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Adaptive Optimization of Visual Sensitivity

1 Introduction
One of the fundamental tenets of sensory biol-
ogy is that sensory systems adapt to environmen-
tal change. It has been argued that adaptation 
should have the effect of optimizing sensitivity 
to the new environment. Attempt to corrobo-
rate this view in visual neuroscience led to con-
troversy. This is because adaptation to a visual 
environment has been expected to improve visual 
performance in that environment, relative to per-
formance before adaptation. This expectation 
has been contradicted by the fact that adapta-
tion has been observed to have different effects: it 
can decrease visual performance for the adapting 
stimulus, or it can leave performance intact, or it 
can change performance for stimuli very different 
from the adapting ones.

We proposed that the previous results can be 
explained by taking an economic perspective on 
neural function. According to this view, visual 
adaptation is mediated by reallocation of lim-
ited neural resources over a broad range of visual 
stimulation, i.e., by changing the tuning of multi-
ple neurons in the visual cortex. The reallocation 
is expected to cause gains and losses of sensitiv-
ity by neurons tuned to different stimuli. Using a 
normative theory of neural resource allocation, 
we predicted that sensitivity changes should form 
a lawful pattern of gains and losses of sensitivity.
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Abstract | Sensory systems adapt to environmental change. It has been 
argued that adaptation should have the effect of optimizing sensitiv-
ity to the new environment. Here we consider a framework in which this 
premise is made concrete using an economic normative theory of visual 
motion perception. In this framework, visual systems adapt to the envi-
ronment by reallocating their limited neural resources. The allocation is 
optimal when uncertainties about different aspects of stimulation are bal-
anced. This theory makes predictions about visual sensitivity as a func-
tion of environmental statistics. Adaptive optimization of the visual system 
should be manifested as a change in sensitivity for an observer and for 
the underlying motion-sensitive neurons. We review evidence supporting 
these predictions and examine effects of adaptation on the neuronal rep-
resentation of visual motion.
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We have tested these hypotheses behaviorally 
using new psychophysical methods that allowed 
us to assay sensitivity rapidly across a wide range 
of spatiotemporal stimulation. Statistics of opti-
cal stimulus was varied, such that different speeds 
were prevalent on different days of the experi-
ment. We found that the change of stimulus 
statistics caused a large-scale reorganization of 
sensitivity: an orderly pattern similar to that pre-
dicted by the theory of adaptive reallocation of 
neural resources.

The economic theory predicts that the 
expected change of sensitivity for individual neu-
rons depends on where their tuning falls on the 
behavioral sensitivity function. We consider the 
possibility that such changes can be implemented 
in multiple neurons by means of mutually inde-
pendent stochastic adjustments of synaptic 
weights. This mechanism will require no coordi-
nation between the changes in neurons tuned to 
very different stimuli, similar to the self-organ-
izing process of “swarm intelligence” found in 
many biological systems.

2  The Puzzle of Visual Adaptation
2.1  Adaptation
Visual adaptation is one of the most striking 
and well-studied of visual phenomena20. Yet, the 
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mechanisms underlying adaptation remain elu-
sive and the evidence for it controversial. Until 
recently, adaptation was viewed as a manifesta-
tion of neural fatigue. The contemporary view 
is more pragmatic; it holds that adaptation is 
a response of the organism to changes in statis-
tics of stimulation (e.g.,26). Adaptation is taken 
to manifest an optimization of the organism’s 
perceptual abilities under changing stimulation. 
However, evidence supporting this view is scarce 
and inconsistent. For example, some studies of 
adaptation to moving patterns have shown that 
speed discrimination performance improves for 
speeds similar to the adapting speed, but other 
studies have reported the opposite. Even more 
surprising are systematic changes in discrimina-
tion for stimuli that differ from the adapting. The 
previous theoretical efforts have failed to provide 
a comprehensive explanation for these findings.

