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Abstract

Stress fields and electrostatic voitage developed in a nonhomogeneous piczoelectric bar subjected to bend-
ing moments at its ends are determined. This two-dimensional eleciro-mechanical problem of composite
bar involving Maxwell’s electro-magnetic equations, the equations of elasticity and the constitutive equa-
tions of piezoelectric quartz has been tackied effectively by using Sethk’s theory of finite deformation.
Numerical results show wide differences in the voltages and the stresses of nonhomogeneous and
homogeneous bars.
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1. Imtroduction

Piezoelectric effect was first discovered by the Curie brothers in 1880". Piezoelectric
properties of crystals are used to construct efficient transducers to work under diffe-
rent practical situations. For low-frequency operation bimorph, a composite transduc-
ing element is often used to reduce the mechanical impedance without lowering the
output voltage®. However, the aim of the designers should be to achieve high output
voltage and greater ruggedness with minimum weight in an electro-mechanical
appliance. This requirement can be met in a thin layer made of quartz as a concrete
aggregate®. Such a body should be considered nonhomogeneous. Nonhomogeneity is
more pronounced if the bar is composed of such layers placed one after another
having increasing or decreasing proportions of quartz crystals, following the bimorph
principle. The present study on such a model bar shows wide differences in the
output voltages of nonhomogeneous and homogeneous bars; ruggedness and weight
of the body are also taken into account, since nonhomogeneity in elastic and
piezoelectric parameters has been considered. Reports of some experimental results*’
published in the last decade may be cited in this context.

2. Formulation of the problem
We consider a uniform narrow rectangular cross-section of a curved bar (Fig. la, b)
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(b)

FiG. 1. Polarity of the voltage developed across the
bar.

composed of different layers consisting of an aggregate of quartz-cement mixture®.
Bending is effected in the plane of curvature by couple M at the ends of the bar,
the bending moment in this case is constant along the length of the bar. It is natural
to expect that the stress distribution is the same in all radial cross-sections, so that
the stress components do not depend on 8, but are functions of r only. Due to this
symmetry, the shearing stress does not exist.

The fundamental equations of this electro-mechanical problem consist of (i) electro-
static equations, (ii) equation of elasticity, and (iii) constitutive relations for the
piezoelectric material®®,

From the electro-static equation Curl FE =0 one can see E = grad ¢, or E, =
do/dr for the present problem. If the upper and lower faces of the bar are coated with
a conducting material, so that they are level surfaces of potential field ¢, the electrical
boundary condition becomes

¢z‘¢1=[ _«E,~dr=V. )

The integral is taken along the path from the lower face of the bar to its upper face
boundary.
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The stress equation of equilibrium (as there is no body force) is'

3o, a, — Oy
[l S A )
dr r

For the present problem, the constitutive equations for the material can be taken

as™oi,
S, = 5110, + 5120 + dnE, (32)
Sy = spo, + syoe — dukE, (3b)
S =0 (39)
D, = dy (o, — 03) + enE, (3d)
Dy =0. (3¢)

Assuming the bar having the width of the rectangular cross-section as unity, one can
put the mechanical boundary conditions as

[o] =, =0 (42)
[O'r] r=rn = ¢ (4b)
J' ' rogdr = — M- (40

The nonhomogeneity of such a body may be characterized by the variations of elastic,
piezoelectric and dielectric parameters from point to point in a static problem™. In
particular, their variations, where radial symmetry is considered, may be of the
form®#

sy =6 f () (5a)
dy =by f(r) (5b)
& =vy f(7) (5¢)
iji=123

In this problem, the nonhomogeneity parameter is defined by

fry=r® O]

to suit linear or parabolic or any other variation.

3. Method of solution

Gaussian electro-static divergence equation in two-dimensional polar coordinate
stands as
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18Dy 1Dy o o

Owing to the radial symmetry of the problem.

3D,
P * =0, eqn (7) yields,
rD, = Dg = constant. 8)

Equation (3d) now becomes
Dylr = dy(or = 09)

€11

E, = (9)

According to Seth’s theory of finite deformation’”, one can take the radial and
tangential components of displacements ax # =7 (1 — ) and v = 0 where ¥ is a
function of r 10 be determined. The radial and circumferential strain components
may now be written as

du db
S = =1 =g — 0
dr T-b-r dr 0
u
and So=—=1~14- a

When the values of E,, S, and Sy as per eqns (9)—(11) along with those of s, d,
and ¢, given by eqns (5a-c) are inserted in eqns (3a-b), one gets

Aoy + Aoy = Ay (12a)
and N o, A oy = Ay (12b)
bt b
where M=oy~ = M= 0yt — (13a)
i Y11
A by Do )
A= (1 2 2n P,
. L el [20) (13b)
by D ’
Az=(1—¢+—l——“—)/f(r). (130)
vy o7

