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Small‑Scale Flow with Deformable Boundaries

1 Introduction
Study of flows at small scales has been one of the 
major aspects of fluid mechanics research since 
its advent, and it has received an impetus in the 
last two decades because of improved experi-
mental technologies, better understanding of the 
fundamentals and increasing requirements from 
industry and society. Furthermore, at the small 
length scales (10 nm–0.1 mm), other physical 
effects have significant contributions to the sys-
tem being probed, examples being electrokinet-
ics, species diffusion, surface interactions and 
boundary deformations. Even for relatively bigger 
length scales (up to 10 mm), effects like surface 
tension become significant. In this review article, 
we focus primarily on the study of deformable 
boundaries in small-scale flows.

The geometry for a large chunk of small-scale 
fluid flow problems is microchannels and pipes. A 
major effect deformable boundaries has on micro-
channel flows is significant reduction in pressure 
drop for the same flow rate as opposed to rigid 
microchannels27. The study of this pressure drop 
is crucial for accurate microchannel design, bio-
flow modelling32, 43 and appropriate modelling of 
microchannel based applications (Secomb et al.69). 
Furthermore, deformation of channel walls could 
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be used for flow control98 in small-scale flow set-
ups. On the other hand, flow through deformable 
pipes has largely been studied with the intent of 
understanding peristaltic flows16, which is a per-
vasive mechanism in biological systems. Mod-
elling of effects like trapping, entrainment and 
transport of bolus38, which could be a blob of the 
fluid itself (e.g. mucus, blood) or a particle/body 
embedded in the fluid (e.g. RBC, administered 
drug, food bolus) present interesting and compel-
ling problems. Furthermore, modelling of complex 
fluid and coupled phenomenon are also called 
for to have a better representation of associated 
bio-systems8.

Another geometry ubiquitous in problems of 
the type considered in this article are two solid 
moving objects (typically, a sphere/cylinder and 
a plane) at small separation with intervening 
fluid. Such geometry is observed frequently in 
body joints, force-measuring instruments, etc. 
where the presence of a fluid assists in reducing 
wear as well as friction (see33). Study of structure 
deformation in such setups becomes a require-
ment to assess the load-bearing capacity and 
load response characteristics. The presence of 
other effects (e.g. electrokinetics) also need to be 
accounted for (see91). Such geometry has been 
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found in cell adhesion as well (see94), flow of lipid 
vesicles close to walls, car wipers and tyres on wet 
roads. Furthermore, an in-depth modelling and 
experimental analysis of sphere-near-deforma-
ble-substrate systems with intervening fluid has 
recently paved way for a contactless solid prop-
erty characterization methodology proposed by 
Restagno et al.63 and Carpentier et al.13.

Another class of geometry is those involv-
ing thin solids (membranes, elastic sheets, vesi-
cles). Use of membrane-based microchannels 
for building microfluidic circuits has been an 
emerging field in recent years93, with flow being 
switched on and off by membrane deformation. 
Other uses of membrane-based microchannels 
is as pressure sensors74. The elastohydrodyamics 
of lubricated thin elastic sheets is another geom-
etry that is gaining traction. The surface wake 
(which has been thoroughly studied in marine 
science) presents an opportunity for rheologi-
cal studies at small-scale flows44 and lubricated 
sheet is one of the prospective geometric setups 
for the same. Also, adhesion of lubricated sheet 
is a critical phenomenon for intercellular signal-
ling9 and wafer bonding64. Liquid splashing and 
spreading on membranes is another geometry of 
interest and is widely observed in nature, posing 
a rich field of study. For example, splashing of 
drops onto leaves can lead to damage and spread 
of foliar disease25, 29, and splashing is considered 
an unwanted phenomenon in agricultural/indus-
trial applications such as pesticide delivery, inkjet 
printing and spray coating50, 83; spreading of fluid 
on a thin elastic substrate occurs in neonatal res-
piratory distress syndrome31.

This review article presents a broad overview 
of the contemporary research being conducted 
on small-scale flows with deformable bounda-
ries. Given forth are four sections based on the 
geometry (except the fourth section, which cov-
ers associated works) of the system being studied, 
followed by the conclusion as the last section.

2  Channels and Tubes
Much of the research work corresponding to 
microfluidics has to do with microchannels, 
and the coupling of the channel wall deforma-
tions with the fluid flow poses an interesting 
problem and reveals some fascinating physics. 
Another geometry studied vividly is deformable 
tubes, where although there are some differ-
ences from microchannels (tubes have thin walls 
while microchannels typically have thick walls), 
they fall under the same broad category. With 
this view, this section starts with the seminal 

work by Gervais et al.27 that has served as a start-
ing point or a validation criterion for much of 
related subsequent works, the recent experimen-
tal exploration by Raj et al.61, as well as the recent 
mathematical intensive pressure-drop modelling 
by Christov et al.19, all three of which attempt to 
improve upon the understanding of fundamen-
tals of the physical phenomenon involved, with 
major emphasis on pressure drop in deformable 
microchannels. They are followed by exposition 
of works by DelGiudice et al.21 (experimental) 
and Meng and Thouless52 (semi-empirical), who 
studied microchannel deformation as a require-
ment for microrheometry and crack propaga-
tion, respectively. Next, the work by Mukherjee 
et al.54 is presented; they studied the influence of 
the presence of electrolytic species in the fluid on 
the wall deformation dynamics. Then, we present 
the work by Ismagilov et al.36 also, who attempted 
to peruse the deformability of microchannels 
for device design to obtain mixing. Shifting our 
attention to tubes, pioneering work by Takagi 
and Balmforth81 is presented, who studied peri-
staltic flow in deformable tubes. Subsequently, 
works by Takagi and Balmforth80 and de Loubens 
et al.49 are presented, where systems consisting of 
a solid object present in the fluid bulk being sub-
jected to peristalsis are studied. Then, work by 
Goswami et al.30 is presented, where the effects 
of complex fluid and electrokinetics on flow in 
deformable tube was explored. We close the sec-
tion by touching upon the works by Kang et al.41, 
de Rutte et al.66 and Davies et al.20, who worked 
on deformable microchannels, and Bandopad-
hyay et al.5, Tripathi et al.84, Beg and Tripathi7 
and Mukherjee and Shadden53, who incorporated 
coupled physical effects in flow through deform-
able tubes.

