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Abstract 

Stress ficlds and eleclrostatic voitagc developed in a nonhomogeneous pic~oeiectnc bar subjected to bend- 
ing moments at its ends are deremined This two-dimemional eleciro-rncchanical problem of composite 
bar involvmg Maxwell's electro-magnetic equutmns, the equations of elasticity and the constitutive equa- 
tions of piezoelectric quartz has been tackled effectively by using Seth's theory of finite deformation. 
Numerical results show wide differences in the voltages and the stresses of nonhomogeneous and 
homogeneous bars. 
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1. Introduction 

Piezoelectric effect was first discovered by the Curie brothers in 1880'. Piezoelectric 
properties of crystals are used to construct efficient transducers to work under diffe- 
rent practical situations. For low-frequency operation bimorph, a composite transduc- 
ing element is oftcn used to reduce the mechanical impedance without lowering the 
output voltage2. However, the aim of the designers should be to achieve high output 
voltage and greater ruggedness with minimum weight in an electru-mechanical 
appliance. This requirement can be met in a thin layer made of quartz as a concrete 
aggregate3. Such a body should be considered nonhomogeneous. Nonhomogeneity is 
more pronounced if the bar is composed of such layers placed one after another 
having increasing or decreasing proportions of quartz crystals, following the biniorph 
principle. The present study on such a model bar shows wide differences in the 
Output voltages of nonhomogeneous and homogencous bars; ruggedness and weight 
of the body are also taken into account, since nonhomogeneity in elastic and 
piezoelectric parameters has been considered. Reports of some experimental results4-" 
published in the last decade may be cited in this context. 

2. Formulation of the problem 

We consider a uniform narrow rectangular cross-section of a curved bar ( ~ i g .  la ,  b) 
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RG. 1. Polarity of the voltage developed across the 
bar. 

composed of different layers consisting of an aggregate of quartz-cement mixture3. 
Bending is effected in the plane of curvature by couple M at the ends of the bar, 
the bending moment in this case is constant along the iength of the bar. It is natural 
to expect that the stress distribution is the same in all radial cross-sections, so that 
the stress components do not depend on 0, but are functions of r only. Due to this 
symmetry, the shearing stress does not exist. 

The fundamental equations of this electro-mechanical problem consist of (i) electro- 
static equations, (ii) equation of elasticity, and (iii) constitutive relations for the 
piezoelectric material8,'. 

From the electro-static equation Curl 2 = 0 one can see = grad +, or E, = 
d+ldr for the present problem. If the upper and lower faces of the bar are coated with 
a conducting material, so that they are level surfaces of potential field +, the electlical 
boundary condition becomes 

The integral is taken along the path from the lower face of the bar to its upper face 
boundary. 
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The stress equation of equilibrium (as there is no body force) is"' 

For the present problem, the constirutive equations for the material can be 
as7,9,11 

taken 

S, = slim, +  SIP^ + dl&, ( 3 4  

Se = SI~U,  + S:IU~ - dllE, (3b) 

S, = 0 (34  

D, = 4 1  (o; - ve) + EIIE, ( 3 4  

Do = 0. (3e) 

Assuming the bar having the width of the rectangular cross-section as unity, one can 
put the mechanical boundary conditions as 

The nonhomogeneity of such a body may be characterized by the variations of elastic, 
piezoelectric and dielectric parameters from point to point in a static problem12. In 
particular, their variations, where radial symmetry is considered, may be of the 
foml3.14 

SC, = cz1 f ( 4  ( 5 4  

4 = bil f (r) (jb) 

q = v,, f ( r )  ( 5 ~ )  

i, ; = 1, 2, 3. 

In this problem, the nonhomogeneity parameter is defined by 

f ( r )  = ?' (6) 

to suit linear or parabolic or any other variation. 

3. Method of solution 

Gaussian electro-static divergence equation in two-dimensional polar coordinate 
stands as 
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1 6(rD,) 1 6D -- +-R=o. 
r 61 r Fe 

Owing to the radial symmetry of the prohlm.  

a -- - 0, eqn (7) yields. 
68 

Equation (3d) now becomes 

According to Seth's theory of finite deformation", one can take the radial and 
tangential components of displacements as rr = r (1 - $1 and v = 0 where + is a 
function of r to be determined. The radial and circumferential strain components 
may now be written as 

and & = " = I -  * .  (11) 
r 

When the values of E,, S, and S8 as per eqns (9)-(11) along with those of si/, do 
and q, given by eqns (5a-c) are inserted in eqns (3a-b), one gets 

XI u, + A2 u0 = A1 (124 

and A2 a, + A1 me = A2 (12b) 

Equations (12a-b) help to determine u, and u8 as 
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u, = 
- A d d  

(A: - A:) ' (144 

ue = 
- A r b )  , 

(A? - A:) (14b) 

On the basis of eqns (14a-b) and (h), eqn (2)  becomes 

d2$ d+ ?-+ r (3 - 2p)-+2PD1+ 
d? dr  

~ I I  Do 
= 2PD' + Dl (2p - 1) 

v11 r 
(15) 

Now the dimensionless variable p = -is introduced, rl being the inner radius of 

the bar. Using +(r) = E(p) eqn (15) takes the form 

From (17) 

and 
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where 82 = (P - 1) i- [(p - 1)' - 2pD1]"' (19) 

and P and Q are arbitrary constants. 

