẋ, . . .). To this, 
we associate a trivial Cartan field defined as

It can be seen that the Cartan field acts on the 
coordinates as a shift to the right, and therefore 
X  is called a manifold of jets of infinite order. We 
now formalize the definition of implicit DAEs as 
in Antritter and Lévine1 and introduce the notion 
of equivalence between DAEs:

Definition A regular implicit system is defined 
as the triplet (X , τx, F), such that X  is as defined 
earlier, τx is its corresponding trivial Cartan field, 
and F is meromorphic with rank

∂F

∂ ẋ
= n−m, in 

an open dense subset.

Definition The regular implicit system 
(Y , τy,G) is Lie–Backlünd equivalent (or L–B 
equivalent) to (X , τx, F) in a neighborhood 
(X0,Y0) of the pair (x̄0, ȳ0) ∈ X × Y if and only if

(1) there exists a one-to-one meromorphic 
mapping � = (ϕ, ϕ̇, . . .) from Y0 to X0 with 
�(ȳ0) = x̄0 such that �∗τy = τx;

(2) there exists a one-to-one meromorphic 
mapping � = (ψ , ψ̇ , . . .) from X0 to Y0 with 
�(x̄0) = ȳ0 such that �∗τx = τy;

(3) for every ȳ such that 
LkτyG(ȳ) = 0, ∀k ≥ 0, the image x̄ = �(ȳ) 
satisfies LkτxF(x̄) = 0, ∀k ≥ 0, and con-
versely. This essentially means that the maps 
� and � preserve the flows of the implicit 
systems.

The mappings � and � are called mutually 
inverse Lie–Backlünd isomorphisms at (x̄0, ȳ0). It 
can be seen that there exists a one-to-one corre-
spondence between trajectories of any two sys-
tems which are L–B equivalent.

We are now ready to define differential flat-
ness of implicit DAE systems and characterize it 
based on the machinery of infinite dimensional 
jets.

(62)τx =
n

∑

i=1

∑

j≥0

x
(j+1)
i

∂

∂x
(j)
i

.

Flatness: Flatness in general 
remains an open problem, 
as intrinsic conditions for 
the solvability of the Euler 
Lagrange PDEs is not known.

4.2  Differential Flatness and its 
Characterization

Definition The regular implicit system 
(X , τx, F) is locally flat in a neighborhood of 
(x̄0, ȳ0) ∈ X0 × R

m
∞ if and only if it is locally 

L–B equivalent around (x̄0, ȳ0) to the trivial sys-
tem (Rm

∞, τRm∞ , 0). In this case, � and � are called 
mutually inverse trivializations.

Let ϕ(ȳ) be the first component of the trivi-
alization �. Since ϕ map is continuous, it locally 
depends only on finitely many coordinates (this 
can be concluded by considering the cylinder 
topology of infinite product spaces). Hence, at 
(x̄0, ȳ0) we can write ϕ(ȳ) = ϕ(y, ˙y, . . . , y(µ)) . 
From this, along the flows of the system (5) we 
obtain

Theorem 4.1 The regular implicit system 
(X , τx, F) is locally flat at (x̄0, ȳ0) ∈ X0 × R

m
∞ 

if and only if there exists a local, meromorphic 
invertible map � : Rm

∞ → X0, with meromorphic 
inverse, satisfying �(ȳ0) = x̄0 such that

Another way of analyzing the equation (64) 
is to characterize the change of coordinates cor-
responding to the mapping �. More precisely, we 
can write

Since the one-forms {dykii , ki < ri} are independ-
ent, we obtain the following system of equations:

(63)
x = ϕ(y, ẏ, . . . , y(µ)),

u = U(ϕ(y, ẏ, . . . , y(µ)), ϕ̇(y, ẏ, . . . , y(µ+1))).

(64)�∗dF = 0.

(65)

m
∑

j=1

rj
∑

k=0

(

∂F

∂x

∂ϕ

∂y
(k)
j

dy
(k)
j +

∂F

∂ ẋ

d

dt

(

∂ϕ

∂y
(k)
j

)

dy
(k)
j

+
∂F

∂ ẋ

∂ϕ

∂y
(k)
j

dy
(k+1)
j

)

= 0.

