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Multidimensional Paper Networks: A New 
Generation of Low‑Cost Pump‑Free Microfluidic 
Devices

1  Introduction
When microfluidics was first introduced in the 
1990s, it brought along an optimism that it would 
significantly change the way modern analytical 
chemistry and biology is conducted. The original 
idea was that microliter quantities of fluids could 
be precisely manipulated in silicon microchan-
nels fabricated using technologies already devel-
oped by the electronics industry1, 2. For analytical 
chemistry, the motivation was that traditional 
lab-based chemistries involving multiple steps 
could be condensed into a single fluidic “chip”. 
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Abstract | Since Andreas Manz first introduced the microchip technol‑
ogy for chemical applications back in the 1990s, the field of ‘microfluid‑
ics’ has expanded widely and microfluidic tools have become ubiquitous 
in life sciences research. However, pumps and controllers associated 
with most current microfluidic chips continue to be bulky and costly. A 
new class of microfluidic devices in which flow channels are composed 
of multidimensional (2D or 3D) shapes of porous materials is becoming 
increasingly popular. The ability of porous materials to wick fluids obvi‑
ates the need for pumps, making such devices portable, low-cost, and 
ideal for use in low-resource settings. Such devices are broadly referred 
to as “paper microfluidic devices”. The ability to manipulate fluids in 
paper microfluidics has progressively increased over the past decade 
and such devices are currently being used to develop highly sensitive 
and multiplexed low-cost diagnostic/sensing devices. In this article, we 
review the area of paper microfluidics covering the basic fluid physics, 
methods of fabrication, flow control tools, applications in diagnostics/
sensing, and applications in other emerging areas like tissue engineer‑
ing and power storage. This review is targeted to a broad audience that 
does not have prior exposure to the field of paper-based microfluidics. 
Through this article, we wish to invite researchers from multiple back‑
grounds to contribute to further development in this new and exciting 
area of research.
Keywords:  Microfluidics, Point-of-care diagnostics, Paper analytical devices, Tissue engineering, 
Nucleic acid amplification, Immunoassays, Microfabrication, Valving
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For biologists, the excitement was in the idea 
that cells could be cultured under flow-through 
conditions that better mimicked the in  vivo 
condition and provided better spatiotempo-
ral control over the cellular microenvironment. 
Miniaturization promised to reduce the quanti-
ties of expensive reagents, streamline workflows, 
and potentially enhance throughput in all these 
application areas3. The terms “lab-on-a-chip” 
and “micro-total analysis systems”1 gained popu-
larity during this time. A major development in 
the field occurred when a method to prototype 
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microchannels in elastomeric materials (poly 
dimethylsiloxane; PDMS) was developed in 
19984. This significantly expanded the reach of 
the technology to the larger academic commu-
nity because the new method was much faster 
and safer. Over the years, PDMS-based micro-
fluidic devices have become an indispensable 
tool in modern analytical chemistry and biology 
(Table 1, 2).

The true measure of success of any technol-
ogy is the extent of its utilization in commer-
cial products. After the initial hype of inflated 
expectations, according to experts, microflu-
idics as a technology seems to be heading 
towards a “plateau of productivity”5, a term 
defined in the well-known ‘Gartner Hype Cycle’ 
for emerging technologies6. The Agilent Bioana-
lyzer capillary electrophoresis system, launched 
in 1999, was the poster child of the early micro-
fluidics technology and was a big commercial 
success. Since then, microfluidics has enjoyed 
large-scale commercial success, not necessar-
ily as a standalone app as was originally envi-
sioned, but as a silent component of larger 
systems. Some of the major application areas 
for microfluidics have been pharmaceutical 
research, drug discovery/delivery, and in  vitro 
diagnostics. Microfluidics, or manipulation of 
sub-microliter fluid volumes, is now an inte-
gral component of commercial next genera-
tion sequencers (Nanopore sequencing; Oxford 
Nanopore Technologies), miniaturized clinical 
diagnostic systems (ACIX; Achira Labs Pvt Ltd), 
and several lab analytical instruments. By the 
year  2021, the global microfluidics market is 
projected to be worth $8.78 billion7.

Despite all the success that mainstream micro-
fluidics has enjoyed, one limitation of microflu-
idic systems has been that while the chip has been 
miniaturized at an astonishing pace, ancillary 
equipment required to operate the chip remains 
bulky. Benchtop pumps, flow controllers, and 
optical detectors like microscopes or well plate 
readers are commonly used along with miniatur-
ized microfluidic chips. The need for bulky ancil-
lary equipment has severely restricted the use of 
microfluidics in “point-of-care” (POC) diagnos-
tics, i.e., in the ability to conduct a medical diag-
nostic test at or near where the patient is located. 
In general, current microfluidic technologies fail 
in low-resource settings that lack high-tech labo-
ratories—scenarios in which POC diagnostic 
testing is needed the most.

In parallel to modern microfluidic technol-
ogy, one widget that has silently enjoyed wide-
spread commercial success and has been a game 

changer for POC testing is the lateral flow immu-
noassay (LFIA), e.g., a home pregnancy test. 
While the LFIA does not fit into the traditional 
definition of microfluidics as popularized by the 
1990s revolution, at its core, it is a microfluidic 
device that moves microliter quantities of fluids 
through microcapillaries in a porous material. 
The advantage over traditional microfluidics is 
that capillary action obviates the need to use 
bulky pumps and the signal can be read by naked 
eye. As the need for rapid detection of analytes at 
the POC has come into focus, influenced partially 
by a push from funding agencies like the Bill & 
Melinda Gates Foundation towards decentral-
ized medical diagnostic testing, the LFIA tech-
nology has regained the attention of researchers. 
While LFIAs continue to find new applications, 
their sensitivity for analyte detection and ability 
to conduct multiplexed detection is limited com-
pared to those achievable in traditional pressure-
driven microfluidic systems.

Technology in which patterned paper is used 
to distribute minute fluid volumes into multiple 
detection zones where different analytes can be 
assayed was introduced in 20078. Such devices 
are called “microfluidic paper analytical devices” 
(µPADs) and are becoming increasingly popu-
lar. Complementary to µPADs, another class 
of paper-based devices that enabled sequen-
tial delivery of multiple fluids over a test zone 
was introduced in 20109. These devices enabled 
conducting multi-step signal-enhanced immu-
noassays in paper-based devices and are called 
two-dimensional paper networks (2DPNs)9–11. 
These developments have now led to a field of 
research called “paper-based microfluidics”. The 
idea is that with innovative designs made from 
low-cost paper, many of the multi-step assays that 
were being performed in the traditional micro-
fluidic devices can be conducted in devices that 
do not require pumps or an electricity source. In 
addition, paper is easy to print on, easy to cut and 
shape, and a white background facilitates visual 
colorimetric readouts. Paper microfluidic devices 
have now been used to conduct an array of sens-
ing chemistries ranging from simple color change 
chemistries, immunoassays, ELISA’s, and nucleic 
acid amplification tests, and the excitement level 
for this new platform is currently very high.

In this review, we aim to provide a broad 
overview of the field of paper-based microfluid-
ics. While several reviews have been published 
on this topic12–15, this review adopts a different 
tutorial-like approach providing a historical per-
spective of the field of microfluidics and circum-
stances that led to the popularity of paper-based 
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microfluidics. In addition, in our opinion, this 
review covers the broadest range of topics under 
the purview of paper-based microfluidics com-
pared to all previously published reviews. We 
will cover the fundamental physics governing 
flow in paper microfluidics, common device 
geometries, and various fabrication meth-
ods. We will then review innovative strategies 
that have been developed to control and auto-
mate fluid flow in paper microfluidic devices. 
This will be followed by a broad overview of 
the applications of paper-based microfluid-
ics in biomedical engineering. Some upcoming 
areas like tissue engineering, plasma separation, 
and energy storage will also be covered. As will 
become clear through the various sections that 
follow, the development of paper-based micro-
fluidic devices for biomedical applications is a 
highly multidisciplinary field. We hope that this 
review will attract researchers from a diverse 
background to contribute towards the develop-
ment of integrated paper microfluidic systems.

2 � Analysis of Publications Related 
to Microfluidics

A brief history of microfluidics showing major 
developments in the field is presented in Fig. 1a. 
The earliest technology used silicon microma-
chining to create microfluidic channels and led 
to the conception of micro-total analysis sys-
tems (µTAS)1, 16. However, silicon microma-
chining was cumbersome and not accessible to 
many. Rapid prototyping of microfluidic chan-
nels in PDMS was invented in 1998 and it radi-
cally enhanced the penetration of microfluidics 
in the scientific community4. Another notable 
advancement was the invention of multi-layer 
PDMS devices in 200017 that enabled active 
valving and massive parallelization of bioas-
says18. The modern revolution in paper-based 
microfluidics was triggered by µPADs (dotted 
red rectangle) in 2007 and enabled multiplexed 
detection from small sample volumes8. Two-
dimensional paper networks introduced in 2010 
provided a way to conduct more sensitive multi-
step assays in paper9. From 2013 onward, several 
new methods of flow control and valving for 
paper-based microfluidics have been introduced 
and this has led to increasingly new application 
areas19–25.

A rapid increase in the number of publica-
tions related to microfluidics ensued from the 
advent of PDMS-based microfluidic fabrication 
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in 1998 (Fig. 1b).1 The number of articles related 
to microfluidics continues to increase at a high 
rate (Fig.  1b). Simultaneously, there has been a 
rapid increase in the number of publications 
related to paper-based microfluidics since the 
year 2010 (Fig.  1c), amounting to 36 publica-
tions in the year 2017. Moreover, the percent-
age of the total publications on microfluidics 
that are related to paper-based microfluidics 
went up to 1.72% in the year 2017 from 0.17% 
in the year 2010 (Fig.  1d). This marks a 10-fold 
increase in the contribution of paper-based 
microfluidics to the field over a period of 
7  years. Although still a niche, paper-based 
microfluidics are rapidly making a mark. We 
acknowledge that an analysis of the number of 
publications of this sort must always be 

1  An analysis of the number of publications related to micro-
fluidics was conducted using Web of Science. The follow-
ing keywords, in quotes, were used under topic search: (i) 
“Microfluidics” (Fig. 1b), (ii) “paper microfluidics” OR “paper 
analytical devices” (Fig.  1c, d), and (iii) “gel electrophoresis” 
(Fig. 1e).

accompanied by a word of caution. It could be 
argued that a general increase in the number of 
scientific journals and number of research uni-
versities worldwide over the last decade alone 
could account for the rapid increase in the num-
ber of publications and that this increase is inde-
pendent of topic area. To rule this possibility out, 
we analyzed the number of publications related 
to “gel electrophoresis”, a common technique 
used in most biology-related labs, as a control. 
Despite an increase in the number of scientific 
journals, there has been a decrease in the number 
of publications on this topic since 2010 (Fig. 1e) 
owing to little/no new developments in this area. 
In contrast, publications related to paper-based 
microfluidics seem to be rapidly increasing in 
number.