Inconsistency is also a property of data 
obtained in neurophysiological studies of speed 
adaptation. Consider, for example, the study of 
neurons in cortical visual area MT following a 
brief motion adaptation by Krekelberg et al.14 
Their main result is summarized in Fig. 1. Adap-
tation was found to reduce firing rates and to 
alter speed discriminability. These effects were 
puzzling in two ways. First, the effect of adapta-
tion on response rate reduction was often great-
est when the adapting speed was different from 
the preferred speed of the cell. Second, only some 
cells showed improved speed discriminability, 
while discriminability by many other cells was 
impaired.

In the following, we describe an attempt to 
solve the puzzle of motion adaptation from the 
perspective of neural economy. We consider one 
of the most studied forms of motion adaptation, 
quantified in terms of visual contrast sensitivity.

2.2  Contrast Sensitivity
There are many ways to quantify visual sensitiv-
ity (e.g.,21, 24 , 25 , 30). Perhaps, the most compre-
hensive and systematic of these methods is the 
one developed by Kelly12 illustrated in Fig. 2a. 
Sensitivity in this case reflects contrast threshold 
for pattern detection as a function of spatial and 
temporal frequencies of stimuli (sf,tf). We will 
describe a theoretical approach to understand-
ing the forces that shape the distribution of visual 
sensitivity across stimuli (Fig. 2a). From this per-
spective, it follows that the distribution of visual 
sensitivity as well as diverse and seemingly incon-
sistent transformations of sensitivity induced by 
adaptation are manifestations of efficient visual 

behavior. That is, adaptive changes reflect the 
optimization of visual performance with limited 
resources. We will then show how this perspective 
entails specific predictions for the distribution 
of visual sensitivity, i.e., how visual sensitivity 
should change in response to changes in stimu-
lation. The changes should form a characteristic 
pattern across stimuli, including the previously 
observed results as special cases. In particular, vis-
ual sensitivity should either increase or decrease 
at the prevailing speed of stimulation, depending 
upon the conditions of measurement. In addi-
tion, the changes in sensitivity should propagate, 
in a lawful manner, across the entire stimulus 
space, including stimuli very different from the 
adapting ones, as we explain next.

3  Visual Adaptation from a Normative 
Perspective

3.1  Neural Economics
We present the economical approach using the 
plot introduced in Fig. 2a. Different points in 
the plot represent tuning parameters of motion-
sensitive neurons1 at the peak of their sensitivity. 
The parallel lines are constant-speed lines (“speed 
lines”). Each such line comprises points at which 
the ratio of temporal frequency to spatial fre-
quency (i.e., the speed) of stimulus is constant. 
Low speeds appear at bottom right of the plot 
and high speeds at top left.

Gepshtein et al.10 developed a normative the-
ory of motion estimation that allowed them to 

Figure 1: Speed adaptation in area MT.14 Neu-
ronal speed discriminability before (abscissa) and 
after (ordinate) adaptation. Asterisks indicate neu-
rons for which adaptation was significant. Points 
above and below the diagonal represent neurons 
whose discriminability was either improved or 
impaired by adaptation.
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derive optimal conditions for estimating every 
speed. Under these conditions, the uncertainties 
associated with measurements of different stimuli 
are balanced.1 Each optimal condition is repre-

1 These uncertainties concern location and frequency con-
tent of stimuli, defined according to the information theory 
of Gabor6.

sented by a point on the corresponding speed 
line. Such points for all speeds collectively form 
an “optimal set,” represented in Fig. 3 by the red 
curve. According to this normative theory, the 
optimal set has the invariant form of a rectangu-
lar hyperbola.