(66)
∂F

∂ ẋ

∂ϕ

∂y
(rj)

j

= 0

(67)

∂F

∂x

∂ϕ

∂y
(k)
j

+ ∂F

∂ ẋ

d

dt

(

∂ϕ

∂y
(k)
j

)

+ ∂F

∂ ẋ

∂ϕ

∂y
(k−1)
j

= 0

(68)
∂F

∂x

∂ϕ

∂yj
+ ∂F

∂ ẋ

d

dt

(

∂ϕ

∂yj

)

= 0.
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We define a generalized Euler–Lagrange operator 
ξF corresponding to F as

This terminology is justified by the well-known 
fact that when n−m = 1, the curves that extrem-
ize the cost function J =

∫ T
0 F(x, ẋ)dt are those 

that satisfy the Euler–Lagrange equation ξF = 0 . 
The above equation results in the following theo-
rem which states necessary and sufficient con-
ditions for differential flatness of the implicit 
system.

Theorem 4.2 A necessary and sufficient condi-
tion for the implicit system F(x, ẋ) to be differ-
entially flat is that there exists (r1, . . . , rm) with 
∑m

i=1 ri +m ≥ n and a solution ϕ of the following 
triangular system of PDEs in an open dense subset 
of X

such that dϕ1 ∧ · · · ∧ dϕn �= 0.

Consider the following example control 
system with three states, two inputs, and one 
constraint:

 Example 4.1

whose implicit representation is

We obtain

and ξF = (η1, η2, 0), where

(69)ξF = ∂F

∂x
− d

dt

(

∂F

∂ ẋ

)

.

(70)

∂F

∂ ẋ

∂ϕ

∂y
(rj)

j

= 0,

∂F

∂ ẋ

∂ϕ

∂y
(l)
j

=
rj−l−1
∑

k=0

(−1)k+1 dk

dtk

(

ξF
∂ϕ

∂yl+k+1
j

)

,

rj
∑

k=0

(−1)k
dk

dtk

(

ξF
∂ϕ

∂y
(k)
j

)

= 0, ∀l = 0, . . . , rj − 1

(71)

ẋ1 = ū1+, ẋ2 = u2, ẋ3 = sin

(

u1 + x4

u2

)

, ẋ4 = v

�(x) = x4 = 0

(72)F(x, ẋ) := ẋ3 − sin

(

ẋ1

ẋ2

)

= 0.

∂F

∂ ẋ
=

(

− ẋ−1
2 cos

(

ẋ1

ẋ2

)

, ẋ1ẋ
−2
2 cos

(

ẋ1

ẋ2

)

, 1

)

η1 = − ẍ2

ẋ
2
2

cos

(

ẋ1

ẋ2

)

− ẍ1ẋ2 − ẋ1ẍ2

ẋ
2
3

sin

(

ẋ1

ẋ2

)

,

η2 = (ẍ1ẋ2 − 2ẋ1ẍ2)

(

ẋ1

ẋ
4
2

sin

(

ẋ1

ẋ2

)

− 1

ẋ
2
3

cos

(

ẋ1

ẋ2

))

.

The first two equations of the PDE (70), with 
r1 = r2 = 2, read

If we let ∂ϕ3
∂ ÿj

= ∂ϕ3
∂ ẏj

= 0 and introduce the vari-

able, ψ = ẋ1
ẋ2

, and with ∂ψ
∂ ÿj

= 0, we obtain

Setting κ(y, ẏ) = ϕ1 − ψϕ2, we obtain

From the definition of κ , we thus obtain

with x3 = ϕ3 = y2. From the above equations, 
one can obtain y1 and y2, and it can be verified 
that the third equation in the PDE (70) is satis-
fied. This shows that the system is differentially 
flat.