3 � Physics of Fluid Flow in Paper‑Based 
Microfluidics

Unlike duct flow in traditional positive pressure-
driven microfluidic devices, flow in paper mate-
rials is driven by capillary pressure generated by 
pores within the paper. The generated capillary 

Figure 1:  A brief history of microfluidics and analysis of number of publications over the years. a Timeline 
of major technological breakthroughs that popularized microfluidics in the scientific community. b–d Num‑
ber of publications on the topic “microfluidics” since 1995 (b); publications on the topic “paper-based 
microfluidics” since 2010 (c), percentage of total publications on microfluidics focused on paper-based 
microfluidics since 2010 (d), and publications on the topic “gel electrophoresis” since 2010 (e), used as 
a control to show that increase in publications on microfluidics is not only because of an increase in the 
number of scientific journals and research universities 1991: silicon micromachining, reproduced from ref 
[16] with permission from Elsevier; 1998: rapid prototyping in PDMS, reproduced from ref [4] Copyright 
(2010) American Chemical Society; 2000: multilayer PDMS fabrication; 2007: microPADs, reproduced 
from ref [8] with permission from Elsevier; 2010: 2DPNs, reproduced from ref [9] with permission from 
Elsevier.
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pressure is a function of pore size and liquid–air 
surface tension. Thus, the rate of fluid flow in 
paper varies according to the material of con-
struction, porosity, and pore size distribution26. 
A thorough understanding of how these param-
eters affect flow rates is obviously essential to 
designing paper microfluidic devices. There are 
two widely used equations to model fluid flow 
in porous materials: (a) the Lucas–Washburn 
equation and (b) Darcy’s law; they assume uni-
form cross section of the paper device and a fully 
saturated advancing fluid front, respectively27. A 
third model called the Richard’s equation, which 
accounts for partial saturation of the fluid front 
in multidimensional domains has recently been 
used28, 29. We briefly describe the three models 
below.

3.1 � Lucas–Washburn Equation
This model was originally derived for flow 
through a single capillary assuming Hagen–
Poiseuille flow through a rigid and isotropic 
cylinder. Its use has been extended to paper by 
assuming that paper is composed of a bundle 
of parallel capillary tubes30 (Fig.  2a). Washburn 
equation predicts the position of the wetting 
front as a function of time as follows10, 31:

where L is the distance traversed by the fluid 
front, rpore is the average radius of the pore, γ 
is the effective surface tension of the fluid-air 
interface (including the dependence on con-
tact angle), and µ is the dynamic viscosity of 
the fluid. According to this equation, the posi-
tion of the fluid front in a straight (1D) porous 
membrane is proportional to the square root of 
time19, 27, and the velocity decreases with distance 
because of viscous resistances. The square root 

L2 =
γ rpore

4µ
t

time dependence of the advancing fluid front 
has been experimentally validated in many diag-
nostic membranes and a lumped proportionality 
constant is often experimentally derived for each 
diagnostic membrane10, 11, 19, 32. A major limita-
tion of this method, however, is that it is limited 
to 1D domains.

3.2 � Darcy’s Law
Darcy’s law10, 33 is a phenomenologically 
derived Ohm’s law-like model that relates pres-
sure drop across a porous material to the aver-
age flow rate linearly as follows:

where Q is the volumetric flow rate, �p is the 
pressure difference over length, L , κ is the per-
meability, and A is the cross-sectional area of 
the paper strip. The equation can be rearranged 
to reveal µL

/

κA as equivalent to electrical resist-
ance and �p equivalent to voltage (Fig. 2b). Dar-
cy’s law when used for modeling flow in the case 
of imbibition requires the solution of a moving 
boundary problem and is difficult to implement. 
Mendez et  al.34 have presented a comprehensive 
numerical solution to such a moving boundary 
problem. However, because of the mathemati-
cal and computational complexity involved in 
the solution, the use of Darcy’s law in the paper 
microfluidics community has been restricted to 
modeling flow through fully saturated domains11.

From the above discussion, it is noteworthy 
that both the Washburn equation and Darcy’s law 
assume that a sharp fluid front exists and that the 
porous material behind the wetting front is fully 
saturated33, 35. However, from traditional models 
of fluid flow in porous media like soil, it is well 
known that the advancing fluid front is partially 

Q = −
κA

µL
�p = −

�p
(

µL
/

κA

)

Figure 2:  Mathematical models for fluid flow through paper materials. a Washburn equation, b Dacry’s 
law, and c Richard’s equation. The Richard’s equation is the only equation that accounts for partial satura‑
tion.
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saturated. This fact has largely been ignored by 
the paper microfluidics community28, 36.

3.3 � Richard’s Equation
The phenomenon of partial saturation occurs 
when the porous material contains pores of 
multiple sizes. A direct consequence of partial 
saturation is that the capillary pressure induced 
by the material and the permeability of the 
material change with the extent of saturation. 
In contrast to Washburn equation and Darcy’s 
law, the Richard’s equation28, 29 can be used to 
describe the motion of a fluid in partially satu-
rated porous media37 (Fig.  2c). This has been 
extensively used to model fluid flow in soil-
based samples38 and other porous materials29. 
The functional form of the Richard’s equation 
most relevant to modeling flow in paper micro-
fluidics is

This equation assumes that the capillary pres-
sure, ψ , and permeability, κ , of the paper material 
are functions of saturation, θ , which represents 
the extent of saturation in the material. The 
term ρgz is the gravitational head, which can be 
neglected for paper strips placed on horizontal 
surfaces. This is a partial differential equation 
that can be solved for ψ as a function of space 
and time. To solve the equation, the functional 
relationships ψ(θ ) and κ(θ ) must be known. 
Recently, Perez-Cruz et  al 28 demonstrated the 
use of the Richard’s equation in modeling imbi-
bition through 2D shapes of filter paper. How-
ever, the parameters relating the permeability and 
capillary pressure to saturation were obtained 
by fitting experimental data to the mathemati-
cal model because of the complexity in obtaining 
such parameters experimentally. Experimental 
measurement of ψ(θ ) and κ(θ ) has been demon-
strated in other fields of study, e.g., in soil dynam-
ics, but the paper microfluidics community is yet 
to adopt such methods38, 39.

4 � Common Geometries and Definitions
The aim of this section is to introduce the reader 
to some common geometries of paper networks 
that have become popular and to define some 
important terminologies. As researchers from 
a plethora of backgrounds have become inter-
ested in paper-based microfluidics over the last 
few years, there has been an inconsistency in the 
use of terminologies. Here, we provide a historic 
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context of the terminologies as well as their cur-
rent connotation.

4.1 � Lateral Flow Assay
A lateral flow assay, by definition, is composed 
of a paper strip in which fluid flows in the plane 
of the paper along its length, i.e., laterally, as 
opposed to perpendicular to the plane like in fil-
tration. In the field of diagnostics, the phrase “lat-
eral flow assay” is often used synonymously with 
“lateral flow immunoassay” (LFIA). An LFIA is 
a specific kind of diagnostic device in which the 
sample flows through a test zone where antibod-
ies for an analyte are immobilized, into a waste 
collection pad (Fig.  3a). LFIAs are restricted to 
1D fluid flow. One must note, however, that a lat-
eral flow assay need not necessarily be an LFIA. 
A large amount of recent literature features the 
use of a lateral flow assay for detection of nucleic 
acids40, 41.

4.2 � μPADs
These are a specific kind of paper microfluidic 
devices featuring distribution of one fluid (sam-
ple) into multiple test zones (Fig.  3b), where 
color changes occur corresponding to the con-
centration of analyte being assayed in each 
test zone. μPADs, as described in the original 
publication in 2007, featured 2D flow42 and 
became popular for their ability to assay mul-
tiple analytes in small sample volumes. Within 
a few years, these designs were extended to 
include 3D flows by layering multiple layers of 
paper43–45.

4.3 � P‑ELISA
These refer to paper ELISA (enzyme-linked 
immunosorbent assay) devices. Introduced in 
2010, these devices are reminiscent of well plates 
(Fig.  3c) and contain circular porous regions 
where capture antibodies are spotted46. The 
sample, wash buffers, and signaling reagents are 
pipetted into these regions manually at fixed time 
intervals. These fluids flow perpendicular to the 
plane of the paper into a waste pad. It must be 
noted that because this design was first proposed 
by the Whitesides group, which first introduced 
μPADs, almost all other research groups that sub-
sequently developed P-ELISA devices continued 
to refer to these devices as a type of μPAD.
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5 � 2DPNs
These are a specific kind of paper microfluidic 
devices featuring flow of multiple fluids sequen-
tially over a test zone (Fig.  3d). These gained 
popularity because sequential delivery enabled 
conducting more complex chemistries, e.g., sig-
nal-enhanced immunoassays 9.

5.1 � Other Usage of Terminologies
Over the years, several of these terminologies 
have been used interchangeably. For example, any 
device that uses a paper-like porous material to 
wick fluid has commonly been referred to in lit-
erature as a ‘microfluidic paper analytical device 
(μPAD), ‘paper analytical device’, or a ‘paper-
based microfluidic device’. However, in this arti-
cle, we will stick to the original definitions of the 
terms as stated above.