From the theory, it also follows that the loca-
tion of the optimal set in the (sf,tf) parameter 
space depends on the statistics of stimulus speed 
(Fig. 4). For example, suppose that in the natu-
ral environment, the prevailing speed is low,31 
indicated in Fig. 4a by the oblique red line. Then, 
suppose that the environment changed and the 
prevailing speed has increased (oblique green 
line). The conditions at which the system has 
greatest sensitivity (the optimal set) are pre-
dicted to change, which can be summarized as 
a shift (a translation) of the optimal set in the 
(sf,tf) parameters space, as follows. In Fig. 4a, 
the directions of displacement of optimal points 
along two speed lines are shown by arrows. For 
the two indicated speeds, the optimal points are 
predicted to shift in opposite directions: toward 
lower spatiotemporal frequencies at the low speed 
and toward higher frequencies at the high speed. 
Thus, whether sensitivity grows or decays at a 
given location depends on whether the optimal 
point moves toward or away from that location. 
There also exist conditions where sensitivity is 
expected to remain unchanged, e.g., where the 
new and old optimal sets intersect and the opti-
mal point does not move.

Figure 2: Spatiotemporal sensitivity functions. a Plot of luminance contrast thresholds as a function of 
(sf,tf)12. The heavy line represents maximal sensitivity at every speed, and the contours represent equal 
increments of log sensitivity. b Simulation of (sf,tf) sensitivity for speed discrimination, from principles 
developed in our theoretical approach (section Innovation). Our preliminary measurements, using inten-
sive psychophysical methods, have yielded a sensitivity function similar to that obtained by Kelly, but with 
a greatly reduced data collection.

Figure 3: Optimal sets for speed estimation. 
Oblique lines correspond to different speeds 
(“speed lines”); they are parallel to one another 
in the logarithmic coordinates. Speed (v = tf/sf) 
grows from bottom right to top left of plot. Points 
predicted to be most suitable for the estimation of 
every speed form a set represented by red curve: 
the optimal set of speed estimation. According to 
Gepshtein et al.10 the optimal set has an invari-
ant shape, approximated by a rectangular hyper-
bola. Position of optimal set in the plot depends 
on prevailing speed of stimulation: the “expected 
speed” (Fig. 4).
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This illustration makes it clear that an adap-
tation experiment can lead to qualitatively dif-
ferent outcomes depending on the conditions at 
which motion sensitivity is measured, as shown 
in Fig. 4b. Sensitivity may increase (points 1 and 
6), decrease (2 and 5), or not change at all (3 and 
4). Paradoxically, it is predicted that sensitivity 
changes that make the system behave optimally as 
a whole can lead to sensitivity losses at the cur-
rently prevailing speed (point 2). Notice also that 
optimization can lead to large sensitivity changes 
(gains and losses) far away from the prevailing 
conditions (points 5 and 6).

It is expected that the shift of the optimal set 
is accompanied by sensitivity changes over the 
entire parameter space, as shown in Fig. 5. Fig-
ure 5a, b shows theoretical distributions of sen-
sitivity in, respectively, high-speed and low-speed 
environments. Figure 5c shows a map of sensitiv-
ity change: the shades of red and blue indicate 

stimulus conditions where sensitivity is expected 
to increase and decrease.

It is convenient to think of the predicted gains 
and losses of sensitivity as foci of change formed 
around branches of the optimal set. Recall that 
this set resembles a rectangular hyperbola (simi-
lar to the curve “max” in Fig. 2a). Shifts of this 
hyperbola create systematic changes across the 
(sf,tf) plot summarized in Fig. 5. This hypothe-
sis is supported by the experiments described in 
Sect. 4.

3.2  The Theoretical Context
Theories of perception based on the statisti-
cal decision theory, including Bayesian theo-
ries,13, 19, 27 also predict that stimulus statistics 
affect perception. Here, probabilities of sensory 
estimates (likelihood functions) and the prob-
abilities of corresponding parameters in the 
stimulation (prior distributions) are combined 

Figure 4: Predicted effects of speed adaptation. a Changes in statistics of stimulation lead to displace-
ment of optimal set for speed estimation: from red curve (low-speed context) to green curve (high-speed 
context). b In effect, different sensitivity changes are expected across the parameter space. Numbered 
disks mark locations of qualitatively different consequences of adaptation.