Gervais et al.27 studied the deformation of 
PDMS microchannels under imposed flow rates. 
Numerical solutions were attempted rather than 
analytical, as it was argued that none of the avail-
able analytical models accurately represent the 
problem. Scaling analysis was carried out as per 
the small displacement approximation. It was 
conjectured that vertical and horizontal displace-
ments are of the order of pwEy  and phEy , respectively, 
where p is pressure in the channel, h is the height 
and w is the width of the channel and Ey is the 
Young’s modulus of the channel material. Hence, 
it could be deduced that for a channel that has 
width much higher compared to height, the hori-
zontal (along width) deformation will be neg-
ligible compared to the vertical (along height) 
deformation. Further analysis revealed the pro-
portionality constant connecting channel height 
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increment with pwEy  to be of the order of unity. 
An important finding of the analysis was that the 
volume flow rate varies with the fourth power 
of pressure. The average fluid velocity was seen 
to increase towards the channel outlet (since the 
channel cross section decreases, but the volume 
flow rate remains the same). It was conjectured 
that this acceleration of flow could potentially 
cause an error in predicting quantities like shear 
stress in materials (e.g. PDMS). The trend of vol-
ume flow rate with pressure drop is presented 
(see Fig. 1). Thus, it was deduced that deformable 
channels need less pressure for the same flow rate 
than rigid walls.

Raj et al.61 studied deformable rectangu-
lar cross-sectional microchannels using three 
approaches—pressure drop correlations, wall 
deformation correlations and micro-PIV-based 
experiments. The channel walls were approxi-
mated as thick plates, and a non-dimensional 
deformation parameter, α , was determined 
using scaling principles, whose value is fixed for 
a given geometry18,27 and is calculable through 
fluid structure computations. A combination of 
equations, comprising empirical pressure drop 
expressions (dependent on flow rate and chan-
nel dimensions), expression of average deformed 
height27, were obtained that lead to a flow-rate 
pressure-drop relation as well as a flow-rate 
deflection-profile relation, each of which was 
numerically solved for the given flow rates. It 
was established that α scales as ξ3 (validated with 
experimental observations, where, ξ = w/t is the 
width-to-thickness ratio of the channel). From 
the results, pressure drop was seen to have an 
almost linear (eventually saturating in experi-
ments) variation with flow rate, with higher val-
ues for the non-deformable case; a good match 

with the thick-plate assumption model was 
found. Pressure drop was found to be as high as 
28 percent even for a practically rigid substrate at 
high flow rate (since deformation, however small, 
does kick in). On the other hand, for a deform-
able microchannel, deformation was seen to be 
0.95 times the undeformed channel height near 
the inlet and 0.4 times the undeformed channel 
height near the outlet, at high flow rates.

Christov et al.19 also studied the relation 
between flow rate and pressure drop for shallow 
deformable microfluidic channels. Deformation 
was modelled using the steady-state displacement 
relation as per the Kirchhoff–Love equation. 
Subsequent mathematical analysis of the system 
showed a relation between the flow rate and pres-
sure distribution (non-dimensional), which is 
akin to the relation established by Gervais et al.27. 
The obtained equation indicates that the flow rate 
is proportional to the cube of the channel height 
(thus, channel height deformation has substantial 
effect on pressure drop). As opposed to Gervais 
et al.27, whose method needed a fitting parameter 
that has to be obtained for each channel shape 
by experimentation, this work presented a per-
turbation method-based solution for the flow 
rate to pressure drop relation using established 
mathematical frameworks (viz. Stokes equa-
tion obtained by lubrication approximation and 
theory of quasi-static isotropic bending of plate). 
However, this analysis did confirm that the flow 
rate is a quadratic polynomial of pressure drop as 
proposed by Gervais et al.27. Furthermore, it was 
brought to the fore that a highly nonlinear rela-
tion of pressure drop with flow rate for higher 
values of both has been reported in experiments.

DelGiudice et al.21 explored the effect of 
channel deformation on microrheometry. 

Figure 1: Q vs. ΔP—dashed lines: expected flow rate in the absence of channel deformation; solid lines: 
fit of obtained analytical expression to data (Re numbers varied from 0 to 100). Reproduced from Gervais 
et al.27 with permission of The Royal Society of Chemistry.
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Experiments with PDMS (polydimethyl siloxane, 
which is deformable) and PMMA (polymethyl 
methacrylate, which is three orders of magnitude 
stiffer and, hence, effectively rigid) were carried 
out and the significance of wall rigidity on par-
ticle migration characteristics was examined. The 
fluid used was PEO (polyethylene oxide) solu-
tion in water, which is weakly shear thinning to 
Newtonian. It was observed that the system with 
PDMS demonstrated a higher tendency of the 
particles to migrate towards the periphery than 
a system with PMMA, an effect that was seen to 
be exacerbated for higher concentration solu-
tions (having higher Deborah numbers (De)) 
(see Fig. 2). The observations suggested that the 
measure of fluid relaxation time (which is the 
key measurement for microrheometry) would be 
unaffected by the channel material, provided the 
flow satisfies a low-De condition.

Meng and Thouless52 studied (semi-analyti-
cally) the collapse and expansion of liquid-filled 
elastic cracks and channels. Analytical solu-
tions were obtained for the axisymmetric cases 
(i.e. cylindrical channels) and elliptical channels 
of arbitrary aspect ratios. The governing equa-
tions and corresponding boundary conditions 
yielded a diffusion equation for radius of inner 

surface dependent on time and position along 
the axis (all three variables being normalized). It 
was found that the collapse of crack (estimated 
as location where dimension of cross section 
has shrunk by 50% ) is expected to propagate as 
the square root of time and is smaller for higher 
aspect ratios.

Mukherjee et al.54 studied the relaxation char-
acteristics of a deformable microscale channel 
subjected to electro-osmotic flow. The geometry 
used was similar to that of Dendukuri et al.22. 
A skewness of the bulge due to electro-osmotic 
flow (which enhances one side’s squeeze flow but 
inhibits the other side’s, with the sides depending 
upon the sign of the zeta potential) was observed, 
which stands in contrast to the symmetric profile 
in the absence of EOF (see Fig. 3). It was con-
cluded that the effective squeezing flow is not 
only qualitatively, but also quantitatively different 
because of the presence of EOF and the ratio of 
Debye length to half of the channel height deter-
mines the extent of the effects of EOF. Further-
more, the initial configuration of the channel wall 
has significant effects on the relaxation character-
istics as well.