5.2 � A note on 2D vs 3D geometries
Following the advent of the early paper micro-
fluidic designs highlighted in Fig.  3, several new 
paper microfluidic designs emerged that were 
essentially 3D variations of the original 2D 
designs. For example, the original 2D μPADs47 
were followed by 3D μPADs43, and the original 
2DPNs were followed by introduction of mechan-
ical valves into such devices making them 3D32. 
It must be noted that the dimensionality of flow 
does not make a design particularly suitable for a 
specific type of assay. Instead, three-dimension-
ality adds fluidic capability and may enable han-
dling higher number of samples or larger fluid 

volumes or introducing on–off valves/switches, 
at the cost of increasing device complexity. One 
must always design the simplest device that does 
the job. Thus, we propose that 3D devices only be 
considered where 2D devices do not provide the 
required fluid handling capability.

6 � Fabrication Methods
The recent upsurge in the use of paper-based 
microfluidics has featured the development of 
many new methods of fabricating paper devices. 
In this section, we will briefly review the various 
fabrication techniques, which we have classified 
into two categories: i) chemical methods and ii) 
physical methods. A direct comparison of fabri-
cation methods is presented in Table 1.

6.1 � Chemical Methods
These methods generally involve the formation 
of hydrophobic regions on an otherwise hydro-
philic porous paper substrate.

6.1.1  �Wax Printing
Wax printing is a rapid, efficient, and inexpen-
sive technique that has been used for fabricating 
µPADS. In 2009, two independent studies were 
carried out by Carrilho et al.48 and Lu et al.49 on 
wax printing. The fabrication process involved 
two steps: (i) hydrophobic solid wax was printed 
on the paper substrate, and (ii) wax was melted 
such that it penetrated the porous structure of the 
paper and formed hydrophobic barriers resulting 

Figure  3:  Common geometries used in paper-based microfluidic devices. a The traditional lateral flow 
assay featuring 1D flow. b Micro-paper analytical devices (μPADs) featuring flow of one fluid to multiple 
test zones. c Paper ELISA (P-ELISA) devices, featuring multiple reaction zones reminiscent of a well plate 
and flow perpendicular to the plane of the paper. d Two-dimensional paper networks (2DPNs) featuring 
flow of multiple fluids sequentially over a test zone. Arrows represent direction of flow.
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in well-defined microchannels on the paper. This 
process involves only a solid wax printer and a 
hot plate or an oven. However, the resolution of 
wax printing is coarse due to wax penetration in 
lateral directions, thereby reducing the sharpness 
of the hydrophobic boundaries. Carrilho et  al.48 
established a model to account for the spread of 
the molten wax. Three different ways of pattern-
ing wax were introduced by Lu et al.49: (i) paint-
ing with a wax pen, (ii) printing with an inkjet 
printer followed by painting with a wax pen, 
and (iii) printing by a wax printer directly. Due 
to its simplicity, this method is well suited for 
large-scale batch production of µPADS. However, 
one of the biggest disadvantages of wax-printed 
devices is that they cannot handle surfactants and 
organic solvents which can dissolve wax.

6.1.2  �Photolithography
In the first demonstration of a μPAD, Martinez 
et  al.8 used photolithography to pattern millim-
eter-sized hydrophilic channels surrounded by 
hydrophobic polymer. Chromatographic paper 
was patterned with SU-8 2010 photoresist using 
well-established methods used for fabricating 
PDMS microfluidic devices. μPADs fabricated 
using this method had very high resolution but 
the fabrication process was complex and involved 
many steps. It also resulted in reduced flexibility 
of the substrate. To circumvent the high cost of 
this photolithographic method, Martinez et  al.50 
developed a low-cost variant of this method 
called fast lithographic activation of sheets 
(FLASH) where they impregnated the paper sub-
strate with low-cost, home-made, photoresist 
derived from SU-8 resin. The method was based 
on photolithography but required just a UV lamp 
and a hot plate (patterning could be done by 
sunlight as well). No clean room or special facili-
ties were required. In another method, Carrilho 
et al.51 used an inexpensive photoresist formula-
tion made from cyclized poly(isoprene) deriva-
tive that allowed rapid (15  min) prototyping of 
paper-based 96 and 384 microzone plates. He 
et al.52 demonstrated a novel method for fabricat-
ing paper-based microfluidic devices by means 
of the coupling of hydrophobic silane [octadecyl 
trichlorosilane (OTS)] to paper filters followed 
by deep UV-lithography. One publication evalu-
ated a novel and facile fabrication method for the 
µPADs using flash foam stamp lithography and 
compared it with other techniques such as wax 
printing and inkjet printing and found it to be 
convenient, quick and economic53.

6.1.3  �Wet Etching
Cai et al.54 demonstrated a novel, simple and cost-
effective method for fabricating µPADs based on 
the selective wet etching of hydrophobic filter 
paper. The procedure involved two steps—first 
the hydrophilic filter paper was made hydropho-
bic by immersing in 2.0% trimethoxyoctadecyl-
silane (TMOS) solution, and next, a paper mask 
penetrated with NaOH solution (containing 30% 
glycerol) was aligned on top of the hydrophobic 
filter paper, allowing the etching of the silanized 
filter paper by the etching reagent. The region 
covered with mask became hydrophilic while 
unmasked regions remained hydrophobic. This 
method did not involve any expensive equipment, 
a metal mask, or expensive reagents. However, 
this method had relatively low resolution, which 
could be improved by printing etching agents on 
the hydrophobic paper using an inkjet printer 
(Fig. 4b).

6.1.4  �Screen Printing
Screen printing is an inexpensive method 
that has been used to print carbon electrodes 
directly on cellulose paper to perform bipo-
lar electrochemistry55. A single pair of driving 
electrodes was used to control an array of 18 
screen-printed bipolar electrodes (BPEs) simul-
taneously. The electro-generated chemilumi-
nescence signal produced from the large array 
of BPEs was stable and reproducible. These 
results demonstrated the feasibility of coupling 
bipolar electrochemistry in microfluidic paper-
based analytical devices (μPADs) to perform 
highly multiplexed, low-cost measurements.

6.1.5  �Wax/Polymer Screen Printing
Dungchai et  al.56 reported a low-cost, simple 
and rapid fabrication method for μPADs which 
involved two steps: (i) patterning wax by rubbing 
through the screen onto paper filters, and (ii) 
melting the wax into the paper using a hot plate 
to form hydrophobic barriers. The final widths of 
the hydrophobic barrier and hydrophilic channel 
were found to be in the range of 1200–1800 μm 
and 550–1000 μ m, respectively, at the optimal 
melting temperature and time. This method 
does not require expensive wax printers and the 
accompanying consumables. In addition, fabrica-
tion can be carried out without the use of a clean 
room, UV lamp, organic solvents or complex 
instruments. However, this method also suffers 
from loss of feature resolution due to wax spread-
ing. A similar fabrication technique was used by 
Sameenoi et al.57 to fabricate μPADs by replacing 
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wax with polystyrene solution. The device formed 
was flexible and could be used for applications 
where the device may require bending or folding.

6.1.6  �Laser Treatment
Laser treatment is a non-contact, mask-less and 
non-lithographic method which involves polym-
erization of a photopolymer. The laser-based 
procedure is used to create hydrophilic fluidic 
channels on a paper substrate that has been pre-
viously impregnated with a hydrophobic mate-
rial. The technique demonstrated by Sones et al.58 
also offered the possibility to control the pattern-
ing process by tuning laser parameters such as 
wavelength, pulse duration and repetition rate. In 
their study, they found the minimum width for 
the hydrophobic barriers that successfully pre-
vented fluid leakage was ~ 120 μm and the mini-
mum width of the fluidic channels that can be 
formed was ~ 80 μm. Chitnis et al.59 were able to 
selectively modify the surface structure and prop-
erties (hydrophobic to hydrophilic) of several 
papers using a CO2 laser. This process is suited for 
rapid prototyping at preliminary stages as well as 
final device optimization.

6.1.7  �Plasma Treatment
This novel method of fabrication of μPADs 
involves making the paper hydrophobic using 
a hydrophobization agent followed by plasma 
treatment in the presence of a photomask to 
make the treated regions hydrophilic. Li et  al.60 
used alkyl ketene dimer (AKD) along with n-hep-
tane as the hydrophobization agent on Whatman 
filter paper. μPADs fabricated using this tech-
nique retained the flexibility of paper as well as 
surface topography. The major advantage of this 
method was that it also allowed the building of 
simple functional components such as control 
switches, microfilters, and microreactors. But a 
known problem with this method is overstretch-
ing of the substrate under a mask. However, this 
overstretching could be controlled by optimizing 
the plasma treatment intensity and time.

6.1.8  �Flexographic Printing
Flexographic printing involves the printing of 
polystyrene polymer that forms liquid guiding 
boundaries and allows the formation of hydro-
phobic barriers in the substrate. Other hydro-
phobizing agents can also be used such as alkyne 
ketene dimer, poly(methyl methacrylate), and 
cross-linked polyvinyl alcohol. Olkkonen et  al.61 
reported that a minimum width of 400 μ m of 
the hydrophobic region was required to obtain a 

Figure 4:  Schematic illustration of some fabrication techniques. a Flexographic printing. b Wet etching. c 
Embossing. d Laser cutting a adapted with permission from Ref. [61]. Copyright (2010) American Chemi‑
cal Society b adapted from Ref. [54], with the permission of AIP Publishing c adapted with permission 
from Ref. [69]. Copyright (2014) American Chemical Society. d reproduced from Ref. [72] with permission 
of The Royal Society of Chemistry.
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leak-free structure. Ink-spreading in flexographic 
printing was found to be negligible. A significant 
advantage of flexographic printing is that bio-
molecules and other reagents required in analyti-
cal and diagnostic tests can also easily be printed 
on paper substrates. Flexographic printing can be 
done in a roll-to-roll process ideal for large-scale 
production (Fig. 4a).