As such, solvability conditions for the Euler 
Lagrange PDEs are still an open question. In the 
general case, there exists no set of sufficient and 
necessary conditions to characterize flatness and 
consequently no algorithm to construct flat out-
puts. In certain special cases however, there exist 
constructive results which are summarized as 
follows:

•   For single-input systems, the popularly known 
conditions for feedback linearization as stated 
in Respondek47 completely characterize flat-
ness and also construct flat outputs as a solu-
tion of a first-order PDE.

•   Rathinam and Murray45 present conditions 
for configuration flatness of Lagrangian 
mechanical systems which are underactuated 
by one degree.

•   In Nicolau and Respondek34, flatness of 
mechanical systems with 3 degrees of freedom 
has been characterized.

•   In Li and Respondek23, flatness and flat out-
puts of two-input driftless control systems 
have been characterized.

•   In Li et al.25, flatness of control systems which 
are static state feedback equivalent to triangu-
lar forms has been analyzed.

•   In Nicolau and Respondek33, 35 and 
Respondek32, normal forms and flatness of 
control systems linearizable via one- and two-
fold prolongations have been characterized.

(73)

∂ϕ3

∂ ẏj
− 1

ẋ2

cos

(

ẋ1

ẋ2

)(

∂ϕ1

∂ ẏj
− ẋ1

ẋ2

∂ϕ2

∂ ẏj

)

= 0, j = 1, 2

(74)
∂ϕ1

∂ ÿj
− ψ

∂ϕ2

ÿj
= ∂

∂ ÿj
(ϕ1 − ψϕ2) = 0.

(75)κ̇ = ϕ̇1 − ψϕ̇2 − ψ̇ϕ2 = −ψ̇ϕ2.

(76)

ϕ1 = κ − κ̇
√
1− ϕ̇3

ϕ̈3
arcsin(ϕ̇3),ϕ2 = − κ̇

ϕ̈3

√

1− ϕ̇3
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•   An extended notion of differential flatness, 
i.e., orbital flatness where the system is flat 
after a reparameterization of the trajectories 
via a state-dependent time-scale change, has 
been presented in Nicolau and Respondek24. 
Flatness of such systems via static state feed-
back has been characterized.

4.3  Control Design for Flat Systems
For the nonlinear system (5), assume that from 
the above theorem a set of flat outputs is obtained 
as yi = hi(x) such that

Further, suppose the system is L–B equivalent in 
an open dense subset, the following procedure 
enables one to design feedback laws that operate 
almost globally.

Consider the linear system

where (A,B) is in the Brunovsky form (i.e., triv-
ial linear controllable form) and Y consists of y 
and its derivatives up to the maximum order as it 
appears in (77). It can be seen that the system (5) 
is L–B equivalent to (78), which means that their 
trajectories are in one-to-one correspondence. 
From this, a feedback law in order to stabilize 
the nonlinear system along a reference trajec-
tory (xr ,ur) can be obtained by designing a linear, 
globally stabilizing feedback law for v in order to 
stabilize the system (78) along the corresponding 
trajectory (Yr , vr) and obtaining the nonlinear 
feedback control law for u through the relation 
(77). This is illustrated in the following example 
of a thrust-vectored, ducted fan VTOL unmanned 
aerial vehicle which has been discussed in Pimlin 
et al.42 and Simha et al.55.

(77)
x = ϕ(y, ẏ, . . . , yµ)

u = U(ϕ(y, ẏ, . . . , y(µ)), ϕ̇(y, ẏ, . . . , y(µ+1))).

(78)Ẏ = AY + Bv,

 Example 4.2

Consider the following dynamics of a rigid body 
which is symmetric about a principal axis as shown 
in Fig. 1. We subject it to an external force at the 
terminal point of the axis and a torque about the 
same axis:

where x ∈ R
3 is the position of the center of mass, 

R ∈ SO(3) is the orientation of the body-fixed 
frame with respect to the inertial frame, �̂ ∈ so(3) 
is the body angular velocity, and � ∈ R

3 is its vec-
tor representation. J = diag[J1, J1, J2] is the inertia 
matrix representing axis symmetry, m is the mass, 
g is the gravitational constant, and α > 0 is a pos-
itive constant. F = [Fx; Fy; Fz] is the applied con-
trol force and M = [Fy;−Fx,Mz], where Mz = τ 
is the axial torque input and h is the moment arm 
corresponding to the forces Fx and Fy. We impose 
a servo constraint on the dynamics as

We will now demonstrate that the system is dif-
ferentially flat when its dynamics are restricted to 
the manifold (80).