Combining eqns (13b), (18) and (6) with eqns (14a-b) the expression for u, (p) and 
ere (p) becomes 

where 

or 
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Combining conditions (4a-c) with the expressions for udp) and o,(p), the following 
set of equations are obtained [for p # 01 

Do M 
a3]P + + a 3 ~  - = - - 

rl 
where 

3 
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dB (1 - 2p) (for p # 05) ,  

or 
bll 

= - In(p21pl)/(Al - A2) (for p = 0.5) . 
v11 

From eqns (23a-c) the constants P, Q and Do i rl can be found out from the following 
relations 

where A is the non-singular value of the determinant 

The values of Ai are obtained from those of A by replacing the ith column by 0, 0, 
M -- Knowing the values P, Q, and Ddrl from eqns (27a-c) u, (p )  and u&) 2 '  

can be found out from eqns (20a-b). 

The electrical voltage developed between the upper and lower surfaces of the bar 
can be found out from the relation 

4. A special case for homogeneous bar 

For a homogeneous piezoelectric bar, the elastic and piezoelectric parameters as well 
as the dielectric permittivity are independent of space position, i.e., here the 
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nonhomogeneity parameter P = 0. In this case, on the basis of eqns ( 1 3 k ,  14a-b, 
18 and 19) the expressions for m,(p) and u&) become 

- 
Do 

where P, and - are the arbitrary constants for homogeneous case. The constants 

Do r1 P, e, and - can now be evaluated using the corresponding mechanical boundary 
rl 

conditions (4a-c). 
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bl = 
4 

(XI - X I )  P: 

Do 
Evaluating F, and - from eqns (30a-c) and inserting them in eqns (29a-b), 

rr 

udp) and a&) are found. Following the same procedure the voltage generated 
between the upper and lower faces of the bar can be expressed as 

Numerical computations have been carried out to obtain the radial, hoop stress com- 
ponents and voltage generated across the depth of the bar in both nonhomogeneous 
and homogeneous cases. 

As a typical example, quartz has been chosen as an aggregate of concrete for 
which bit = 2-2 p~lN".'~, vll = 4.5 x 8-854 x 10-I2 ~lm",  ell = 13.16 x m 2 ~ 1 1  
and clz = - 143 x 10-l2 m2/N". 

The results have been computed choosing the outer radius h = 1 . 2 5 ~ ~  (rl, the inner 
radius of the bent bar) and M = 4 X 1012 (m magnitude). 

The stress components are shown in Figs 2 and 3. Voltages generated for 
homogeneous and different types of nonhomogeneous cases are evident from Table 
I. The voltages are expressed in terms of (MI?,) unit. 
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Radial co-ordinate (P) Radial co-ordinate (P) 

Rc. 2. FIG. 3. 

Table I - 
Nonhornogeneiry Voltage generated 
pnrarnerer (p) i r ~  VIM) 

+ 4 - 1462.7 
+ 2 - 1323.7 

1 - 1310.1 
a .5 - 1301.9 

0 - 1228.4 - -5 - 272.8 
- 1 - 92.4 
- 4 - 3-5 

An interesting feature of this analysis is that the result shows a marked difference 
in the output voltage obtained across the depth of the bar for homogeneous and 
nonhomogeneous cases. Since the electrical properties of concretes are extremely 
variable and depend upon the proportion of the contents and gradation, such type 
of results are well expected, as the nature of nonhomogeneity also varied. The results 
obtained corresponding to f5 > O are of much significance. The magnitude of output 
voltages in these cases is greater than the voltage obtained in thc case of a hornogene- 
ous piezoelectric bar ($ = 0) having similar dimensions and under the action of the 
same bending moment M. 
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Another important aspect of the present discussion is that for a particular bar the 
voltage is found to be directly proportional to the applied bending moment whereas 
from theory of elasticity it is known that the tip displacement at one end of the bar 
varies directly as the bending moment. So it can be concluded that tip displacement 
should directly vary with voltage, which tallies with the experimental result7. 

This work is in partial fulfilment of the doctoral dissertation of one of the authors 
(KCS) at the Jadavpur University, Calcutta, jointly supervised by the first author 
(AD) and Prof. A. Chowdhury, of Jadavpur University, Calcutta. 
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