6.1.9  �Inkjet Printing
Inkjet printing is a low-cost and high-resolution 
technique based on dot-on-demand technology, 
which enables jetting of ink droplets onto cel-
lulose paper. It involves printing of hydrophilic–
hydrophobic contrast on the substrate. It is a 
non-contact printing process, which offers the 
advantage of minimum cross-sample contami-
nation. Inkjet printer prints hydrophobizing ‘ink’ 
only on one surface of the paper, which penetrates 
the paper structure. Li et  al.62 printed alkenyl 
ketene-dimer-heptane solution onto untreated 
filter paper using a reconstructed inkjet printer. 
This method can also be used to print desired 
patters of reagents and offers enormous potential 
for mass production of microfluidic sensors at 
a low cost. Koo et  al.24 fabricated electrowetting 
valves for paper fluidic devices by inkjet print-
ing and spraying conductive hydrophobic elec-
trodes beside conductive hydrophilic electrodes. 
By changing an electrode from hydrophobic to 
hydrophilic state, a valve was created. Rajendra 
et  al.63 demonstrated thermal inkjet printing of 
silicone precursors (siloxanes) onto porous filter 
papers that were rapidly converted into hydro-
phobic silicone resin barriers. The resulting bar-
riers resisted penetration by surfactant solutions 
and even by lower surface energy solvents, which 
are frequently used in biological assays. Abe 
et  al.64 also used the inkjet printing method for 
fabrication of entire microfluidic multi-analyte 
chemical sensing devices made from paper suit-
able for quantitative analysis.

Various other techniques were also used by 
various research groups for fabricating paper-
based microfluidic devices such as chemical 
vapor phase deposition65, PDMS-printing using 
x–y plotters66, etc. However, we will not be pre-
senting the details of those methods here.

6.2 � Physical Methods
As the name suggests, these methods involve 
physically modifying/cutting the paper material 
to form flow channels.

6.2.1  �Knife Cutting/Plotter
Fenton et  al.67 demonstrated a low-cost 
method of fabricating multiplexed lateral flow 
assays by shaping thin-sheet porous media in 
two dimensions using a computer-controlled 
X–Y knife plotter. Other than bio-reagents, no 
chemicals were used in the fabrication of the 
device. Glavan et  al.68 fabricated pressure-
driven, open-channel microfluidic systems with 
features sizes as small as 45 µm carved in omni-
phobic paper using electronic craft cutting 
tool/engraving tool. Vapor phase silanization 
of paper was done after carving with alkyl or 
fluoroalkyl trichlorosilane making it hydropho-
bic while preserving its high gas permeability 
and mechanical strength. The carved conduits 
were sealed with tape and were found to be 
capable of guiding transporting liquids in the 
low-Reynolds regime.

6.2.2  �Embossing
Thuo et  al.69 introduced a new technology that 
enabled paper to be used as a pressure-driven 
open-channel microfluidic system. They sand-
wiched paper between two complimentary 
shaped dies and compressed it into a channel by 
applying pressure (~ 0.2 kg/cm2). Paper was made 
omniphobic by carrying out solid–vapor silani-
zation reaction. Dies for embossing were gen-
erated using 3D printing (Fig.  4c). Shin et  al. 70 
developed barriers resistant to organic solvents 
and surfactants. This technique involved apply-
ing pressure on a nonwoven polypropylene (PP) 
sheet using a steel mold. The embossed region 
acted as a physical barrier which prevented the 
flow of liquid. They reported minimum emboss-
ing pressure required for the leakproof barrier 
as 294  MPa. The main advantage of embossing 
is that it is a single step process and suitable for 
mass production.

6.2.3  �Laser Cutting
Spicar-Mihalic et  al. 71 fabricated paper-based 
microfluidic devices using a commercially avail-
able CO2 laser cutter. This machine allowed con-
trolled through-cutting and ablative etching of 
nitrocellulose substrates. In addition, laser cut-
ters can be used to cut a variety of components 
that are useful in the fabrication of paper-based 
devices like cellulose wicking pads, glass fiber 
source pads, and Mylar-based substrates. It 
involves only a single step as compared to various 
other fabrication techniques which require multi-
ple steps. Minimum feature size obtained by CO2 
laser cutter was 150 µm. The depth of cut could 
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easily be modified by varying the laser power, 
speed, and a number of passes. Nie et al.72 fabri-
cated hollow structures in paper to create µPADs 
with the help of commercially available mini type 
laser cutting/engraving. The average width of the 
hollow structure obtained was ~ 0.4  mm. This 
method enjoys high reproducibility and is suita-
ble for large-scale production of µPADs (Fig. 4d).

7 � Flow Control/Valving Techniques
The lateral flow assay (LFA; Fig. 3a) is an ingen-
ious format for rapid and easy-to-use diagnostics, 
but it is fundamentally limited to assay chem-
istries that can be reduced to a single chemical 
step. However, multi-step paper-based assays, 
such as enzyme-linked immunosorbent assay 
(ELISA) involve more complex sequences that 
are not easily implemented as a one-step dip 
and read operation. Up until 2013, microfluidic 
paper-based devices lacked crucial components 
for fluid manipulation. Since 2013, however, sev-
eral new methods have been developed to control 
fluid flow and automate multi-step reactions in 
paper (Fig. 1a). These methods represent a set of 
paper fluidic control tools, i.e., analogs to valves 
in conventional microfluidics that could be used 
to manipulate fluids within paper for precise tim-
ing of reagent delivery and metering of reagent 
volumes. Methods to control flow in paper-based 
microfluidic devices can broadly be classified into 
three categories: (i) geometry-based methods, (ii) 
chemical-based methods, and (iii) mechanical 
methods. A direct comparison of flow control/
valving techniques is presented in Table 2.

7.1 � Geometry‑Based Methods
This strategy involves controlling flow rates by 
simply changing the geometry of channels. This 
can be accomplished by varying the length or the 
width of the channels73 [Fig.  5a (i)] and using 
multiple volume-metered source pads. Fu et al 11 
used different lengths of channels and different 
sizes of volume-metered pads to release different 
volumes of fluids in channels. Lutz et  al.74 con-
trolled the shut-off time of flow by submerging 
paper legs of different lengths into a volume-lim-
ited common well, which disconnected from the 
legs after a pre-defined volume of fluid passed. 
Toley et al.75 used a shunt (absorption pad) to the 
main fluid flow path, which produced a tunable 
time delay (3–20 min) in the main path. The time 
delay could be varied by changing the dimen-
sions of the shunt, i.e., thickness and length of 
the shunt material [Fig.  5a (ii)]. Mendez et  al.34 
experimented with changing the shape of a 

downstream wicking region. They mimicked the 
sustained flow provided by a thicker wicking pad 
usually attached at the end of a lateral flow strip 
by replacing the wicking pad with fan shapes of 
the membrane itself. These fan-shaped devices 
provided a continuous increase in un-wetted pore 
volume which caused a deviation from Lucas–
Washburn dynamics and led to quasi-stationary 
flows in channels [Fig. 5a (iii)].

7.2 � Chemical Methods
This strategy involves the use of chemicals to cre-
ate temporary barriers or temporary flow chan-
nels and allows the user to control the flow rates 
and/or create time delays. Lutz et al.21 created tun-
able delays in paper by drying different amounts 
of sugar in the channels. Solid sugar blocked flow 
and flow resumed after sugar dissolved [Fig.  5b 
(ii)]. Koo et  al.24 developed valves based on the 
principle of electrowetting of dielectrics, i.e., a 
hydrophobic electrode could be turned into a 
hydrophilic electrode by passing electric cur-
rent. They successfully used it to stall fluid flow 
at the hydrophobic electrode and initiate it by 
passing current through the electrode. Houghtal-
ing et al.76 developed dissolvable sugar bridges as 
shut-off valves with a tunable range of passage 
volumes [10–80 µL; Fig. 5b (i)]. Similarly, Jahan-
shahi-Anbuhi et  al.23 used erodible polymeric 
bridges made of water-soluble pullulan films 
serving as time-controlled shut-off valves. Chen 
et  al.25 developed a single-use fluidic diode, i.e., 
a method in which fluid could only flow in one 
direction. The diode consisted of a hydrophilic 
region (surfactant) placed next to a hydrophobic 
region. Fluid approaching from the hydrophobic 
side did not pass the diode but fluid approaching 
from the hydrophilic side flowed through [Fig. 5b 
(iii)]. Noh et al.77 developed a method of control-
ling the flow rate of fluid through paper channels 
by controlling the amount of paraffin wax depos-
ited in the channels.

7.3 � Mechanical Methods
This strategy involves mechanical motion to 
connect or disconnect channels. Toley et  al.20 
designed one of the first set of multi-functional 
valves. i.e., on-switches, off-switches and flow-
diversion switches that can be programmed to 
actuate automatically. The fundamental mecha-
nism to actuate the valve involved displacement 
of one end of the paper channel, thereby causing 
connection or disconnection with other channels, 
triggered by the arrival of fluid at the actuators. 
Compressed sponges that expand when wet were 
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used as actuators [Fig. 5c (i)]. Both time-metered 
and volume-metered valves were demonstrated. 
Li et al.22 developed one of the first magnetic tim-
ing valves using an electromagnet and ferromag-
netic nanoparticle-embedded PDMS. This device 

contains a paper timing channel with an ionic 
resistor, which can detect the event of a solution 
flowing through the resistor and trigger an elec-
tromagnet to open or close a paper bridge valve 
[Fig. 5c (ii)]. Kim et al. 78 developed a novel and 

Figure 5:  Schematic illustration of various valving techniques developed for paper microfluidic. a. Geom‑
etry control. b. Chemical control. c. Mechanical control (i) Variable length and width adapted from Ref. 
[73] with permission of The Royal Society of Chemistry. (ii) Tunable delay shunts. Adapted with permis‑
sion from Ref. [75]. Copyright (2013) American Chemical Society. (iii) 2D complex shapes. Adapted with 
permission from Ref. [34] Copyright (2009) American Chemical Society. b (i) dissolvable bridge valve. 
Adapted with permission from Ref. [76] Copyright (2013) American Chemical Society. (ii) Dissolvable 
fluidic time delay. Adapted from Ref. [21] permission of The Royal Society of Chemistry. (iii) a fluidic 
diode valve. Adapted from Ref. [25] with permission of The Royal Society of Chemistry c. (i) compressed 
sponge actuation valve. Adapted from Ref. [20] with permission of The Royal Society of Chemistry. (ii) 
Electromagnetic valve. Adapted from Ref. [22] with permission of The Royal Society of Chemistry. (iii) 
Folded paper actuator valve. Adapted from Ref. [79] with permission of The Royal Society of Chemistry.
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bifunctional mechanical paper fluidic control 
system comprising a linear push–pull solenoid 
and an Arduino Uno microcontroller. The sole-
noid pressure-driven valve (PDV) enables not 
only ON–OFF control but also controlling flow 
velocity. Kong et al.79 developed a control valve by 
folding chromatography paper multiple times to 
crate crests and troughs. The folded paper could 
be moved by addition of fluid at critical places, 
which actuated valves [Fig. 5c (iii)]. Li et al.80 fab-
ricated manually actuated valves by incorporat-
ing hollow rivets that could be used as hinges to 
rotate paper channels to connect or disconnect 
with other channels.