Equations (12a-b) help to determine o, and oy as
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= (A - Agny)

, = s 14
TTTR-9 (%)
(Aoh — Aing)
= — 14b
TR (14%)
On the basis of eqns (14a-b) and (6), eqn (2) becomes
e das
+r (3 —2B)——+ 28D
s T ( 8) e BD"Y
by Do
=28D + ——— D, (28 - 1) 15)
vp o7
A2
where D' = -1, (16a)
A
A
Dy=1+-2 (166}
A
Now the dimensionless variable p = -~ is introduced, r, being the inner radius of
n
the bar. Using $(r) = &(p) eqn (15) takes the form
. 4 + p(3 - 28) % + 28D’
g TR dp
b D
=D + 2" p - 1) 17
i np
From (17)
28D’ b DyD
Kp) = P ¥ + QP 4 o 2 0D
8 & va P
(@B -1)
T (8, 5, % —1 18
(1+5,)(1+sz)(‘ : ) (18)
and 28D buDyDy (2 1) I
' - n|
Ep) = P+ Qp + b2 buloDr U8 -2 (18a)

8,8, viur 1+ %)

(for 8y = — 1, 8, # — 1)
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where 5,8, = (B — 1) £ [(® - 1)*—28D'}"? (19)
and P and Q are arbitrary constants.

Combining eqns (13b), (18) and (6) with eqns (14a-b) the expression for o, (p) and
o, (p) becomes

940) = o) P+ 12 () 0 + i () o + ) (208)
0up) = 1a(p) P+ I () © + b (6) o + ) (206)
where () = (ha — Ay = AsDy) /(02 — AD) 2B (212)
hap) = Oz = M = &) 922/0 = 2 AP @)

LN NN o ot
hale) ==~ [( M) # (1+51)(1+Sz)]/

O~ M) P o8y, 8 # — 1)

by [ MNDi2B - 1) :’ /
~ A=Ay — ——————e
o v [-( ! ) 1+8%) fne
A~ A ARl (By =~ 1,8, % — 1) (21¢)
1
Lap) =0 (for B+ 0) = e (for B = 0) (21d)
b(p) = (2 = M+ NB)p™ (A} — WprdP (22a)
ha(p) = (A2 = M + M%) o™ (] —\D) 2P (22b)

by MDy@B - 1)
1 = Il LA
=) = - [0“ PNy AT 8 } /

O = N) ™+ (3, 8, % — 1)
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Bry \Dy (28 - 1) Inp J / ,
e (N + Ay) + e TR N2 — NZ)2B28 %
or o [( 1+ X)) T+ (Af — A)riPp (22c)

@ = ~1, 8 # 1)

1
In(p) = 0 (for B # 0) = FWrTve (for = 0) - (22d)

Combining conditions (4a—c) with the expressions for o,(0) and oy(p), the following
set of equations are obtained [for B # 0]

Dy
ay P + apQ + a3 = 0 (23a)
1
Dy
AP + anQ + ay - = 0 (23b)
1
Dy M
251P + apQ + a3 —— = — ——~ (23¢)
" n
where
ay =y (ps) (242)
ap = ha (p) (24b)
a3 = b3 (p1) (24c)
an =l (pg) (252)
ay = Iy (p2) (25b)
azs =4y (py) (25¢)
asy = (hy — Ny + AB)(p§ P F 2 gl ¥ )/
A -2\ Bi-28+2) (26a)
am = (A — Ay + MB)(pF T2 pi’l'm'”)/
PO ~ M)E —~ 28 + 2) (26b)
by [ MD(28 - 1) }
=y A~ e B T )
e L S T TS

[P} = p2J0M - M.
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7P (1 - 28) (for B + 0-5), (26¢)

bll

or = In{po/pr)(h — Ng) (for B = 0'5) -

From eqns (232—c) the constants P, Q and Dy / 7, can be found out from the following
relations

P Q= = e (27a,b,c)

where A is the non-singular value of the determinant

a1 a;n a3
az a2 ax
as az ds3

The values of A; are obtained from those of A by replacing the ith column by 0, 0,
— —~. Knowing the values P, Q, and Dy/r, from eqns (27a-¢) o, (p) and oy(p)

S| '

1
can be found out from eqns (20a-b).