Ismagilov et al.36 analysed an elastomeric 
microfluidic switch that can be used to control 

Figure 2: Normalized particle velocity as a function of the dimensionless coordinate |X | for particles in 
both PMMA and PDMS systems for a PEO 0.5 % at De = 0.15 %, b PEO 1.6 % at De = 1.5 and c PEO 1.6 
% at De = 3. Reprinted from DelGiudice et al.21, with the permission of AIP Publishing.
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flow between two tangentially perpendicular 
channel, one on top of the other with a square 
section common to the wall of the two. Two 
methods were explored, altering channel aspect 
ratio by pressure manipulation, or altering lat-
eral position of a phase in a stream by injection 
of additional fluid. The advantage of elastomer-
based microfluidic systems in offering the oppor-
tunity to alter the geometry of the system in real 
time (as opposed to rigid microfluidic systems 
that can only pre-actively be designed to have a 
particular geometry) was stipulated. Intuitive 
scaling analysis suggested that the height to width 
aspect ratio comes strongly into play in determi-
nation of the exchange rate. In the limiting case 
of small aspect ratio, the ratio of flow split was 
seen to follow the same correlation as pressure 
gradients (aspect ratio squared). Experimental 
characterization of flow split with aspect ratio 
and Reynolds number was thus established as the 
basis for quantitative control of the system.

A pioneering work on peristalsis was done 
by Shapiro et al.70 , who studied the mechan-
ics of low-Reynolds-number long-wavelength 
peristaltic pumping. They studied the case of 
infinite train of peristaltic waves and experi-
mental validation was done as well, establish-
ing reflux and trapping as major phenomenon 
of interest for peristaltic flows. In recent times, 
Takagi81, studied the deformation of an elastic 
tube, thus causing peristaltic wave propagation, 

where both solitary and wave trains were con-
sidered. Pumping efficacy (defined as the ratio 
of net fluid flux to power input) was obtained 
and was observed to be highest for the case of a 
solitary wave of large amplitude (as opposed to 
wave trains or small-amplitude solitary waves). 
For small-amplitude forcing, asymptotic solution 
was obtained and matched well with for small η 
(where η = η̂R/µc is the forcing strength non-
dimensional parameter, µ is the fluid’s dynamic 
viscosity and F(ẑ − ct) = η̂f [(ẑ − ct)/L] is the 
external radial forcing, with η̂ being the charac-
teristic strength, L being the characteristic axial 
scale, c being the propulsion speed and f being 
a dimensionless function). On the other hand, 
corresponding to η ≫ 1 , for the case of periodic 
wave, q (a constant proportional to the volumet-
ric flow rate) approached unity, i.e. full transport 
of the fluid was seen to occur with the wave, and 
two regions appeared in the flow domain, a nar-
row swollen blister near z = 3π/2 and a substan-
tial occlusion for the remainder (i.e. z > 3π/2 ) 
of the tube (z is the non-dimensionalized z-coor-
dinate, given as z = ẑ − ct/L ) (see Fig. 4). For 
solitary waves, expansion waves were observed 
to create a translating inflated blister with radius 
of the order of η/D , where D = D̂R3/µcL is the 
dimensionless stiffness.

As a development to their work already pre-
sented, Takagi80 mathematically modelled the 
propulsion of a suspended, movable, slender, 

Figure 3: Asymmetric relaxation at change to non‑dimensionalized time τ = 0.25, corresponding to 
change to non‑dimensionalized zeta‑potential, ζ̄ = −0.73 and ζ̄ = 0.73 ; the results of ζ̄ = −0.73 and ζ̄ = 0.73 
interchange perfectly when direction of the applied electric field is reversed (time‑lapse snapshots 
of maximum points of the bulge corresponding to the squeeze flow also presented). Reproduced from 
Mukherjee et al.54 with permission of The Royal Society of Chemistry.
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non-deformable body in an axisymmetric tube 
filled with fluid and subjected to peristalsis. The 
force balance associated with the object in the 
fluid determines the acceleration of the body. 
The cases that were considered were—solitary 
wave and periodic waves each with an infinite 
cylindrical rod and a parabolic finite lozenge. It 
was observed that for the infinite rod, periodic 
waves lead to profiles substantially similar to the 
case without the rod. Also, although a solitary 
wave is never able to generate enough traction to 
actuate motion of the rod, periodic wave trains 
can propel it at a slower-than-wave finite speed. 
As for the case of finite lozenges, propulsion by 
solitary waves was observed to be possible and it 
was established that there was a crossover forc-
ing amplitude, above which the waves are strong 
enough to trap the object in the wave (a lim-
ited finite displacement was observed below the 
threshold).

de Loubens et al.49 developed an elastohydro-
dynamic model of swallowing with Newtonian 
liquids and pharyngeal peristaltic wave with the 
purpose of understanding the effect of bolus 
and saliva viscosity on the kinetics of flavour 
release. Prediction of aroma release kinetics was 
attempted and the bolus movement was modelled 
as a forward roll coating process with deformabil-
ity of mucosa taken into account. Limiting cases 
were distinguished (as also done by Johnson39) 
for high elasticity parameter (ratio of viscous 
force to elastic force) and low load parameter 

(ratio of external load to elastic forces), where 
viscous forces dominate and rigid roll limit is 
achieved, and for low elasticity parameter and 
high load parameter, elastic forces dominate and 
dry contact limit (large deflection) is achieved.

Goswami et al.30 studied the peristaltic 
flow of a power law fluid through a nano-sized 
deformable tube, with effects of electrokinetics 
considered. Two regions in the fluid bulk were 
considered—the core, where power law behav-
iour was considered, and the periphery, where 
Newtonian behaviour was considered. Electroki-
netics was incorporated by using the Helmholtz–
Smoluchowski slip velocity rather than having an 
electrokinetic body force term in the momentum 
conservation equation. It was observed that the 
dependence of the interface between the two flu-
ids on the viscosity ratio (which is dependent on 
the power law index) and on electro-osmotic slip 
velocity is analogous. An important result they 
arrived at was that the trapping of fluid bolus 
can be eliminated and the reflux can be reduced 
(both of which are characteristic of peristaltic 
flows) due to electro-osmosis-induced slip veloc-
ity, which decreases the resistance of the peristal-
tic wave against the momentum of the advancing 
fluid. On similar lines, it was stated that increas-
ing the thickness of a less resistive peripheral 
region fluid (than core fluid) can remove trap-
ping as well.