The implicit system on �3 = 0 is obtained by 
solving for the input variables as

Flat outputs and dynamic equivalence Define 
the variable q = x + J1

hm
Re3 which denotes the 

Huygens center of oscillation of the rigid body22, 
and f = Fz − J1

hm
(�2

1 +�2
2) which is a virtual 

(79)

mẍ = −mge3 + RF

Ṙ = R�̂

J�̇ = J�×�+ hM,

(80)�3 = 0.

(81)

Ṙ = R�̂

J�̇ = h





eT2 R
T (mẍ +mge3)

−eT1 R
T (mẍ +mge3)

0



 .

Figure 1: Axis-symmetric thrust-vectored rigid body.
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thrust along the body z-axis which is applied on 
the Huygens center.

It can be verified via the Euler–Lagrange equa-
tions that when the system is restricted to the 
manifold �3 = 0, the variables qi, i = 1, 2, 3 con-
stitute a set of flat outputs. We will now establish 
an equivalence between the original system and 
the trivial linear system in the flat output vari-
ables q.

The system dynamics restricted to (80) in the 
variables q instead of x can be written (by nor-
malizing m = g = 1) as

We have added two more state variables by 
extending the virtual thrust input via two dif-
ferentiations. The new control variables are now 
M and T. In order to satisfy the constraint, the 
moment Mz must be identically zero. In order 
to linearize the system, we further differentiate q 
until any of the inputs appear (as in Isidori18):

where

It can be verified that the matrix A is uniformly 
nonsingular as long as f �= 0, which indicates 
that the net applied thrust must be strictly posi-
tive. This is quite practical as it includes all trajec-
tories which avoid free fall. Hence, we can define 
a feedback law as

(82)

q̈ = − e3 + fRe3

Ṙ = R�̂

J�̇ = J�×�+ hM

f̈ = T

�3 = 0.

(83)
q(3) = ḟ Re3 + fR�̂e3

q(4) = b(R,�, f , ḟ )+ A(R,�, f )ū,

(84)

b(R,�, f , ḟ ) = 2ḟ R�̂e3 + fR�̂2e3

A(R,�, f )ū = [−fRe1,−fRe2,Re3]
ū = [Fx; Fy;T ].

(85)u = A−1v − b.

With this feedback, the dynamics in the flat out-
put space can be written as

which is in the trivial controllable canoni-
cal form. Further, we can see that the functions 
Q = [q, q̇, q̈, q(3)] are differentially independ-
ent and therefore constitute a diffeomorphism 
Q = φ(x, ẋ,R,�, f , ḟ ). Hence, using standard lin-
ear control methods a stabilizing control law for 
v can be designed as v = −K (Q − Qr) and conse-
quently a nonlinear dynamic feedback law can be 
designed for ū as

where X = (x, ẋ,R,�, f , ḟ ). This control law will 
track any reference trajectory as long as �3 = 0. 
We have thus demonstrated that a system which 
may not be originally differentially flat can be 
made so when restricted to a submanifold. In 
practice, the control law for the torque can be 
chosen as Mz = −kω�3 in order to stabilize the 
constraint manifold.

4.4  Trajectory Generation for Output 
Tracking

In several differentially flat systems, it may be 
necessary to track nonflat outputs asymptotically. 
In order to do this, it is first necessary to generate 
a corresponding state trajectory and consequently 
a flat output trajectory, subsequent to which the 
tracking control law can be designed based on the 
trivial controllable form (Fig. 2). More precisely, 
we consider the output-constrained DAE system:

(86)

q̇ = q(1)

q̇(1) = q(2)

q̇(2) = q(3)

q̇(3) = v,

(87)
ū = A(X)−1(−K (φ(X)− φ(Xr)))− b(X),

Trajectory: Trajectory 
generation algorithms for 
nonminimum phase outputs 
may be unstable and hence 
constraints need to be modi-
fied or relaxed.