To summarize, all three strategies of valving 
have certain advantages and disadvantages. 
Geometry-based valving methods are inexpen-
sive, involve less complexity, and do not release 
chemicals into the flow, but their functional-
ity is limited. Chemical-based methods enable 
slightly enhanced functionality, but release of 
chemicals into channels may hinder the chem-
istry being performed. Mechanical methods 
are the most versatile method of valving but 
involve moving parts that may be more difficult 
to fabricate. The use of electronic components 
to implement valves in paper-based microflu-
idics seems to be a new trend and may enable 
more sophisticated timing control.

8 � Applications in Sensing/Diagnostics
The primary motivation for the development 
of paper-based microfluidic devices over the 
past decade has been cost reduction associated 
with using simple materials and elimination of 
ancillary equipment, which has tremendous 
advantages in rapid and low-cost diagnostics. It 
is, therefore, easy to imagine that paper micro-
fluidic devices have found diverse applications 
in the general area of sensing/diagnostics. In 
this major section of this review, we will discuss 
the applications that paper-based devices have 
found in conducting three types of diagnostic 
assays: (i) multiplexed color change chemistries, 
(ii) signal-enhanced immunoassays, and (iii) 
nucleic acid amplification tests.

Before we proceed to describing the differ-
ent devices, it is worthwhile to briefly discuss the 
different detection mechanisms compatible with 
paper. One of the primary advantages of using 
paper as a substrate for detection is that its base 
white color provides an excellent background for 
high-contrast imaging. However, several other 
methods of signal detection have been used, 
primarily to enhance the sensitivity of signal 

readout. One classic readout method is electro-
chemical, the most well-known example of which 
is the commercially available glucometer81. In 
addition, several other methods such as fluores-
cence82, chemiluminescence83, 84, electrochemi-
luminescence85, 86, and surface-enhanced Raman 
spectroscopy (SERS) have successfully been used. 
A comparison of these detection methods is out-
side the scope of this review as these methods are 
independent of the use of paper. However, it is 
noteworthy that these different detection mecha-
nisms can, in theory, be coupled to any kind of 
assay, e.g., immunoassays or nucleic acid detec-
tion assays. Combinations of the type of assay 
performed and the detection method used have 
led to the development of many novel diagnostic 
device designs.

8.1 � Multiplexed Color Change 
Chemistries

The idea of assaying multiple analytes in a sin-
gle sample in paper-based devices was popular-
ized by the original µPAD designs (Fig. 3b). Such 
devices have recently been used extensively for a 
wide range of applications. The working concept 
behind most of these devices is essentially the 
same, i.e., distribution of a sample fluid volume 
into multiple detection zones by wicking. We cat-
egorize these devices into multiple application 
areas: (i) clinical diagnostics, (ii) pharmaceutical 
analysis, and (iii) environmental analysis.

8.1.1  �Clinical Diagnostics
Some clinically relevant body fluids used for 
bioanalytical sensing are urine, saliva, sputum 
and blood; the target analytes in these samples 
could be a host of biomarkers ranging from pro-
teins, hormones, small molecules like glucose, 
uric acids etc.87–89. Developments in the field of 
sensing clinically relevant analytes are briefly dis-
cussed below.

The first described µPAD was designed for 
multiplexed detection of glucose and bovine 
serum albumin (BSA) spiked in urine samples 90, 

91 [Fig. 6a (i)]. Bruzewicz et al. reported a variant 
of this design that could be fabricated using an 
X–Y plotter pen [Fig. 6a (ii)] 66. In another exten-
sion of this work, multiple analytes were detected 
in 3D ‘universal µPADs’ [Fig.  6a (iii)] 44. For an 
extensive study on urine analysis, the reader is 
referred to the review paper by Lepowsky et al.92. 
Blood is another extensively used sample for 
clinical analysis. Blood is composed of blood 
cells (RBCs, white blood cells, platelets, etc.) and 
plasma (which contains the biomolecules and 
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proteins)93. Conventional blood analysis requires 
centrifugation and involves expensive instru-
ments. Paper could potentially be used to replace 
these. Towards this goal, Khan et  al. developed 
a paper device to separate the components of 
blood through agglutination of blood cells fol-
lowed by flow of plasma into multiple test zones, 
where color change reactions were conducted94 
(Fig.  6b). Yang et  al. developed a simple paper 

device to separate blood cells from plasma along 
with measurement of glucose levels95. Use of 
µPADs for clinical diagnostics is an extremely 
rapidly growing area of research and recently 
well-reviewed by Sher et al.96.

8.1.2  �Pharmaceutical Analysis
Supply of low quality pharmaceutical products 
can occur because of several reasons such as 

Figure 6:  Multiplexed colorimetric detection. a, b Applications of µPADs for clinical diagnostics separa‑
tion of various components of blood–blood cells and plasma, followed by detection of glucose in plasma. 
c Application of µPADs in pharmaceutical field (i) schematic depicting the protocol for testing quality of 
drugs, (ii) device showing twelve lanes for detection of multiples drugs. d A hybrid µPAD containing both 
electrochemical and colorimetric detection of six different analytes a (i) the first µPAD designed for the 
colorimetric detection of glucose and protein, reprinted with permission from ref [45] Copyright [2013] 
American Chemical Society. (ii) Modified version of the µPAD for the detection of glucose, BSA and pH 
sensing in artificial urine samples, reprinted with permission from ref [66]. Copyright [2013] American 
Chemical Society. (iii) Multiplexed sensing of glucose protein, ketones and nitrites, reproduced from ref 
[44] with permission from The Royal Society of Chemistry. b reproduced from ref [94] with permission 
from The Royal Society of Chemistry. c reprinted with permission from ref [99]. Copyright [2013] American 
Chemical Society. d reprinted with permission from ref [108]. Copyright [2014] American Chemical Soci‑
ety.
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counterfeit drugs, supply of substandard prod-
ucts, damage due to poor storage conditions, etc. 
This is a serious global health concern. Develop-
ment of paper-based devices for screening large 
number of samples for substandard drugs pre-
sents an exciting opportunity. A vast majority of 
the published literature in this field is focused 
on screening pharmaceutical drugs for quality 
control, whereas there is some literature applied 
to screening of pharmaceutical residues in food, 
environmental samples, and biological fluids97. 
In one of the first publications, Shimora et  al. 
developed a method to check the level of 4-ami-
nophenol in paracetamol-containing medicines 
using Whatman filter paper98. The two com-
pounds were separated and detected separately. 
In another well-known colorimetry-based detec-
tion method, the Lieberman group used paper-
based devices to screen dosage forms containing 
the beta lactam antibiotics or combinations of 
the four first-line antituberculosis drugs99. The 
device contained a panel of 12 strips having dif-
ferent colorimetric indicators (Fig. 6c). The steps 
of using this device are briefly demonstrated in 
Fig.  6c (i). The user must simply rub the pow-
dered drug onto different lanes, and then dip 
the bottom of the device in water. Color change 
reactions in all lanes report for active drugs and 
common fillers found in counterfeit drugs. The 
Lieberman group subsequently extended this idea 
to develop BioPADs—biologically based paper 
analytical devices (BioPADs) to detect antibiot-
ics of the tetracycline family, which could be used 
to test antibiotic contamination in liquids100. In 
another article, detection of three commercially 
available drugs was performed using a paper-
based kit and colorimetric detection using an 
iPhone101. Craig et  al. used wavelength-modu-
lated Raman spectroscopy (WMRS) to develop a 
sensitive paper-based device for the detection of 
paracetamol and ibuprofen102. Murphy et  al.103 
developed µPADs for the detection of ascorbic 
acid (AA) and dopamine (DA) in biological flu-
ids. Electrochemical paper-based microfluidic 
devices were also used for in  situ screening of 
anticancer drugs in a multiplexed manner104. 
Gomes et  al. demonstrated a colorimetric assay 
on paper strips to detect oxytetracycline in spiked 
environmental water, a widely used antibiotic in 
aquaculture105. For further information in this 
area, readers are referred to the following focused 
reviews on the applications of PADs for in phar-
maceutical analysis97, 106.

8.1.3  �Environmental Analysis
µPADs for environmental applications are com-
paratively less popular than those in the field of 
biomedical assays for diagnostics107. In one of 
the first articles, Nie et  al. designed a device for 
multiplexed detection of Ni, Fe, Cu, Cr, Pb and 
Cd—common metal contaminants in soil, water, 
air and food108. They designed a hybrid three-
dimensional µPAD (Fig.  6d) combining both 
colorimetry and electrochemical detection tech-
niques in separate layers owing to the fact that the 
concentrations of the environmental contami-
nants vary in orders of magnitude in space and 
time108. The sample was passed laterally to four 
segregated channels enabling colorimetric detec-
tion of Cu, Ni, Fe and Cr (which are present at 
comparatively higher concentrations), and the 
sample also travelled vertically to the bottom 
layer for electrochemical detection of Pb and Cd. 
In another design, Fe, Cu and Ni from an air fil-
ter were detected simultaneously in a µPAD. The 
air filter having particulate matter was placed in 
the device and upon addition of water, the sam-
ple got transported to detection zones where 
colored complexes were formed109. Jayawardane 
et  al. developed several devices for detection of 
contaminants in waste water110–112. For further 
details on various devices developed for environ-
mental applications, we direct the readers to some 
focused review articles88, 113.

Apart from the above-mentioned applica-
tions, µPADs have also found application in 
the food industry in detection of pesticides in 
food and beverages114, 115, neurotransmitters 
in biological samples116, and in wine quality 
analysis117.