Kang et al.41 studied (theoretically and experi-
mentally) the deformation properties for periodic 

Figure 4: a Large‑amplitude periodic wave magnifications of the occluded and blistered regions shown 
in (b) and (c), along with comparison to the asymptotic solutions for a ≈ a±(z) (dashed and dotted lines 
in b), and the large‑amplitude approximation (dashed line in c); d, e maximum wave amplitude (amax) 
and flow deficit (1‑q) against η (the dotted and dashed lines show the low‑amplitude and large‑amplitude 
predictions, respectively). Reproduced from Takagi and Balmforth81 with permission from Cambridge Uni‑
versity Press.
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circular obstacles in PDMS microchannels sub-
ject to flow using finite element analysis. de Rutte 
et al.66 presented a numerical model to predict 
wall deformation in electrokinetically operated 
micro and nano channels. Davies et al.20 did an 
experimental study of motion of rigid microbe-
ads in shear flow near a wall, coated with a thin 
layer of soft polymer brush, a system akin to 
blood circulation. Contribution of cell and wall 
deformations to lubrication forces were found 
to be of comparable magnitude at sub-µ m dis-
tances from wall. It was observed that gap height 
(between the beads and the wall) increased with 
flow strength.

Bandopadhyay et al.5 did a similar study of 
electrolyte flow in a peristaltic channel (both 
periodic and single wave considered) in the pres-
ence of electro-osmosis-induced body force. 
Tripathi et al.84 studied the flow of a viscoelas-
tic fluid employing the Maxwell model through 
a peristaltic tube, where sinusoidal peristaltic 
waves were imparted to the tube wall. Beg and 
Tripathi7 incorporated the effects of thermal as 
well as mass diffusion in nanofluid flow through 
a deformable tube being subjected to peristaltic 
pumping. Mukherjee and Shadden53 studied the 
inertial particle dynamics in large artery flows. 
Soft-contact model was observed to come into 
play for negligible deformations for a particle sus-
pended in flow. It was found that as the immersed 
particle comes close to a wall, a lubrication layer 
develops, thereby increasing the pressure on the 
particle and hence deforming it.

3  Objects Near a Wall
The geometry considered in this section is that of 
a large object (typically sphere or cylinder) near 
a wall. This geometry represents a distinct differ-
ence from the geometries in the previous sections 
because the fluid in the squeeze gap is directly 
exposed to a bulk. Up ahead, works by Restagno 
et al.63, Steinberger et al.75, Leroy et al.46, Vil-
ley et al.90 and Carpentier et al.13 are elucidated, 
who have all studied squeeze flow interactions in 
the context of modelling mechanical behaviour 
through force and separation measurement tech-
niques without hard contact. It is followed by fun-
damental works by Leroy and Charlaix45, Snoeijer 
et al., Leroy and Charlaix73 and Urzay87. Then, the 
fundamental works by Salez and Mahadevan68, 
Urzay et al.67 and Rallabandi et al.62 are presented, 
followed by a thorough exposition of the study 
by Pandey et al.57. Subsequently presented are the 
works of Wang et al.92 (where squeeze flow with 
compliant coating, modelled as a Kelvin–Voigt 

solid on rigid substrate, is studied), Wong96 and 
Chakraborty14, who have studied the effects of 
the presence of electrolytic species in the fluid 
being subjected to squeeze flow. Then, the works 
of Polychronopoulos and Papathanasiou59, Stup-
kiewikz77, Chakraborty and Chakraborty15 and 
Naik et al.55 who have studied coupled phenom-
enon (porosity, cavitation, electrokinetics and 
finite size effect of ions, respectively) with the 
fluid structure interactions, are presented. The 
section ends with the mentions of Balmforth 
et al.3, Masjedi and Khonsari51 and Tan et al.82.

Restagno et al.63 proposed the design and 
functioning of a surface force apparatus (SFA) 
meant to measure the forces of interaction 
between two solid surfaces (typically, a sphere 
near a plane). For the design proposed, the can-
tilever deflection was measured with a differen-
tial interferometer and a capacitive sensor was 
used to measure the separation between the ends 
of the two cantilevers. The cantilever displace-
ment and its derivatives would be related to the 
force Fs(h) acting between the surfaces as per the 
equation,

where ẋ and ẍ are the first and second time deriv-
atives of x ( x = xdc − x0 is the displacement of 
the cantilever, with xdc being the averaged value 
of x obtained from the optic and capacitive sen-
sors, and x0 is an unknown shift), M, � and K 
are the mass, damping and stiffness parameters 
for the mass–damping–spring system modelled, 
FS(h) is the force acting between the surfaces and 
δf  is the sum of other forces acting on the canti-
lever, the major contributors being capacity plate 
interactions and vibrations.

It was noted that the displacement is the 
combination of a slow monotonous approach or 
recession of surfaces and a small harmonic dis-
placement. For the mathematical modelling, all 
the pertinent variables of the system (force, sepa-
ration and displacement) were represented with 
complex notation as:

with the corresponding complex variables (i.e. F̂  , 
ĥ and x̂ ) giving their respective amplitudes as well 
as relative phases.

Hence, the relation between the three complex 
variables is established as

(1)Mẍ = −�ẋ − Kx + Fs(h)+ δf ,

(2)
FS(t) = FS(h(t)) = F̂Se

jωt
,

hac(t) = ĥejωt , xac(t) = x̂ejωt ,

(3)
F̂S

ĥ
= x̂

ĥ
(K + jω�−Mω2)− δ̂f

ĥ
,
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where F̂/ĥ is called the transfer function and δ̂f  
is the amplitude of δf  . Therefore, the measure-
ments of forces, amplitudes and cantilever dis-
placements with time complete the system and 
make any further analysis possible. Of particu-
lar interest is the fact that the transfer function 
is expected to follow the relation obtained from 
lubrication theory

where η is the fluid viscosity, and R is the sphere 
radius.

Steinberger et al.75 studied the elastic proper-
ties of a super-hydrophobic surface to obtain a 
model for surface elasticity measurement without 
contact using a liquid film as probe. Experiments 
with a thick elastic substrate were performed and 
it was demonstrated that reduction of viscous 
friction is wrongly attributed to slip rather than 

(4)
F̂

ĥ
= − j6πηR2

h
,

elastohydrodynamics. Furthermore, the elastic 
properties of a matrix of microscaled bubbles was 
determined from their free surface deformation.