Flat systems: Non flat sys-
tems, when constrained, may 
result in flat explicit systems 
in which case controls may 
be bifurcated after feedback, 
to independently stabilize 
constraints and track the 
restricted flat system.

(88)

ẋ = f (x)+ g(x)u+ q(x)v

φ(x) = 0

h(x)− r(t) = 0,

Figure 2: Feedforward–feedback control design.
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where h(x) denotes a set of tracking output vari-
ables and r(t) is the corresponding output refer-
ence trajectory. The above system is numerically 
solved in order to obtain reference trajectories 
xr(t), ur(t), vr(t) corresponding to the output 
trajectory. It is generally preferred to compute the 
trajectories numerically because the expression 
for the explicit representation involves comput-
ing a set of residual coordinates η (as described 
in Sect. 2), which is in general a formidable task. 
Some of the numerical techniques to solve DAEs 
are outlined as follows. The reader is referred to 
Brenan et al.7 for a comprehensive understand-
ing of the computational techniques. The DAE is 
written in a fully explicit form as

•   Backward Euler The backward Euler method 
to solve the DAE system is given by the set of 
nonlinear equations which are solved at each 
time step, of the form: 

 where h is the step size. Unfortunately, this 
method does not always work as there are 
simple high-index DAEs with well-defined 
solutions, for which this method is unstable 
or not even applicable. The reader is referred 
to Example 10.1 in Ascher and Petzold3 for 
an example of such a situation.

•   BDF and general multistep methods The con-
stant step size BDF methods applied to the 
implicit DAE systems are given by the nonlin-
ear system: 

 where β0 and αj are the coefficients of the 
BDF method. The most available software 
based on BDF methods addresses the fully 
implicit index-1 system for which conver-
gence results underlying the methods are a 
straightforward extension of the results of 
the backward Euler method. In particular, 
the k-step BDF method of fixed step size h for 
k < 7 converges to O(hk) if all the initial con-
ditions are accurate to the same order and if 
the Newton iteration at each step is solved to 
an accuracy of one higher order. The conver-
gence results can also be extended to index-2 
DAEs which are in the semi-explicit form. 
The reader is referred to Section 10.1.2 of 
Ascher and Petzold3 for further details.

(89)F(t, x, ẋ) = 0.

(90)F(tn, yn, (yn − yn−1)/h) = 0,

(91)F

(

tn, yn,
1

β0h

k
∑

j=0

αjyn−j

)

= 0,

•   Implicit Runge–Kutta methods The s-stage 
implicit Runge–Kutta method applied to the 
implicit nonlinear DAE is given by 

 The coefficient matrix A = [aij] is assumed 
to be nonsingular. The reader is referred to 
Ascher and Petzold3 for stability and conver-
gence analysis of this method.

The above-described BDF methods suffer from 
two main practical difficulties:

(1)    Ill conditioning of the iteration matrix 
For explicit ODEs, as h → 0, the itera-
tion matrix tends to the identity. For 
index-1 and semi-explicit DAEs, the 
condition number of the iteration 
matrix is, in general, O(h−p), where p 
is the index. The reader is referred to 
Ascher and Petzold3 for a proof. Due to 
this, high-index problems are in general 
hard to integrate numerically, with the 
above methods.

(2)  Inconsistent initial conditions For DAEs 
of high index, the initial conditions 
need to be restricted to a nontrivial 
submanifold of the constraint mani-
fold, for example the integral manifold 
of the controlled invariant distribution 
N ∗ as described in Sect. 3. Due to this, 
the initial conditions which are outside 
(or close to) this submanifold could 
lead to impulsive (or stiff) behavior, 
thus destabilizing the numerical inte-
gration.

In order to compensate for these practical diffi-
culties in implementing DAE integrators, the fol-
lowing regularized integration method has been 
proposed for semi-explicit DAEs.