Figure 5: Predicted effect of adaptation across the entire parameter space. Predicted distributions of 
sensitivity in stimulus environments with high (a) and low (b) prevailing speeds. In both panels, warm 
colors indicate high sensitivity and cool colors indicate low sensitivity (normalized for this figure). c Pre-
dicted change map. Entries in c are 100*(B−A)/A, where A and B are entries in sensitivity maps of a and 
b, respectively. Here, shades of red indicate gains of sensitivity and shades of blue indicate losses of 
sensitivity.
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by point-by-point multiplication, following the 
Bayes’ rule, making the prevalent stimuli more 
likely to be seen than the less common stimuli.

To illustrate differences of our approach from 
the above framework, consider a study of motion 
adaptation by Stocker and Simoncelli28. As it is 
common in the Bayesian framework, the authors 
represented effects of adaptation by changes 
in the prior distribution. The model predicted 
that adaptation would cause increased similarity 
(“attraction”) of stimuli to the adaptor. Experi-
mental results showed the opposite: a reduced 
similarly (“repulsion”) of stimuli to the adaptor 
(e.g.,2 To remedy the discrepancy, the authors 
modeled adaptation by adjusting the likelihood 
function, rather than the prior distribution. They 
proposed that “adaptation acts to allocate more 
resources to the representation of the parameter 
values in the vicinity of the adaptor … resulting 
in a local increase in the signal-to-noise ratio” 
thus broadening the likelihood function, because 
the resources are withdrawn from conditions 
removed from the adaptor. Repulsion is caused 
by the broadening of the likelihood function. 
The authors had to step outside of the standard 
Bayesian framework and make an assumption for 
which they had no principled theory. We would 
like to contrast their approach with the normative 
approach presented here, which offers an explicit 
principled theory that predicts just how a visual 
system should reallocate its resources in response 
to changes in stimulus statistics.

4  Adaptive Transformation of Sensitivity
4.1  Rapid Assessment of Contrast 

Sensitivity
The formulation of spatiotemporal sensitivity 
by Kelly (introduced in Fig. 2) reflects contrast 
thresholds for pattern detection as a function of 
(sf,tf). Nakayama 21 reviewed multiple other for-
mulations and concluded that “seemingly very 
different phenomena: [motion aftereffect], pat-
tern detection and direction discrimination, fit a 
similar set of functions.” In other words, the data 
represented as sensitivity over (sf,tf) all have the 
general “bent-loaf” appearance reported by Kelly. 
Based on our preliminary results, we chose to 
assess spatiotemporal contrast sensitivity using a 
direction discrimination task. This task helps to 
avoid the response biases characteristic of detec-
tion tasks.

For this study, we deployed a form of the 
“quick” method for assessing the Contrast Sen-
sitivity Functions (quick CSF or qCSF) first 

developed by Lesmes et al.18. This method gener-
alizes the previous procedures for rapid estima-
tion of psychometric functions (PSI procedure 
by Kontesvich and Tyler 1999; also Cobo-Lewis 
1997), external noise functions,17 and other 
threshold functions15. We validated the method 
by comparing estimates by qCSF and PSI proce-
dures within one stimulus speed (one “slice” of 
the sensitivity function), and then generalized 
this method to measuring multiple slices concur-
rently in humans16 and monkeys23.

4.2  Comprehensive Estimates 
of Sensitivity Change

To study how stimulus statistics affects the dis-
tribution of contrast sensitivity, we created two 
stimulus contexts, as shown in Fig. 6. We varied 
how often stimuli were sampled from the same 
stimulus grid, creating two contexts: low-speed 
and high-speed.