Leroy et al.46 studied the hydrodynamic inter-
action between an elastic planar substrate and a 
sphere at nanoscale using a dynamic SFA. For the 
SFA, the sphere was taken to be oscillating with an 
amplitude h0 and frequency ω/2π above a surface. 
The dynamic response (i.e. ratio of force to sepa-
ration), denoted by G̃ω(D) = G′

ω(D)+ jG′′
ω(D), 

was dominated by viscous damping at large sepa-
rations, with the viscous response component 
being G′′

ω = 6πηωR2/D and the deformability 
of the elastomer (associated with the real com-
ponent, G′

ω(D) ) scaling as 1/D5/2 (where η is the 
bulk viscosity of the fluid, R is the sphere radius 
and D is the separation). At smaller separations, 
the two components were seen to become com-
parable and the damping no longer diverged as 
D−1 , because the fluid no longer gets expelled 
and the entire displacement of the sphere gets 

Figure 5: Damping (red points) and stiffness (blue points) measured with a water–glycerol mixture of vis‑
cosity 24.9 mPa‑s, in a linear scale and b log–log scale; the frequency is ω/2π = 19 Hz, and the radius 
of the sphere is R=3.59 mm. Reprinted figure with permission from Villey et al.90 Copyright (2013) by the 
American Physical Society.
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accommodated by the deformation of the sub-
strate. Therefore, it was established that at large 
separations, fluid probe acts like a dash pot of 
damping coefficient �(D) = 6πηR2/D , while at 
smaller separations, the fluid trapped in a cen-
tral region acts like a solid probe. A crossover 
distance Dk = 8R(ηω/E∗)2/3 was identified for 
transition between the two regimes observed 
( E∗ = E/(1− ν2) is the reduced Young’s modu-
lus of the elastomer, where E is the Young’s mod-
ulus and ν is the Poisson’s ratio). Subsequently, 
experimentation with a thin incompressible film 
of substrate (approx. 5 µ m) on a rigid platform 
was also performed. Although it was observed 
that the force response had a viscous-dominated 
regime at large separations (that saturates at small 
separations), much like for the thicker layer, the 
response was much stiffer and, hence, the elastic 
real part was always lower than the viscous dis-
sipative part, decaying as D−4 . Mathematical for-
mulation provided for this case was seen to match 
well with the experimental results.

Villey et al.90 studied how surface elasticity 
affects the rheology on nanometric liquids. With 
the setup similar to Leroy et al.46, it was shown 
that the elastic deformation of the two surfaces 
must be accounted for during assessment of the 
rheology of nanometric liquids. At large separa-
tions, the real part of impedance (ratio of force 
to separation) was seen to have tolerably vanished 
and the imaginary part was seen to vary as D−1 
(D being the separation), similar to Leroy et al.46; 
for intermediate separations, a finite stiffness 
(real part of impedance) was observed, and below 
a critical threshold Dc (approx. 2 nm), the stiff-
ness exceeded damping, indicating the beginning 
of the second regime (see Fig. 5, showing hydro-
dynamic impedance for a Newtonian intervening 
fluid).

Carpentier et al.13 studied the dynamic force 
response of a sphere-plane geometry for a wide 
frequency range of sphere oscillation, where a 
static force was applied to the tip employing a 
force-feedback method. Sub-nanometer oscilla-
tions were added to the tip (i.e. the sphere) and 
a force feedback microscope (FFM) was used to 
measure the static force, and the dissipative and 
elastic parts of the interaction with a single AFM 
probe. Comparisons with an SFA having a two 
orders of magnitude bigger probe radius were 
done to establish the FFM as a nano-SFA. The 
theoretical modelling of dissipative and elastic 
part of force response were obtained similar to 
Leroy et al.46. It was concluded that the satisfac-
tory extraction of the dynamic component of 
force response (validated using comparisons with 

SFA) strengthens the suitability of FFM as a can-
didate for measurement of mechanical proper-
ties of soft matter with intervening fluid setups, 
as well as their response to increase in frequency 
range.

Leroy and Charlaix45 performed an in-depth 
mathematical study of small-amplitude oscil-
lations of a sphere near a deformable wall with 
intervening fluid. A parabolic approximation of 
sphere surface was considered and a standard 
form of axisymmetric cylindrical co-ordinate 
Reynolds equation was used. After the requisite 
formulation, the cases of very thin compress-
ible, very thin incompressible and very thick 
(approaching semi-infinite) elastic layer were 
considered (with a rigid platform below). As a 
result, scaling laws for force response (ratio of 
force to separation) were established, thereby 
enabling determination of elastic modulus of the 
substrate layer. At large separations, elastic force 
response was seen to decrease with -2.5 power 
of separation for semi-infinite layer, with -3 
power for thin-compressible layer and -4 power 
for thin incompressible layer, whereas viscous 
response scaled with inverse of separation for 
all three cases. In contrast, for small separation, 
both elastic and viscous response saturated, but 
while elastic response remained smaller than vis-
cous response for thin incompressible layer and 
equated viscous response for thin compressible 
layer, it overtook for semi-infinite layer.

Snoeijer et al.73 studied the lubricated con-
tact between two elastic bodies approaching each 
other at a relative speed U, considering substan-
tial elastic deformation. It was brought to atten-
tion that opposed to the small deformation 
problems that can be solved using a perturbation 
approach, large deformation problems result in 
flat contact area (as in a Hertzian contact) with a 
thin lubrication layer whose thickness at the edge 
is described by an integro-differential equation, 
with solution as a non-local version of Brether-
on’s problem10. The entire system was seen to 
convert into a similarity equations problem 
using Hilbert transformation, which was solved 
numerically. Using the universal similarity solu-
tion along the upstream inlet, the thickness of the 
fluid film between the bodies was seen to scale as 
U3/5.

Urzay et al.87 did a mathematical study of 
the elastohydrodynamic force on a translat-
ing and rotating sphere close to a soft wall. The 
flow was modelled using Reynolds equation 
(and associated velocity expressions) by evoking 
lubrication approximation for the intervening 
fluid. Subsequently, perturbation approach was 
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employed to solve Reynolds equation with the 
wall deformation accounted for, the perturba-
tion parameter being the ratio of characteristic 
wall deformation to the smallest separation of 
sphere from undeformed wall. On similar lines, 
the wall deformation was solved for considering 
a thin compressible elastic layer, which enabled 
the use of perturbation approach using ratio of 
gel thickness to characteristic lubrication region 
dimension as the small parameter. As a further 
development of this work, Urzay86 studied the 
effects of van der Waals forces and electrical dou-
ble layer forces on the interaction between the 
sphere and the wall, using a similar perturbation 
approach. Furthermore, the sphere’s adhesion and 
lift-off were studied and the effects of substrate 
thickness and incompressibility were considered.