•   Generalized-α method The generalized-α 
method for numerical integration with regu-
larization is given by 

(92)

0 = F(ti,Yi,Ki)

ti = tn−1 + cih, i = 1, 2, . . . , s,

Yi = yn−1 + h

s
∑

j=1

aijKj ,

yn = yn−1 + h

s
∑

j=1

biKi.
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 where 

 with ρ ∈ [0, 1) being a user-selectable 
parameter and hn = tn+1 − tn being the step 
size. The initial condition a(0) is evaluated 
as dfdt |t=0. The extended state variable a acts 
as a regularizing compensator with param-
eter ρ. It has been shown that the local error 
of the generalized-α method discretization is 
O(h3) . The reader is referred to Parida and 
Raha39 for further details about the error and 
convergence analysis and performance analy-
sis with varying regularization parameter. It 
has also been shown that the generalized-α 
method successfully integrates higher index 
DAEs, for which the BDF methods fail.

•   Baumgarte’s method of constraint stabilization 
In order to ensure that the numerical integra-

(93)

xn+1 = xn +
(

1− β

γ

)

hnf (tn, xn,un, vn)

+ β

γ
hnf (tn+1, xn+1,un+1, vn+1)

+
(

1− β

γ

)

h
2
nan

an+1 =
1

hnγ
(f (tn+1, xn+1,un+1, vn+1)

− f (tn, xn,un, vn))+
(

1− 1

γ

)

an

φ(x) = 0

h(x) = 0,

(94)

γ = 2

ρ + 1
− 1

2

β = 1

(ρ + 1)2

tion is free of impulsive or stiff behavior and 
to ensure that constraint errors are asymptoti-
cally stable, the constraint equation is replaced 
by its stabilizing counterpart as 

 where the coefficients ki are chosen such that 
the polynomial is Hurwitz. This modified 
constraint relaxes the space of initial condi-
tions and allows excursions which are asymp-
totically stabilized, as long as the trajectories 
are restricted to the domain corresponding 
to the above equation. This method however 
has no guarantee of stabilization, and it is in 
general difficult to determine the order of the 
modified constraint equation. We would like 
to point out here that the analysis presented 
in Sects. 2 and 3 provides important insights 
on deciding the form of the modified con-
straint, the order of which is nothing but the 
relative degree of the regularized dynamical 
system.

4.5  Numerical Simulation of Rigid Body 
Dynamics

The control law based on differential flatness 
has been implemented for the axis-symmetric, 
thrust-vectored rigid body as described in Exam-
ple 4.2, and the closed loop system has been 
numerically simulated. The control objective is 
to track a prescribed trajectory for the center 
of mass x of the rigid body, which constitutes a 
set of regular outputs. The trajectory generation 
has been implemented using the generalized-α 
method after parameterizing the state space using 

(95)ksφ
(s)(x)+ · · · + k1φ̇(x)+ k0φ(x) = 0,

Figure 3: Trajectory tracking with flatness-based control law.
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the modified Rodriguez parameters on SO(3), 
which is discussed in Shuster54. The computa-
tion time of the feedforward system trajectories 
xr ,ur , vr is recorded to be 0.05 s on a standard 
workstation. The simulation results are presented 
as follows.

Figure 3 shows the tracking performance of 
the control law based on differential flatness and 
feedforward integration. The rigid body initially 
recovers from a downward-facing attitude and 
proceeds to track the reference trajectory. Fig-
ure 4 shows the position error during the tracking 
maneuver. The reference state trajectories were 
generated by choosing the initial conditions of 
the state and compensator to steer away from the 
singularities while maintaining overall stability.

Figure 5 shows the variation of the reduced 
attitude error, i.e., the angle between the actual 

and desired direction of the body z-axis, which 
is defined as � := 1− zTb zbd. It can be seen that 
the rigid body recovers from a large initial angle 
error. Figure 6 shows the variation of the net 
thrust and moments during the tracking maneu-
ver. An additional constraint is imposed during 
tracking, in order to ensure that the net thrust 
is bounded away from zero, which is generally a 
practical constraint in most thrust-vectored aerial 
and submersible vehicles.