The electrical voltage developed between the upper and lower surfaces of the bar
can be found out from the relation

Dy 2 riby
= e (p7P - 3By T
28vyr (b3 Pz va(h — A2)
[ P, (phB+1_ phrly g 2%
(3; —28+1) (3-2p+1)

— " by D
(p?z23+1_p§zzﬂ+l)+ u e
tn n
o B D - p3 H
21+ 8)(1 + 8,)B

(28)

4. A special case for homogeneous bar

For a homogeneous piezoelectric bar, the elastic and piezoelectric parameters as well
as the dielectric permittivity are independent of space position, ie., here the
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nonhomogeneity parameter § = 0. In this case, on the basis of eqns (13b—c, 14a~b,
18 and 19) the expressions for a,(p) and og(p) become

e P& B
P M+ M (1~ M)p? np v
(=X~ A2+ 22Dy) 1 (292)
o -n) Mt A
P 0 Dy b
o) = - N
Mt N (M = M)p rp vy
M+ N — MDY 1 (29b)
(YRS N+ N

= = Dy .
where P, Q and —— are the arbitrary constants for homogeneous case. The constants
- r

- = D,
P, O, and 2. can now be evaluated using the corresponding mechanical boundary

conditions (4a—c).

aP + b0 + G = (30a)
n
- _ D
aP+ 6,0+ C-—L =ga (30b)
r
- — Dy M
@BP+ b0+ C—=a; — —. (300)
r ”%
Here, a = - _..._1__..
Ay + A
7
by = !

M)

Dob
O = — (= A2 = A+ MDY — M)
RSSLa1eH
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b 7
T a8
Dyb:
= ——— (= A = M + MDY = )
Yune2
- _ 2 2
a3 200 + 2 (pz — p1)
In(p2/ p1)
by = e
= M)
o = by (g M — MDi)(p2 — 1)
y = .

vy HIEY))

- - D
Evaluating P, ¢ and =L trom eqns (30a—c) and inserting them in eqns (29a-b),
7

1
o(p) and ae(p) are found. Following the same procedure the voltage generated
between the upper and lower faces of the bar can be expressed as

Dy

r1€51

V=

budy (D1 —2) ]

In(py ! p [1 -
P/ ) Vi M= M)

e (M)

2y 0 ( 1 1 ) 1)

5. Numerical results

Numerical computations have been carried out to obtain the radial, hoop stress com-
ponents and voltage generated across the depth of the bar in both nonhomogeneous
and homogeneous cases.

As a typical example, quartz has been chosen as an aggregate of concrete for
which by = 2:2 po/N™8, vy = 4.5 x 8-854 x 1072 F/m*, ¢y, = 13-16 x 1072 m¥/N"!
and ¢, = — 1-53 x 1072 mN

The results have been computed choosing the outer radius 7, = 1-25r; (ry, the inner
radius of the bent bar) and M = r} X 10" (in magnitude).

The stress components are shown in Figs 2 and 3. Voltages generated for
homogeneous and different types of nonhomogeneous cases are evident from Table
1. The voltages are expressed in terms of (M/ry) unit.
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T T T T T
o= 3 =2 0.5 F o0 B 0.5
A——Aﬁ = 0.0
ob—_a P =-0.5 1000 -

SO0t~

Hoop stress (o /%) in ST unit

Radial stress (a3 /10) in SI unit

(S _
-100 ~
L i S 1 i
1.0Q 1.5 1.25 100 115 125
Radial co-ordinate (P) Radiat co-ordinate {P)
FiG. 2. FiG. 3.
Table I
Nonhomogeneity Voliage generated
parameter (B} (r. VIM)
+ 4 — 14627
+ 2 - 13237
1 = 1310-1
+ -5 ~ 1301-9
¢ — 1228-4
- -5 - 2728
-1 - 924
- 4 - 35

An interesting feature of this analysis is that the result shows a marked difference
in the output voltage obtained across the depth of the bar for homogenecous and
nonhomogeneous cases. Since the electrical properties of concretes are extremely
variable and depend upon the proportion of the contents and gradation, such type
of results are well expected, as the nature of nonhomogeneity also varied. The results
obtained corresponding to § > 0 are of much significance. The magnitude of output
voltages in these cases is greater than the voltage obtained in the case of a homogene-
ous piezoelectric bar (B = 0) having similar dimensions and under the action of the
same bending moment M.
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Another important aspect of the present discussion is that for a particular bar the
voltage is found to be directly proportional to the applied bending moment whereas
from theory of elasticity it is known that the tip displacement at one end of the bar
varies directly as the bending moment. So it can be concluded that tip displacement
should directly vary with voltage, which tallies with the experimental result’.
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Nomenclature

[ = Electric potential.

o, = Normal stress in the radial direction at a point (r, 9).

oo = Normal stress in the circumferential direction, i.e., hoop-stress at a

point (r, ©).

S, Se; Sre = Strain components.

S11, S12 = Elastic compliances at constant electric field.

dyy = Piezoelectric strain/charge parameter.

€11 = Dielectric permittivity at constant stress.

ri, ra = Radii of lower and upper surfaces of the bar.

E, = Electric field component.

D,, Dg = Electric induction components.

M = Bending moment.

cp by Vi = Material parameters in relation to elastic, piezoelectric an- dielectric

properties, respectively, of the bar.
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