Salez and Mahadevan68 performed a theoreti-
cal study of elastohydrodynamics of sliding, spin-
ning and sedimentation of a cylinder in proximity 
of a compliant wall (see Fig. 6). Scaling arguments 
were formulated that established regimes of slid-
ing. Three degrees of freedom were established 
(which are functions of time)—gap between cyl-
inder and undeformed wall, tangential coordinate 
of cylinder centre and angle of rotation of the 
cylinder. Parabolic profile of deformed interface 
and hence total gap profile was considered based 
on the Hertzian contact model40, where elastic 
response is linearly related to pressure as eluci-
dated by Skotheim and Mahadevan71,72. Scaling 
analysis based on balancing of lift force as per 

pressure expression of elastohydrodynamic the-
ory (soft substrate effects) with gravity gave an 
expression for scaling of the equilibrium sliding 
height ( δeq ) at a given speed as

where hS is −(2µ+ �)δS(x, t)/p(x, t) which is a 
constant, δS(x, t) is the deformation of the plane, 
µ and � are Lamé parameters, p(r, t) is the local 
pressure, η is the fluid viscosity, ẋG is the x-com-
ponent of the cylinder velocity, α is the angle of 
incline of the plane, ρ⋆ is the cylinder’s density, r 
is the cylinder’s radius, g is the acceleration due to 
gravity and the x − y− z co-ordinate system is as 
presented in Fig.  6.

Analysis of a small perturbation about the 
equilibrium sliding height suggested that the cyl-
inder will oscillate with frequency of the order 

of 
(

ρ⋆g cos(α)
ρδeq

)0.5

, which will decay over a time 

period of the order of 

(

δeq

r

)1.5m

η
 ( ρ is den-

sity of the fluid, and m is mass of the cylinder). 
If initiated with a spin, a Magnus-like effect was 
observed (i.e. cylinder lifts off from wall whilst 
still sliding) due to rotation-induced shear lead-
ing to increased hydrodynamic pressure and 
hence normal force.

Saintyves et al.67 did an experimental study of 
self-sustained lift of a cylinder close to a soft wall 
and the low friction between them, occurring 

(5)δeq ∼
(

hSη
2ẋ2G

µ
√
rρ⋆g cos(α)

)2/7

,

Figure 6: System schematic: a negatively buoyant cylinder (green) falling down under the influence of 
gravity , inside a viscous fluid (blue), in the vicinity of a thin soft wall (brown), with the ensemble lying atop 
a tilted infinitely rigid support (grey). Reproduced from Salez and Mahadevan68 with permission of Cam‑
bridge University Press.
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because of soft lubrication. A negatively buoyant 
cylinder immersed in a fluid and moving paral-
lel to and close to a soft-coated inclined wall 
was studied. A self-sustained lift was seen to be 
induced, leading to a reduction in the friction by 
almost an order of magnitude. A simple scaling 
principle was developed that validated the experi-
mental results. Over a wide range of parameters, 
steady sliding of the cylinder was observed, with 
the asymmetric elastic oil interface deformation 
leading to the self-sustained lift. It was asserted 
that since elliptical cylinders, which do not rotate, 
show similar dynamics, rolling can be ruled out as 
leading to lift force. Through theoretical analysis 
corresponding to modified lubrication approxi-
mation accounting for soft substrate, and small 
strain approximation for substrate deformation, 
scaling of lift force was obtained as η2V 2R1.5h

Gδ3.5
 , 

where η is the fluid viscosity, V is the sliding 
speed, R is the cylinder radius, h is the soft-
coating thickness, G is the shear modulus and δ 
is the minimum undeformed gap. The obtained 
results started deviating from expectation for very 
soft substrates, because, arguably, strain started 
becoming nonlinear.

Rallabandi et al.62 studied the rotation of a 
cylinder immersed in a fluid and sliding near a 
thin elastic coating on a rigid platform. Stokes 
flow was considered, and elastic deformation 
was considered to be proportional to the normal 
stress (Winkler approximation). It was shown 
that in the lubrication limit, an infinite cylin-
der translating with constant speed and sepa-
ration parallel to a soft wall, must also rotate to 
be torque free. Based on scaling assumptions 
typical of lubrication approximation and afore-
mentioned approximation of deformation, a 
dimensionless elastic compliance � (i.e. ratio of 
characteristic deformation to lubrication gap) 
was identified. A translating cylinder was shown 
to have no torque up to the leading order in � , 
but higher order torque contributions could not 
be ruled out as the formulation indicated. Lor-
entz reciprocal theorem was used, and angular 
velocity of cylinder was shown to scale with the 
cube of sliding speed. Torque per unit length thus 
obtained was seen to scale with �2 (in contrast to 
leading order lift force that scales with �).

Pandey et al.57 studied the lubrication of soft 
contacts, with solids being treated as viscoelastic. 
The geometry considered was cylinder close to a 
soft plane with intervening fluid. Three models 
were considered—Kelvin–Voigt, standard linear 
solid and power law rheology. Four cases were 
considered—rotating rigid cylinder near a soft 
wall, rotating soft cylinder near a rigid wall (c.w. 

rotational speed ω ), translating rigid cylinder 
near a soft wall and translating soft cylinder near 
a rigid wall (horizontal speed V). For the for-
mulation, lubrication pressure was treated as an 
incompressible stress acting on the semi-infinite 
viscoelastic solid. It is noteworthy that the inter-
face stress formulation used for this work, that is 
for a semi-infinite solid, stands in contrast with 
that by Skotheim and Mahadevan71, 72, who stud-
ied elastic layer of finite thickness on a rigid plat-
form. Subsequent mathematical analysis brought 
forth the non-dimensional parameter β (ratio of 
characteristic elastic deformation to typical gap 
size) which was used as small parameter for per-
turbation expansion of Reynolds equation. For 
further analysis, pressure’s timescale, l / V (ratio 
of characteristic contact length l =