8.2 � Signal‑Enhanced Immunoassays
Another important application area of paper-
based microfluidic devices has been con-
ducting immunoassays that can surpass the 
sensitivity of traditional LFIAs. This has primar-
ily been enabled by clever engineering to make 
new shapes and structures from paper that 
enable conducting multi-step fluidic opera-
tions, e.g., sample delivery, washing, delivery 
of substrates for a color change reaction, etc. 
Three fundamentally different device designs 
have been used to accomplish this: (i) 2DPNs, 
(ii) P-ELISA, and (iii) sliding devices. We will 
now review the development in each of these 
categories.
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8.2.1  �Two‑Dimensional Paper Networks (2DPNs)
2DPNs, defined in Sect. 3 (Fig. 3d) of this review, 
automate sequential delivery of multiple fluids to 
a test zone. In a typical 2DPN, the sample (along 
with a conjugated secondary antibody) enters 
from one leg, a wash buffer enters from a second 
leg, and a signal amplification reagent enters from 
a third leg (Fig. 7a). The improvement in the limit 
of detection (LOD) of various biomarkers of 
clinical importance such as hCG (human chori-
onic gonadotropin) and PfHRP2 (malarial anti-
gen) has been demonstrated in the 2DPN assay 
format118, 119. In one of the first demonstrations, 
an ~ 4× improvement in LOD for detection of 

hCG was demonstrated120. Commercially availa-
ble gold enhancement reagents were used for sig-
nal amplification. In a similar subsequent study, 
Fu et al. demonstrated a 4×-improvement in the 
LOD for the detection of PfHRP211. Traditional 
ELISA assays typically use an enzyme-linked sec-
ondary antibody and a colorimetric substrate like 
diaminobenzidine (DAB), which is converted into 
a colored product, catalyzed by the enzyme. This 
strategy can improve LODs substantially and has 
also been successfully implemented in 2DPNs. 
Ramachandran et  al. reported an automated 
2DPN card for performing a sandwich ELISA 
using a horseradish peroxidase (HRP)-DAB 

Figure  7:  Signal-enhanced immunoassays. a, b 2DPNs for conducting sandwich immunoassays. a (i) 
2DPN design. (ii) and (iii) 2DPN assay results for a sandwich immunoassay using gold as label without 
signal amplification (ii) and with signal amplification (iii). b Automated single step 2DPN activation device 
for influenza detection. c (i) Schematic of fabrication of P-ELISA devices. (ii) schematic of operation steps 
in P-ELISA devices. d Schematic representation and operating principle of a 3D slip-PAD a reprinted with 
permission from ref [11]. Copyright [2012] American Chemical Society. b reprinted with permission from 
ref [122]. Copyright [2017] American Chemical Society. c reproduced from ref [123] with permission from 
The Royal Society of Chemistry. d reprinted from ref [134].
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enzyme–substrate system121. This study also dem-
onstrated long-term dry preservation of reagents 
for performing ELISA. Activity of HRP-labeled 
antibodies and DAB was retained even after stor-
age at 45 °C for 5 months, making the device ideal 
for POC testing at low-resource settings. Huang 
et  al. have demonstrated a fully integrated dis-
posable device based on 2DPNs for performing a 
sandwich immunoassay to detect influenza A and 
B with a simple single activation step of inserting 
a nasal swab and closing the device (Fig.  7b)122. 
The total test time for the device from activation 
to result was approximately 35 min. Performance 
of the prototype device was tested in a hospital 
yielding a success rate of 92%.

8.2.2  �P‑ELISA
P-ELISA devices, defined in Sect. 3 of this review 
(Fig.  3c), are essentially paper-based well-plates 
with wicking pads to absorb fluids placed 
under the paper surface. A schematic of a typi-
cal procedure for fabrication and operation of 
a P-ELISA device is shown in Fig.  7c123. Cheng 
et  al. demonstrated significantly reduced assay 
time, reagent volumes, and cost per assay com-
pared to ELISA using a 96 micro-zone P-ELISA, 
but the sensitivity was 10× -lower compared to 
conventional well plate-based ELISA46. Several 
studies have been conducted using 96 micro-
zoned paper plates to improve the sensitivity, 
quantification, accuracy and choice of test cut-
off values8–126. Le et  al. described a pen type 
pH meter-based portable device to increase 
the sensitivity of P-ELISA making it compara-
ble to conventional ELISA127. In a novel use of 
the detection method, Chen et  al. developed a 
paper-based SERS immunoassay for mouse IgG 
as a model analyte128. Polymerization-based 
signal enhancement was another technical 
innovation in which eosin, a photo-initiator, 
was used as a label and coupled to the detec-
tion antibody129. Sample was added to the 
test region containing the capture antibody, 
followed by addition of eosin-labeled detec-
tion antibody. The sandwich immunocomplex 
formed was then exposed to monomers that 
got polymerized, catalyzed by eosin, which is a 
photo-initiator. The resulting hydrogel formed 
on the positive test zone produced a bright 
pink color on addition of NaOH, which was used 
for colorimetric detection. Lathwal et  al. com-
pared enzymatic-based, nanoparticle-based, 
and polymerization-based signal amplification 
and demonstrated that each colorimetric test 
has a unique set of optimal conditions130. In 

a recent article, Ortega et  al. demonstrated a 
paper-based magnetic ELISA for detection of 
dengue that can achieve 700× lower LOD com-
pared to traditional ELISA131.

8.2.3  �Sliding Devices
Sliding devices are an innovation that enables 
eliminating pipetting steps by replacing them 
with sliding operations, so they can be conducted 
by minimally trained users, making them ideal 
for POC use. A portable paper-based sliding 
device for performing an ELISA for rabbit IgG as 
a model analyte was designed to minimize opera-
tor steps132. The movable strip containing the test 
zone was moved through a series of zones where 
one reagent was delivered at a time. Though the 
assay was faster compared to conventional ELISA, 
the limit of detection was 5×  higher. In an exten-
sion of this device, a sliding strip device in which 
reagents were dry stored at different positions was 
developed for detection of C-reactive protein, a 
marker of neonatal sepsis133. The sensing zone 
could be positioned to be under one of the dried 
reagent reservoirs, and water could be added to 
deliver that reagent to the sensing zone. The total 
assay time was 90 min which was significantly less 
than conventional well-plate ELISA (> 3 h). Han 
et al. developed a more user-friendly 3D slip-PAD 
device (Fig.  7d) enabling sequential delivery of 
multiple reagents with a single user activation 
step134. Sample and buffer solution were added 
to respective inlet ports and the top section was 
slid over the bottom section initiating the assay. 
Different paper path lengths for different reagents 
resulted in automatic timed delivery of reagents 
to the test zone.

8.3 � Nucleic Acid Amplification Tests
The genetic material of any organism is its 
unique identifier and nucleic acid amplification 
tests (NAATs) exploit this principle for the detec-
tion of various biological species. NAATs have 
widely been used for identification of patho-
logical species like bacteria and viruses which 
cause infectious diseases135. They are also used 
for detecting genetic variants to identify vulner-
ability towards genetically inherited diseases136, 
detection of mutated strains of pathogens 137, 
and for DNA manipulation in genetic engineer-
ingtechniques138, 139. As the name suggests, 
NAATs amplify the existing genetic material 
(DNA or RNA) in a sample, producing large copy 
numbers that are compatible with standard 
detection mechanisms based on fluorescence, 
colorimetry, pH or electrical measurements. 
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NAATs provide a platform for development of 
extremely specific and sensitive assays with lim-
its of detections going down to a few copies of 
the pathogen.

Currently, the polymerase chain reaction 
(PCR) is the gold standard for NAATs and is 
being widely used in clinical laboratories for 
diagnosis. However, PCR involves rapid and 
continuous temperature cycling, which requires 
an extremely sophisticated instrument with effi-
cient temperature control, often prohibitively 
expensice140. A new class of isothermal NAATs is 
becoming increasingly popular over the past few 
years as these could potentially overcome some 
of the limitations associated with PCR. Instead of 
temperature cycling, isothermal NAATs operate 
at a single temperature. There exist a wide variety 
of isothermal NAAT chemistries, e.g., loop medi-
ated isothermal amplification (LAMP), helicase 
dependent amplification (HDA), recombinase 
polymerase amplification (RPA), rolling circle 
amplification (RCA), strand displacement ampli-
fication (SDA), which have been extensively dis-
cussed in numerous reviews141, 142.

Since NAATs are highly sensitive and spe-
cific, there existed a need of pairing them with a 
platform that is affordable, equipment-free and 
deliverable to the end users to make them ame-
nable to POC use. Paper devices have found an 
important role in achieving this target90, 143. An 
initial analysis of suitability of paper matrices 
for NAATs was carried out by Rohrman et al.144, 
wherein glass fiber (GFCP203000, Millipore), cel-
lulose (CFSP223000, Millipore), GF/DVA, MF1, 
VF2, and Fusion 5 (Whatman) were compared 
for compatibility with RPA. These materials had 
different physical properties in terms of mem-
brane thicknesses, matrix compositions, porosity, 
and fluidic absorbance and these characteristics 
played a vital role in selection of membranes for 
various purposes. For instance, in this study the 
sample wick and absorbent pad were composed 
of cellulose while the reaction pad was composed 
of glass fiber. Another significant study has been 
carried out by Linnes et al.145 for comparing the 
suitability of five different paper substrates as 
platforms for DNA/RNA amplification. DNA/
RNA amplification reactions were carried out in 
cellulose paper, glass fiber, nitrocellulose, poly-
ethersulphone (PES) and polycarbonate using 
techniques of LAMP, HDA and PCR. It was found 
that PES proved to be the most suitable mem-
brane for LAMP and HDA, while none of the 
membranes supported PCR. There have been 
multiple proof-of-concept studies in the litera-
ture where paper-based amplification has been 

successfully demonstrated using isothermal tech-
niques like LAMP145–154, RPA144, 155, 156,HDA145, 

157–159,RCA​160 and iSDA161. Clearly, LAMP has 
been the isothermal nucleic acid amplification 
technique used by most number of studies fol-
lowed by RPA and HDA. The paper matrices used 
as amplification platforms in these studies have 
varied widely and have included Whatman # 1 
chromatography paper151, 154, 156, 157, 160, 162, glass 
fiber144, 147, 148, 153, 159, 163, PES145, 152, 163, FTA Mem-
branes149–151, and 3MM CHR chromatography 
paper158. Since NAATs require sample processing 
to obtain purified DNA/RNA for the amplifica-
tion step, the FTA card, which is a commercially 
available paper membrane containing a DNA sta-
bilization matrix, has been the matrix of choice 
for multiple studies that have demonstrated 
DNA/RNA extraction followed by amplification.