5  Concluding Remarks
DAEs have thus far been addressed from the 
numerical and analytical points of view; how-
ever, the progress of the field has been saturated 
due to the lack of comprehensive understand-
ing of the qualitative and geometric behavior of 

Figure 4: Position error during tracking maneuver.

Figure 5: Reduced attitude error during tracking maneuver.
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the solutions. Further, most numerical methods 
and analytical results are restricted to low-index 
problems, of a specific nature. An early attempt 
to understand DAEs from the geometric point 
of view by considering them as ODEs with con-
straint manifolds also fails in the general case 
because, as demonstrated, the DAEs may have 
invariant manifolds that can be embedded only in 
a state space with a specifically defined extension. 
This article has provided insights into the local 
characterization of DAE systems which may be 
used to design control laws and numerical algo-
rithms with a stabilizing and regularizing compo-
nent, the performance of which does not depend 
on the index of the problem. However, the fol-
lowing open problems and avenues for further 
research still remain. Firstly, a global characteriza-
tion of DAEs still does not exist, and the control 
laws depend on the local coordinatization of the 
invariant integral manifolds. A possible approach 
toward this is to consider the flow of the DAE sys-
tem as a fibration over the state space where the 
fibers are locally isomorphic to the control and 
constraint variable space. Next, the behavior of 
the flows near singular points is yet to be under-
stood comprehensively. At these points, the DAE 
may exhibit impulsive, discontinuous, or rough 
behavior. Additional mathematical structures 
may be necessary to characterize the flow of the 
DAE system at and around these points. A pos-
sible approach to study these two open problems 
is to construct a connection on the fiber bundle 
and perhaps relate the solvability of the DAE sys-
tem to the flatness (i.e., vanishing curvature and 
torsion) of such a connection. In the high-index 

case, the fiber structure may also be extended to 
a suitably chosen jet space to capture dynamic 
precompensation variables, which may be essen-
tial in determining solvability. Another open area 
of research is to geometrically design and char-
acterize numerical integration algorithms which 
solve DAEs. Thus far, the algorithms do not as 
such guarantee that the constraint manifold is 
invariant under the discretization map. Especially 
in high-index cases, there could be significant 
excursions from the constraint manifold, lead-
ing to highly oscillatory/stiff behavior, and in 
the very high-index case, leading to instability. In 
ODE problems, numerical methods which guar-
antee that the state space submanifold is invari-
ant are developed using variational integrators. 
In the case of mechanical systems or any Rie-
mannian manifold, the geometric properties of 
the metric structure may be exploited in design-
ing numerical integration algorithms whose step 
evolution may be a geodesic exponentiation of 
the local tangent flow, subject to the constraint. 
Further, stability analysis may also be carried 
out in the same spirit. Coming to the problem 
of differentially flat DAE systems, the article pro-
vides a characterization of flatness based on the 
Euler–Lagrange PDE, whose solutions help con-
struct flat outputs. However, as such there is no 
set of necessary and sufficient conditions for the 
solvability of these PDEs and the problem of 
characterizing flatness remains open. Although a 
local characterization is available for systems of a 
particular form such as SISO systems, triangular 
forms, and mechanical systems with one degree 
of underactuation, the general case remains an 

Figure 6: Control inputs during tracking maneuver.
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open problem. Further, in control design for flat 
systems, the feedforward component, which is 
numerically determined by solving a DAE system, 
may be unstable especially in the case of non-
minimum phase systems. Numerical algorithms 
that provide stable solutions need to be inves-
tigated. A possible approach is to solve the DAE 
as a constrained boundary value problem which 
guarantees that the internal states of the DAE 
which starts on the unstable manifold reach the 
stable manifold in finite time. It is thus our gen-
eral opinion that further advancements in DAE 
systems necessitate significant circumspection, 
and the geometric approach indeed provides the 
same, along with critical insights for both qualita-
tive and numerical analysis and design.
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