√
2�R to cyl-

inder velocity, with R being the cylinder radius, 
� being the minimum undeformed separation 
between the cylinder and the plane) was denoted 
as τp ; relaxation time of the viscoelastic wall was 
denoted by τ ; and the ratio of τ to τP , which is 
a key parameter in determining the system’s 
response (analogous to Deborah number, and 
zero for case of purely elastic solid), was denoted 
as T . For the SLS model, it was also observed 
that for increasing τ , deformation decreases and 
symmetry breaking occurs, but as τ approaches 
infinity, instaneous response occurs, and symme-
try is re-established but with a scale reduction of 
(1+ c)−1 , where c is the ratio of the two spring 
stiffnesses. Turning our attention to the KV 
model, it was seen to become purely elastic for 
very small values of ω and behave like Newtonian 
fluid for very large values of ω . Finally, for the 
power law model, it was seen that for small values 
of T , lift force is similar to that of the elastic case, 
but for large values of T , L/L0 scales as 

∣

∣T
∣

∣

−n
 ( n 

is the exponent in power law formulation); fur-
thermore, there is a sudden change from T−n 
to T−2 for large τ as n approaches unity. It was 
thus asserted that all models could be conformed 
to the arbitrary form of µ(ω) = G′(ω)+ iG′′(ω) , 
where G′ is the storage modulus and G′′ is the loss 
modulus.

Wang et al.92 studied (theoretically and 
experimentally) the out-of-contact elastohy-
drodynamic deformation of an elastic film sub-
jected to drainage flow due to lubrication forces. 
The motion considered was the perpendicular 
approach of a rigid sphere towards a surface with 
a compliant coating. Dimple formation for the 
thick film case was found to occur and prevent 
contact, whereas for the thin film case, full con-
tact was seen to be reached. It was posited that for 
thin films, the underlying substrate can counter 
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significant fraction of the mechanical stresses, 
which alters its elastohydrodynamic response 
compared to semi-infinite solids. Furthermore, 
given dimple formation was occurring, dimple 
growth occurred with a barrier ring that followed 
the same geometric scaling as for fluid droplets 
and that was independent of the material prop-
erties (radius of barrier ring: rb = (0.5RVtd)

0.5, 
where R and V  are radius of the spherical probe 
and approach velocity, respectively, and td is the 
time since start of dimple formation). As the 
force increased, the contact area of indentation 
increased, while the elastohydrodynamic pressure 
distribution became sharper and more concen-
trated near the centre.

Wong et al.96 studied the effects of electric 
double layer on the dynamics of very thin lubri-
cating films. Both rigid and elastic substrates 
were considered. Modified Reynolds equation 
as per Zhang and Umehara99 was used to obtain 
the effective viscosity. Semi-empirical equations 
by Dowson23 were used to incorporate elastohy-
drodynamics. It was found that presence of an 
electric double layer substantially increases the 
thickness of the lubricating film. However, the 
effects were found to be significant only for sepa-
rations up to 100 nm and were high for rigid wall, 
but negligible for elastic wall. It was also found 
that the effective viscosity increases with square 
of zeta potential and decreases with the cube of 
separation.

Chakraborty and Chakraborty14 studied 
the influence of electrical double layer and the 
associated streaming potential on the elasto-
hydrodynamics of a compliant substrate being 
dynamically loaded with a spherical probe at 

a small separation. The system consisted of an 
oscillating hard spherical probe at a small separa-
tion from an elastic substrate with an interven-
ing electrolytic solution. Complex formulation 
for the pertinent variables, similar to Steinberger 
et al.75, was used. The system was considered to be 
quasi-static as far as electrokinetics is concerned 
and a closed-form piecewise expression of electric 
potential was obtained. The substrate deforma-
tion was considered to be linearly related to the 
local pressure as per ξ(r, t) = K−1P(r, t) , where 
ξ(r, t) is the local deformation, K is the stiffness 
per area of the elastic substrate and P(r, t) is the 
local pressure. The results thus obtained indi-
cated an increasing force response with α (ratio 
of minimum undeformed separation to probe 
radius), growing higher for higher zeta poten-
tial and for lower κ ( κ = H/� , where H(r, t) is 
the height of the spherical probe from the unde-
formed substrate, lambda is Debye length, epsi-
lon is the fluid’s permittivity, n0 is the electrolyte 
number density in the electroneutral bulk and ȳ 
is the dimensionless distance along the y-axis that 
is non-dimensionalized with H(r, t)).

Polychronopoulos and Papathanasiou59 stud-
ied the mechanics of fluid penetration in a soft 
permeable web layer moving past a static rigid 
cylinder. The fluid flow was taken to be defined 
by lubrication theory and fluid transfer through 
web layer by Darcy’s law. Based on the findings of 
Yin and Kumar97, the web–liquid interface defor-
mation was taken to be linearly proportional to 
the local gap pressure (similar to cases of mem-
branes). Therefore, fluid penetration was found 
to be dependent upon elasticity (represented by 
the dimensionless parameter Ne, ratio of viscous 

Figure 7: a Dimensionless pressure (non‑dimensionalized with ph0
2/μ Vl) and b dimensionless gap for 

different values of Ne and K̂ = 0 ; the impermeable flexible web is assumed to move with velocity V to the 
right. Reprinted by permission from Springer Customer Service Centre GmbH: Springer Nature Transport 
in Porous Media59.
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force to elastic force) and permeability (repre-
sented by the dimensionless parameter K̂  ) and a 
specific combination was found to exist for maxi-
mum penetration depth. The web permeability, 
K, was taken to vary as K = Kref − β p ( Kref , 
being the reference permeability, and β being 
the permeability’s sensitivity to pressure, and p 
being the fluid pressure). Equations were then 
non-dimensionalized as per norms of lubrica-
tion theory and expressions for the two param-
eters Ne and K̂  were identified as Ne = µVHl

Eh3
0

 

and K̂ = Kl2

h3
0

 , where µ is the fluid viscosity, H is 

the undeformed web thickness, l =
√
2Rh0 is 

the characteristic lubrication dimension, V is the 
web’s sliding speed, R is the cylinder radius, h0 is 
the minimum undeformed web–cylinder separa-
tion and E is the web’s Young’s modulus. It was 
observed that as one proceeds from zero value 
of Ne to higher, pressure starts deviating from 
an anti-symmetric solution and the gap loses 
its symmetric form (see Fig.  7). From the solu-
tions, it could be seen that lift increases, reaches a 
maxima and then decreases against Ne, the reason 
for which was suggested as being the competition 

Figure 8: Friction coefficient as a function of Uη; dashed lines correspond to the appropriately modified 
Couette shear stress. Reprinted from Stupkiewicz et al.77, with permission from Elsevier.