An ideal sample-in-to-answer-out POC diag-
nostic device would be one that takes in a crude 
biological sample and provides a simple readout 
without user intervention. Till date, there have 
been two studies in the literature that have accom-
plished this level of systems integration. The first 
study from the Paul Yager group161 presented 
a prototype named MAD NAAT (Multiplex-
able autonomous disposable nucleic acid ampli-
fication test; Fig. 8a). The device was designed to 
detect Staphylococcus aureus (S. aureus) starting 
with patient nasal swab samples. Two different 
gene targets were chosen to detect methicillin-
resistant strains (ldh1 gene for S. aureus and mecA 
for methicillin resistance). On introduction of 
the nasal swab sample and pressing of the actua-
tion button, the entire diagnosis mechanism was 
automated. All the rehydration buffers and dried 
reaction reagents were pre-stored in the device. 
Achromopeptidase (ACP) enzyme mix was used 
for chemical lysis of the cells followed by heating 
at 95  °C for 10  min to denature ACP and frag-
ment the DNA. The sample was then branched 
into two standard 17 glass fiber membranes, each 
of which contained dried amplification reagents, 
sequence-specific probes, and gold nanoparticles 
for lateral flow detection (LFD). After completion 
of the amplification step, paper-to-paper valves 
released the amplification products into nitrocel-
lulose strips for LFD. This study also looked at the 
stability of lyophilized reagents at 23 and 40 °C at 
2–3% relative humidity. A strikingly significant 
feature of this device was the incorporation of 
internal amplification controls that proved very 
useful in ruling out false-negative amplification 
results.

The second fully integrated device was pre-
sented by Tang et  al.159 and was designed to 
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detect Salmonella typhimurium from a wide range 
of samples like wastewater, milk, juice and egg 
(Fig. 8b). The device was designed to have sepa-
rate modules for nucleic acid extraction, amplifi-
cation and detection. Sample was introduced into 
the Fusion 5 capture disk, which was followed by 
sequential introduction of the lysis buffer and 
wash buffer that were pre-stored in two separate 
sponge-based reservoirs. Excess fluid volumes 
were wicked into a waste absorption pad made 
of filter paper. The Fusion 5 disk containing the 
captured DNA was then moved to the amplifica-
tion module and brought into contact with the 
glass fiber pad containing the dried HDA ampli-
fication reagents. Amplification was carried out 
at 65  °C, wherein a positive temperature coef-
ficient ultrathin ceramic heating tablet with a 
temperature control switch was used with an in-
built battery-support to maintain the required 
reaction conditions. A running buffer pre-stored 
in a sponge reservoir was then used to elute the 
amplicons to the LFD strip. The results could be 
read by naked eye by observing the colorimetric 
lateral flow signals.

Our group recently published an extensive 
review on the use of paper-based devices for con-
ducting NAATs, focusing on the different work-
flows that may be used for device integration164. 
For detailed information about the field of paper-
based NAATs, we direct the reader to this review.

8.4 � Blood Plasma Separation
Many diagnostic tests performed in conven-
tional laboratory settings involve blood speci-
mens, more specifically, blood plasma. Changes 
in the composition of blood plasma reflect the 
status of pathological processes affecting organs 
and tissues throughout the body. The separation 
of plasma from whole blood is a critical step in 
these tests. Red blood cells and white blood cells 
interfere with several assay chemistries and the 
intense red color of blood interferes with color 
change readouts. Traditionally, plasma has been 
separated from blood using centrifugation or 
magnetic separation. However, new types of 
paper membranes have now found applications 
in separating plasma from blood, thus obviating 
the need to use bulky instruments like centri-
fuges. While this area has been well reviewed by 

Figure 8:  Systems integration for conducting NAATs a (i) Prototype for MAD NAAT showing the device 
body and swab for sample collection. (ii) Detailed description of the device design. b (i) Schematic of the 
integrated device demonstrating the different device modules (ii) The prototype for the device with lateral 
flow results a Reproduced from ref [161] with permission from the Royal Society of Chemistry. b Repro‑
duced from ref [159] with permission from the Royal Society of Chemistry.
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Songjaroen et al.165, we present the highlights of 
two notable techniques below.

There have been several attempts by vari-
ous groups to separate RBCs from whole blood 
samples using agglutination reagents and elec-
trochemical methods. Yang et  al.166 demon-
strated a simple method for separating plasma 
from whole blood directly in paper. A circular 
device with a central plasma separation zone and 
peripheral test zones was fabricated. The central 
plasma separation zone was functionalized by 
spotting agglutinating anti-A, B antibodies. A 
drop of whole human blood (~ 7 μL) was intro-
duced into the central zone where RBCs agglu-
tinated and only plasma reached the test zones 
at the periphery, where colorimetric glucose 
detection assays were carried out. The method 
showed effective results for separation of blood 
plasma from whole blood, but suffered from the 
limitation that it involved the use of expensive 
antibodies. Kar et  al.167 came up with a rather 
inexpensive method for the separation of blood 
plasma involving capillary-driven diffusion of 
blood samples in an H-filter cut on standard 
laboratory-grade filter paper using a knife cut-
ter. Equal volumes of whole blood and PBS buffer 
were introduced into the two legs of the H-filter 
and the smaller molecules comprising plasma dif-
fused rapidly into the PBS stream, enriching it 
with plasma components. This plasma-enriched 
buffer was used for detection of glucose content 
in the blood. The plasma separation efficiency 
was found to be 75.4 ± 9.1% for a device of 5 mm 
width and 3  cm length. Such a plasma separa-
tion device is desirable within the purview of 
low-cost POC devices. The integration of plasma 
separation and subsequent colorimetric detec-
tion of analytes in plasma in paper-based ana-
lytical devices is rapidly gaining popularity and it 
is expected to be an integral part of future POC 
serodiagnostics.

9 � New and Emerging Applications 
of Paper Networks

9.1 � Tissue Engineering and Cancer 
Diagnostics

Paper has recently found important use in tis-
sue engineering. The field of tissue engineering 
aims at combining principles of engineering and 
life sciences towards development of synthetic 
tissues by growing cells on artificial substrates 
commonly known as scaffolds168. These scaf-
fold matrices provide structural support for cells 
to form tissues. Cells, when seeded in scaffolds 
under controlled biochemical environments, 

produce mature tissues. An ideal scaffold must be 
biocompatible (allowing cells to attach and func-
tion normally), biodegradable (allowing cells to 
reconstruct and produce its own matrix)169, and 
mechanically strong (providing rigidity for the 
cells to grow)170.

Paper can be morphologically defined as a 
bundle of cellulose microfibers that inherently 
form a microfibrous porous 3D architecture. 
Given that there are a large number of different 
types of commercially available paper products, 
e.g., filter paper, weighing paper, nitrocellu-
lose etc., paper also offers great diversity in sur-
face topography, internal microstructure, and 
mechanical properties for 3D scaffold fabrica-
tion171. Paper produced from natural sources is 
biocompatible. Further, because it can be manu-
factured in large quantities due to well-estab-
lished extremely low-cost fabrication processes, 
paper is a potential substrate for development 
of alternate platforms for cell culture and tissue 
engineering.

In vitro cell culture has widely been used 
to understand the behavior of cells. The stand-
ard practice involves propagation of cells in 2D 
(petri dish), which maintains the cells in a uni-
form nutrient and physiological environment. 
There are significant ways in which 2D cell cul-
tures differ from 3D tissue cultures. The spatial 
distribution of cells influences the biomolecules 
in signaling pathways172, 173. Cell behavior and 
morphology depend on the mechanical prop-
erty of the adherent surface; hence, 2D cul-
ture fails to mimic 3D tissues174. A gradient of 
diffusion of solutes, nutrients and oxygen is 
observed in 3D culture whereas monolayer cell 
culture experiences a homogeneous distribu-
tion175–177. Although a significant amount of 
drug efficacy testing has been conducted in 
2D cell cultures, the 2D model fails to replicate 
results from the in  vivo systems178. As a result, 
3D tissue cultures have rapidly gained popu-
larity as promising models for drug screening. 
The development of new scaffolds for tissue 
engineering has now become a large and very 
active area of research179. The most recent trend 
in this area is direct 3D printing of scaffold-free 
tissues, but that area is outside the scope of this 
review180.

Paper-based 3D cell culture systems have 
physiological conditions relevant for oxygen dif-
fusion and nutrient gradients similar to native 
conditions181, 182. Stacking of multiple paper lay-
ers to produce 3D tissues facilitates on-demand 
isolation of cells from a particular layer for anal-
ysis by de-stacking the layers183 (Fig.  9a). The 
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3D structure of  cellulose-based paper scaffolds 
provides appropriate rigidity and porosity that 
facilitates transport of nutrients for tissue engi-
neering183, 184. Various strategies for successful 
development of paper-based tissue engineering 
have been reported. Kim et al.185 modified paper 
surface with poly (styrene-co-maleic anhydride) 
layer via chemical vapor deposition (iCVD) fol-
lowed by immobilization of poly-l-lysine and 
deposition of Ca+2 forming an alginate hydrogel 
(Fig. 9b). The hydrogel-laden paper was folded by 
simple origami approach making a cylindrical 3D 
scaffold, which, when seeded with chondrocytes, 
developed mature trachea. Cells behaved different 
depending on surface topographies and mechani-
cal properties of the paper.

Paper scaffolds made of commercially avail-
able weighing paper enhanced osteogenic 
differentiation and in  vivo bone generation of 
human adipose-derived stem cells (hADSCs)184. 
Also, stacking of paper with osteogenically dif-
ferentiated hADSCs and human endothelial 
cells led to vascularized bone formation in  vivo. 
Wang et  al.186 have successfully induced human 
pluripotent stem cells into functionally beating 
cardiac tissues leading to a “beating heart on a 
paper”, exhibiting stable functional property 
of 40–70 beats per minute for up to 3   months, 
demonstrating the durability of paper as a 
substrate.