Examples of sensitivity functions obtained 
this way are displayed in Fig. 7a. Sensitivity 
changes are plotted (for one subject) in Fig. 7b: 
for two speeds at top and for the entire domain of 
the sensitivity function at bottom. As in theoreti-
cal change map (Fig. 5b), sensitivity changes were 
di = 100 (hi–li)/hi, where hi and li are respective 
entries in the high-speed and low-speed sensitiv-
ity functions.2

The plots in the upper part of Fig. 7b dem-
onstrate a reversal of sensitivity change across 
speeds, as predicted by our theory (Figs. 4, 5). 
At the low speed, sensitivity decreased for low-
frequency conditions and increased for high-fre-
quency conditions. At the high speed, the pattern 
was reversed. The seemingly erratic alterations of 
sensitivity within the narrow samples of stimulus 
conditions corroborate the notion that changes 
of sensitivity must be studied over large stimulus 
sets.

We evaluated patterns of sensitivity change 
across full range of (sf,tf) using templates of 
sensitivity change. The templates consisted of 
regions where gains and losses of sensitivity were 
predicted by the theory. We also compared the 
observed patterns of change to predictions of an 
alternative theory in which changes of sensitiv-
ity merely mirrored changes in stimulation. This 
analysis overwhelmingly supported our predic-
tions, described in detail in Gepshtein et al.9

2 Change maps for all subjects appear in Fig S2 in Gepshtein 
et al.9.
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5  Neural Mechanisms of Adaptation
5.1  Approach
Our analysis of factors that control contrast 
sensitivity and the results of our psychophysi-
cal experiments9 demonstrate that local changes 
of sensitivity appear paradoxical when viewed 
in isolation but make sense in a larger context. 
These discoveries lead us to ask how multiple 
local changes are coordinated across the vast 
domain of visual sensitivity. Do visual systems 
monitor the distribution of stimuli? Is there a 
mechanism dedicated to coordinating the distri-
bution of sensitivity?

Our general prediction is that responses of 
individual neurons (assessed as in29) will reflect 
the changes of sensitivity discovered using psy-
chophysical methods. Because the operating 
range of the (sf,tf) function for a given neuron 
will generally cover only a small portion of the 
behavioral (sf,tf) range, the predicted changes of 
the neuronal CSF are likely to be evident by one 
or both of: (1) the overall gain of the neuronal 
spatiotemporal frequency tuning function may 
either increase or decrease; (2) the peak of the 
neuronal (sf,tf) sensitivity function may shift. 

The study by Krekelberg et al.14 summarized in 
Fig. 1 provided preliminary evidence for both of 
these neuronal effects.

The general nature of predicted changes is 
illustrated in Fig. 8. Panel A portrays the global 
sensitivity function predicted for a low prevail-
ing speed of 0.1°/s. Suppose that we record three 
MT neurons whose peak (sf,tf) preferences lie at 
the locations indicated by nodes ①, ②, and ③. 
Neurons ② and ③ lie near the peak of sensitiv-
ity, while neuron ① lies at a point of low sensitiv-
ity. Global effects of adaptation on sensitivity are 
illustrated in panel B: The sensitivity function has 
shifted slightly relative to its position in panel A. 
Panel E illustrates change in sensitivity from A to 
B. Neuron ② is expected to undergo a decline in 
sensitivity, while neurons ① and ③ are expected 
to become more sensitive.

Similarly, panel C portrays the sensitiv-
ity function predicted for the prevailing speed 
of 8°/s, and panel F portrays the corresponding 
change in sensitivity. Sensitivities of the three 
neurons change: a marked increase for neuron 
①, a substantial loss for neuron ②, and little 
change for neuron ③.