Coating of paper with hydrophobic materials 
like wax, PDMS or Teflon inhibits cell attachment 

and creates barriers, constraining cell growth to 
desired areas of paper187–189. This strategy was 
used by Derda et  al. to create a 96 micro-zone 
paper device containing 96 tissues comprising 
cells laden in hydrogels183. Hydrophobic PDMS 
barriers separated the 96 tissues and the device 
was used for high-throughput analysis of cell 
migration behavior in 3D tissues. This cell culture 
platform is called cell-in-gel-in-paper (CiGiP)181, 

190. 3D stacking of paper printed with wax seeded 
with aortic valve cells and collagen mixture devel-
oped a synthetic aortic valve. The customized 
stacking of paper permitted adjusting culture 
thickness and cell density and the tissues survived 
for 14 days182.

Early detection of cancer cells is important 
and fundamental for diagnostics and thera-
peutics. Traditional cyto-screening is widely 
used due to its high selectivity and accuracy. 
Developing rapid low-cost cancer cell detec-
tion technologies is a necessity and a chal-
lenge. An attempt to overcome the drawbacks 
of traditional techniques includes paper with 
plasmonic nanorods as a 3D scaffold for cancer 
detection191. Another high-sensitivity, noninva-
sive and rapid cancer screening platform uses 
SERS of adsorbed plasmonic gold rods on filter 
paper for cancer screening192, 193. Wu et  al.194 
introduced paper-based electrochemilumines-
cence device consisting of aptamers-modified 
Au-paper electrodes (working electrodes) to 
screen multiple cell types for cancer.

Figure 9:  Applications of paper in tissue engineering a Schematic representation of multilayer stacking 
of paper forming a 3D tissue, reproduced with permission from Ref [183]. b Schematic representation of 
fabrication of hydrogel-cell-laden paper, reproduced with permission Ref [185].
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The emergence of paper as a potential sub-
strate for developing 2D and 3D cell culture plat-
form is promising, yet some challenges remain. 
Mechanical properties of paper decline when 
immersed in cell culture medium because of the 
breakage of hydrogen bonds which hold cellulose 
together. The slow degradation of paper also lim-
its its applicability for studying tissue transplant. 
Commercially available papers contain addi-
tives (clay and calcium carbonate) which may 
be released during culture and interfere with cell 
growth. These shortcomings must be overcome to 
realize the full potential of paper as a substrate for 
tissue engineering.

9.2 � Energy Generation and Storage
Another interesting, almost unexpected appli-
cation of paper, has been in the field of paper-
based energy storage devices. One of the 
primary motivations for these efforts has been 
that conventional batteries are often used 
in association with paper-based devices to 
power operations like fluorescent or electro-
chemical readouts, among others. However, 
batteries pose difficulties in terms of their tox-
icity, weight, and disposal. Paper has, therefore, 
been looked upon as an alternative substrate 
to replace bulky batteries with a goal to inte-
grate energy generation/storage directly into 
integrated paper-based devices195. Several 
researchers have now developed paper-based 
batteries (fuel cells and lithium ion or alkaline 
methods to produce power) and energy stor-
age devices (supercapacitors). A recent review 
by Sharifi et al.195 provides a good review of the 
field. We will, however, highlight a few impor-
tant developments below.

Paper can be made highly conductive by 
printing conductive material onto it by using 
simple solution method of conformal coating of 
single-walled carbon nanotubes (CNT) and sil-
ver nanowires films. CNTs provide high stabil-
ity, electrical conductivity, flexibility and surface 
area. These conductive papers can be used as an 
alternative to metallic current collector in lithium 
ion batteries196. Fuel cells are a promising means 
for energy generation as the power generated is 
highly efficient and has minimal negative envi-
ronmental impact. They have been employed as 
power sources for microfluidic devices by vari-
ous research groups. Esquivel et  al.197 developed 
microfluidic fuel cells as paper-based power 
sources in a standard lateral flow test format. 
The need of external pumps was eliminated 
because reactants flowed by capillary forces; the 

device delivered power densities in the range of 
1–5 mW cm− 2 using solutions of methanol and 
potassium hydroxide.

There is an ever-increasing demand for effi-
cient, thin, and flexible energy storage devices. 
Pushparaj et  al.198 developed a device by inte-
grating distinct electrochemical and interfacial 
characteristics into a single device, made out 
of nanoporous cellulose paper embedded with 
carbon nanotube electrodes and electrolytes. 
They used room temperature ionic liquid (RTIL) 
to overcome the insolubility of cellulose in most 
solvents. The resulting supercapacitor dem-
onstrated good electrochemical performance 
across diverse range of temperatures, electro-
lytes and mechanical deformations.

The integration of paper networks capable of 
generating energy or storing energy with paper 
networks for conducting diagnostic assays is an 
extremely nascent and promising area. Paper has 
certain fundamental advantages as a substrate 
for energy generation/storage, i.e., high porosity, 
high solvent absorption, and strong binding with 
nanomaterials. This could lead to new develop-
ments in advanced energy storage and conversion 
applications, yet this potential has only barely 
been tapped yet.

10 � Concluding Remarks
After the original microfluidics revolution of 
the early 1990s, the development of paper-based 
microfluidics appears to be the next ‘mini-rev-
olution’ of sorts in the field. Several factors have 
contributed to this revolution including (i) a 
worldwide interest in conducting research in 
global health, (ii) a general increasing interest 
in ‘frugal engineering’, (iii) a push from fund-
ing agencies to conduct research that ‘gives back 
to society’, and (iv) involvement of some major 
research groups that initiated the microfluidics 
revolution in the 1990s, developing paper-based 
microfluidics, e.g., the Whitesides group from 
Harvard University. Just like any other new tech-
nology, paper-based microfluidics has created a 
wave of excitement and the expectations from the 
technology are currently very high. This is appar-
ent from its use in diverse fields of application 
as reviewed in this article. The real test for the 
technology, however, will be in its translation to 
commercial products. Paper-based microfluidics 
could have a competitive advantage here because 
the LFIA market is already mature (estimated 
at ~ $5 billion in 2016)199. In certain application 
areas such as the development of signal-enhanced 
immunoassays, if researchers can develop devices 
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that are only slight modifications of the LFIAs, 
but that can provide significant improvement in 
sensitivities, the chances for successful commer-
cialization could be high. Similarly, commerciali-
zation potential will remain high in areas like use 
of electrochemical detection of analytes on paper 
because of the existing blood glucose monitoring 
device market.

In a recent review published by our group164, 
we have marked the current position of paper 
microfluidics technology on the Gartner hype 
cycle6 and we argue that the technology is cur-
rently at the peak of inflated expectations. 
According to the hype cycle, this phase is typi-
cally followed by a trough of disillusionment 
as the real challenges of the technology surface. 
We anticipate that the trough will be shallower 
for paper microfluidics as it is building upon 
a couple of decades of experience from tradi-
tional microfluidics. Yet, no commercial product 
based on the multidimensional paper networks 
discussed in this review exists. While immense 
functionality for medical diagnostics using such 
devices has been demonstrated, some of the chal-
lenges yet to be overcome are achieving sensitivi-
ties comparable to state-of-the art instruments 
available in central labs, robust and reproduc-
ible performance, and long shelf lives. To move 
towards commercialization, these aspects of 
paper microfluidic devices should be the focus of 
further research.

From an academic perspective, it is antici-
pated that the next 5  years will continue to see 
a rise in the number of publications on paper-
based devices and that new application areas will 
continue to emerge. There continues to be an 
interest in incorporating new valving and flow 
control techniques in paper devices. While many 
different methods have been demonstrated, their 
integration into functional paper devices that 
can conduct multi-step assays remains limited. 
This should be considered a thrust area for fur-
ther development. Many methods have now been 
demonstrated for fabrication of paper-based 
devices; this appears to be a solved problem at 
this point. It should be noted that the shapes of 
paper membranes that are being used for various 
applications are often designed by trial and error. 
Appropriate mathematical models to predict flow 
rates through different shapes of paper could be 
used as effective design tools, but they seem to be 
lacking in the field. The field would benefit tre-
mendously if such models were developed and 
provided to the community.

Some application areas of paper-based micro-
fluidics are far from commercialization but 
extremely promising, e.g., nucleic acid amplifica-
tion tests. The idea of replacing expensive PCR 
machines with paper-based devices that can con-
duct isothermal amplification of nucleic acids 
is ground-breaking in many ways. As such, new 
research in this niche area is expected to emerge 
rapidly. Multiplexed colorimetric detection based 
on simple color change chemistries using µPADs, 
while elegant, may not be able to achieve the 
sensitivities required for detecting many ana-
lytes. However, for a select few applications, these 
devices may be the right app. Extension of these 
devices for conducting ELISA’s, i.e., the P-ELISA 
format and the newer sliding designs for con-
ducting ELISA appear promising because they 
could reach detection sensitivities required for 
real world applications. Another highly promis-
ing approach to conducting ELISA’s is the 2DPN 
design, which requires only initial user actuation 
step/s. Because the user need not perform mul-
tiple timed steps to operate these devices, these 
designs are more suitable for POC diagnosis 
conducted by untrained users. The use of paper 
in tissue engineering is another exciting area but 
given the complexities of biological tissues and 
the need to maintain controlled conditions over 
several days/weeks, it is possible that paper will 
only find limited utility in niche applications in 
this area.

In conclusion, like in any other ‘hot’ area 
of research, innovative ideas and concepts are 
rapidly emanating through new literature on 
paper-based microfluidics. However, the commu-
nity must not lose sight of the goal, which is to 
develop simple low-cost devices that could aid in 
conducting medical diagnostics in low resource 
settings. Whenever possible, collaborations must 
be sought with hospitals to test devices with 
clinical samples. If possible, devices must be 
deployed into the field for operation by mini-
mally trained users. If a collaborative community 
of researchers, clinicians, and healthcare work-
ers get involved from an early stage, paper-based 
microfluidic devices have the potential to gener-
ate game-changing apps, especially in the field of 
POC diagnostics.
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