Figure 6: Stimulus grid and stimulus statistics for adaptation experiments. Disks represent stimulus 
conditions arranged on seven constant-speed lines in domain of spatiotemporal sensitivity function (the 
“stimulus space”). Two complementary histograms at top right illustrate “stimulus contexts”. In low-speed 
context, low speeds are sampled more often. In high-speed context, high speeds are sampled more 
often. Mean speeds of contexts are 6 and 12 deg/s.
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Predicted sensitivity changes for these neu-
rons are summarized at bottom of Fig. 8. The 
horizontal axis in each figure indicates the pre-
vailing speed; the vertical axis indicates sensitivity 
change. These simulations lead to the provocative 
prediction that sensitivity of individual neurons 
should change as a function of adaptation follow-
ing a highly principled rule, in which the sensi-
tivity change for a given neuron depends upon 
its position relative to the behavioral sensitivity 
change map. The second possibility (hinted at by 
results of 14 is that psychophysical changes of sen-
sitivity will be correlated with shifts of neuronal 
preference (not shown).

To understand the factors that control the dis-
tribution of neuronal sensitivities, we investigated 
how basic mechanisms of synaptic plasticity in 
single cells respond to changes of stimulation 
within their receptive fields (RFs). We pursued 
two specific goals: first, to characterize local 
changes of sensitivity and, second, to investigate 
the global distribution of these changes across 
the entire stimulus domain. Next, we describe 

numerical simulations of synaptic plasticity in 
spiking neural networks performed by in pursuit 
of both goals7, 11.

5.2  Basic Neural Circuit
Figure 9a shows the generic circuit used in the 
simulations of synaptic plasticity. The circuit con-
sists of one readout cell R and two input cells I1 
and I2. Input cells have receptive fields of different 
sizes on a single dimension x.3 The receptive field 
size of I2 is larger than that of I1.

The receptive field size of the readout cell (Sr) 
depends on the synaptic weights (w1 and w2), 
which determine which of the input cells has a 
larger effect on R. For example, when w2 > w1, 
the size Sr is similar to the size of I2 (i.e., is larger 
than in the cases when w1 = w2 or w1 > w2). 

3 This dimension could be space or time. For example, when 
x represents space, the larger number of lower level cells, from 
which the cell I receive information, corresponds to a larger 
receptive field size of I.

Figure 7: Large-scale assay of sensitivity change in human Ss. a Contrast sensitivity functions measured 
in two stimulus contexts for one S. Standard model of contrast sensitivity (Kelly function) was fitted to esti-
mates of sensitivity in high-speed (top) and low-speed (bottom) contexts. Warm and cool colors represent 
high and low sensitivities. b Change map at bottom summarizes how sensitivity changed from the low-
speed to high-speed stimulus contexts. Shades of red and blue represent gains and losses of sensitivity; 
white regions represent no change. At top samples of sensitivity changes for two speeds demonstrate 
that pattern of gains and losses of sensitivity is reversed across speeds, similar to prediction shown in 
Fig. 5.
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Substantial changes in the weights w1 and w2 will 
entail changes in the receptive field size of R.

The weights w1 and w2 depend on the relative 
timing of presynaptic and postsynaptic spiking3, 4, 
22. When one of the input cells (presynaptic) and the 
readout cell (postsynaptic) co-fire, the correspond-
ing weight increases. For example, when the cells 
I2 and R co-fire more often than the cells I1 and R, 
the weight w2 increases more often than the weight 
w1. In that case, the receptive field size of R becomes 
larger, i.e., more similar to the size of I2 than I1.

5.3  Receptive Field Dynamics
Because neuronal firing is a stochastic process, 
updating of synaptic weights is also a stochas-
tic process that leads to temporal fluctuations 
of readout RF size. In Fig. 9b, c we illustrate two 
important features of these dynamics. First is 
the central tendency of readout RF size. The fluc-
tuations of readout RF size are confined to the 
interval between the smallest and largest input 
RF sizes. Probabilities of readout RF sizes over 
the course of one simulation are captured in 

Figure 8: Predicted effects of speed adaptation on sensitivities of individual cortical neurons. Top row 
of panels illustrate global (sf,tf) “sensitivity maps”. a Pre-adaptation state depends upon distribution of 
speeds in the natural world (5). b Expected sensitivity following adaptation to 1.2°/sec (speed indicated 
by diagonal line). c Sensitivity following 8°/sec. As adaptation speed increases, global pattern of sensitiv-
ity retains “bent-loaf” shape but shifts markedly. Middle row of d–f illustrates fractional change in global 
sensitivity at indicated speeds (in D, change is nil, by definition). In a–f, we have indicated preferred (sf,tf) 
values for three hypothetical MT neurons. Predicted changes in neuronal sensitivity as a function of adapt-
ing speed are summarized for each of the three neurons in panels 1–3, at bottom. See text for further 
detail.
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Figure 9: Generic neural circuit. a Circuit consists of two input cells (I1 and I2) and one readout cell R. In 
this illustration, the receptive field size of I1 is smaller than that of I2 (represented by the number of lower 
level cells from which it receives information: three such cells for I1 and seven for I2). The receptive field 
size of readout cell (Sr) depends on weights w1 and w2. b Weights w1 and w2 determine the effects of 
I1 and I2 on R (see text). The weights are updated according to the stochastic co-activation of input and 
readout cells. Readout receptive field size Sr fluctuates on the interval between the sizes of input cells 
(here normalized to 1 and 2 for convenience). Histogram of Sr reveals the central tendency of the fluc-
tuation. p (Sr) is the probability of Sr. c Small circles represent average changes of Sr—the amplitude of 
receptive field size fluctuation—for different magnitudes of Sr. The farther Sr is from its central tendency 
(green line copied from panel b), the larger the amplitude.

Figure 10: Stochastic tuning of one RF. a Outcomes of 1000 simulations of circuit with 25 input cells and 
one readout cell. The two dimensions represent spatial and temporal frequencies of stimuli normalized, so 
that initial tuning of the readout cell corresponds to (0, 0) marked by the white cross. In each simulation, 
input-readout weights were updated 700 times. Final parameters of each readout RF are represented by 
a red dot (“endpoint”). Three simulations are illustrated by the gray-arrow “trajectories” in the (sf,tf) space 
(only 20 steps are shown). Contour plot in background represents average amplitude of fluctuation. It is 
a two-dimensional equivalent of the curve in Fig. 9c. a Histogram of endpoint density is plotted as a heat 
map: the warmer the color, the higher the endpoint density. The central tendency of fluctuation (the peak 
of endpoint density) is marked by intersection of while gridlines in the inset and by the asterisk in the main 
plot. b, c Stimulus bias. Mean speeds of stimuli were low in b and high in c. Histograms at left (depicting 
endpoint density as in the inset of a show that outcomes of RF fluctuation are biased by stimulation. The 
directed yellow markers at right point in direction of RF drift: from the initial conditions (central disk) to 
mean endpoints. These markers are used in Fig. 11 to summarize drift of readout RFs across (sf,tf) space.
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the histogram in Fig. 9b (see,11 for details). The 
green line in Fig. 9b is the most likely readout 
RF size (Sr*): the central tendency of readout RF 
fluctuation.

The second important feature of readout 
dynamics is the amplitude of fluctuations (Fig. 9c). 
The amplitude is low when the readout RF size 
is similar to Sr* and it is larger when readout RF 
size is removed from Sr*. We illustrate the conse-
quences of these dynamics in Figs. 10 and 11.

Notice that stimulus dimension x in Fig. 9a 
could stand for either location or frequency con-
tent of the stimulus. We introduced the circuit in 
terms of RF size (i.e., assuming x was location), to 
help intuition and to follow Jurica et al.11. In what 
follows we present results of our simulations of 
RF plasticity in the frequency domain, because 
our present stimuli are defined by frequencies 
of luminance modulation and because we study 
the effects of adaptation on contrast sensitivity, 
which is traditionally rendered in the frequency 
domain.

Our numerical simulations of synaptic plas-
ticity revealed that fluctuations of RFs are biased 
by stimulation. The dynamics are best described 
as drift of the readout RF in (sf,tf) space, where 

drift direction is determined by local stimulus 
statistics. In Fig. 10, we illustrate this drift in a cir-
cuit of 25 input cells and one readout cell. First 
consider panel A, where stimulation was uni-
form. The central white cross identifies the initial 
parameters of the readout RF for every simula-
tion. Each red point corresponds to the readout 
RF parameters after one of 1000 simulations. The 
distribution of endpoints (inset) is an outcome of 
correlation between the amplitude of RF fluctua-
tion and the proximity of RF parameters to the 
central tendency of fluctuation.

Stimulus statistics change the central tendency 
of fluctuation and thus bias the direction of RF 
drift. Results in Fig. 10b, c were obtained under 
different stimulus statistics, biased towards low 
(b) or high (c) speeds. Direction of RF drift is dif-
ferent in the two cases, represented by the mark-
ers on the right side of panels b, c.

In Fig. 11, we summarize RF dynamics for 
multiple locations in (sf,tf) space. The simula-
tions were performed as in Fig. 10, except the 
parameters of input RFs and the stimuli were 
selected according to the location in the (sf,tf) 
space, as described in Jurica et al.11. The initial 
condition for every simulation is indicated by a 

Figure 11: Pattern of RF drift across (sf,tf). The same simulations as in Fig. 10 were performed at multiple 
(sf,tf) condition. Local drift directions are represented by the markers introduced in Fig. 10b, c. These 
directions form a systematic global pattern. These results suggest that the globally optimal RF allocation 
predicted by the theory of Gepshtein et al.10 can be achieved by local means alone, requiring no mecha-
nism that coordinates the local processes. The white curve is the sum of conditions on which the local 
processes converge yielding the highest RF density.
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point and the direction of RF drift is indicated by 
a line. The flow pattern in Fig. 11 is a result of the 
different biases of RF fluctuations created by the 
different stimulus conditions in different parts of 
the (sf,tf) space.

This analysis predicts that the adaptive 
changes of individual neurons should follow a 
regular pattern determined by the local stimulus 
statistics. When stimulus statistics change, it is 
expected that the distribution of sensitivity will 
change too (not shown in Fig. 11). We have per-
formed simulations of such changes of neuronal 
tuning using the same manipulation of stimulus 
statistics as in our psychophysical experiments 
(Fig. 6). We found that adaptive changes form 
a global pattern consistent with both the theory 
of RF allocation (Figs. 4, 5) and results of our 
psychophysical experiments (Fig. 7)8. Now, we 
pursue a program of studies aimed to test the 
hypothesis that changes in the population distri-
bution of sensitivities of motion-sensitive neu-
rons in cortical area MT reflect the changes in 
the distribution of behavioral spatiotemporal 
sensitivity.

6  Conclusions
The significance of this work is both theoretical 
and empirical. These experiments implement a 
new way of thinking about sensory adaptation 
as an economic optimization of the visual sys-
tem through reallocation of limited neuronal 
resources. This approach has inspired us to do 
new kinds of experiments and look at the results 
of these and other experiments from a new prin-
cipled perspective. We pointed out that adaptive 
changes of sensitivity appear paradoxical from 
a local perspective, i.e., by studying sensitivity 
in narrow bands of stimulus parameters. The 
paradox is resolved by taking a broader perspec-
tive, i.e., by studying the distribution of sensi-
tivity across a broader range of spatiotemporal 
conditions.

The broader perspective also leads to new 
questions about the mechanisms of neuronal 
change. We have described a model of the syn-
aptic plasticity that underlies tuning changes of 
individual cells. The model suggests that changes 
should follow a regular pattern: peak sensitivi-
ties of cells should follow different paths in dif-
ferent parts of the stimulus space, while the 
directions of these paths should form a gradient 
across stimulus conditions7. We expect that the 
sensitivity changes of individual cells will form 
a global pattern across stimuli consistent with 

our predictions. Forthcoming studies will show 
whether this prediction holds.
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