Figure 9: Friction coefficient as a function of Uη for five lubricants and a range of loads W; solid lines indi‑
cate the predictions of the regression equation of de Vicente et al.89. Reprinted from Stupkiewicz et al.77, 
with permission from Elsevier.
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between symmetry breaking and lowering pres-
sure. As a contrast, for the case of rigid perme-
able web, it was seen that the pressure decreases 
and the liquid interface (front of the fluid pen-
etration) increases with increasing permeability; 
however, both remain symmetric rather than 
losing symmetry. Furthermore, it was observed 
that the penetration is small for very deformable 
as well as rigid webs, but variation in K̂  causes 
large effects on penetration for intermediate elas-
ticities. Lastly, solution by perturbation approach 
with Ne as the small parameter was obtained and 
was found to have a good match with the numeri-
cal solutions (better for smaller K̂).

Stupkiewicz et al.77 studied the finite defor-
mation effects in soft elastohydrodynamic lubri-
cation problems, which are typically neglected 
in classic elastohydrodynamic lubrication the-
ory. The geometry considered was a rigid cylin-
der near an elastic substrate. Reynolds equation, 
finite strain elasticity equations and Elrod–
Adams-like model for cavitation were used for 
modelling. A rigid cylinder subjected to a verti-
cally downward loading (with W as the loading 
per unit length) and sliding against a soft elastic 
layer with harder thin upper coating and a rigid 
platform underneath was considered first and the 
results obtained were reported (see Fig. 8, where 
U is called the entrainment speed, which is half 
of the sliding speed, and η is the fluid viscosity). 
It was observed that friction coefficient is a func-
tion of Uη and load and the form of the function 
is practically identical to that for linear elastic-
ity model; however, the film thickness and pres-
sure profiles were quite different, with the linear 
model underestimating the film thickness. Exper-
imental validation was also performed along with 
the numerical method wherein a tribometer for 
high load was designed with an elastomeric ball 
on a rotating disk, and plots of friction coeffi-
cient against Uη were obtained (see Fig. 9). It is 
to be noted that for higher values of Uη , friction 
coefficient varies linearly on the log–log plot (as 
expected for hydrodynamic lubrication regime), 
but at low Uη , linearity is not found.

Chakraborty and Chakraborty15 studied the 
influence of electrolytic species for a planar slider 
bearing (an inclined plane moving right at speed 
U above a flat plane, with separation of h1 at left 
end, h2 at right end and horizontal length L) with 
intervening fluid containing a symmetric elec-
trolyte. The variation of load capacity per unit 
width (integral of pressure with length) (denoted 
by W) against ratio of h2 to h1 (denoted by r) was 
presented, which was seen to be increasing, reach-
ing a maxima and then decreasing for compliant 

substrate while monotonously decreasing for 
stiff substrate. Naik et al.55 studied the finite size 
effects of ionic species on compliant surface flow 
dynamics. Geometry similar to Chakraborty and 
Chakraborty15 was used. Stokes equation with elec-
tric field as body force, and Poisson–Boltzmann 
equation were considered as the governing equa-
tions for the system. Steric effects, which influence 
ionic distribution profile as well as diffusivities of 
cations and anions (diffusivity is obtained from 
the Nernst–Einstien relation and interplay of 
Stokes drag with electric force), were incorporated 
into the system. Charge-induced thickening6 was 
used to account for changed dynamic viscosity due 
to charged species being present in the fluid, lead-
ing to the expression for dynamic viscosity ( µ),

where, µ0 is the reference dynamic viscosity (i.e. 
dynamic viscosity of the bulk fluid not consid-
ering any charge-induced thickening), n0 is the 
number density of the cations and anions in the 
electroneutral bulk, n+ and n− are the local num-
ber densities of cation and anion, respectively, and 
ν is the steric factor which accounts for the finite 
size effects of the ions. Pressure was taken to bal-
ance the y-normal stress at interface and depend-
ence of y-normal stress on x and z deformations 
was done away with by invoking the lubrication 
approximation, yielding the expression for defor-
mation as sy = −hlp/(�+ 2G) , where sy is the 
deformation along the y-axis (axis perpendicular 
to the deformable plane), hl is the thickness of the 
compliant substrate (which rests on a rigid sup-
port), � and G are the Lameé parameters and p is 
the local pressure.

Balmforth et al.3 studied the effects of solid 
elasticity and fluid compressibility on the gravity-
caused sinking of a two-dimensional (infinitely 
long along the third dimension) smooth rigid 
object towards a plane wall (an elastic plane coat-
ing on a rigid base) through a viscous fluid (with 
pressure-dependent viscosity), where asymptotic 
and numerical solutions were obtained to study 
the final approach to contact. Masjedi and Khon-
sari51 studied line-contact elastohydrodynamic 
lubrication of soft materials. Based on simula-
tions, expressions were obtained to estimate the 
film thickness and load. Behaviour of Stribeck 
curves was used to study variations of the trac-
tion coefficient. Reynolds equation was altered to 
be for mixed elastohydrodynamic lubrication as 
given by Patir and Cheng58; since the pressure is 
low, the problem had been treated as isoviscous. 
Subsequent analysis of the problem showed that 

(6)
1

µ
= 1

µ0

(

1− 1

2
ν

∣

∣

∣

∣
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Figure 10: Normalized wave resistance as a function of the reduced speed, for various elastic Bond 
numbers Bel; the Dirac limit ( Bel → 0 ) is indicated; the vertical dashed lines indicate the position of the 
maximal wave resistance, for each value of Bel Reproduced from Arutkin et al.1 with permission of Cam‑
bridge University Press.

Figure 11: a Experimental evolution of the profile width w (proportional to the lateral extent of the linear 
region as displayed in the inset) as a function of time t, in log–log scale, for samples involving different 
liquid‑film thicknesses and substrate elasticities; all datasets appear to have a t1/6 power relation. The 
slope corresponding to a t1/4 evolution (rigid‑substrate case) is displayed for comparison; b Experimental 
levelling profiles on 10:1 PDMS with the horizontal axis scaled by t1/6 (c) Experimental levelling profiles 
on 40:1 PDMS with the horizontal axis scaled by t1/6. Reprinted figure with permission from Rivetti et al.65 
Copyright (2017) by the American Physical Society
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for the considered problem, isoviscous solution 
can be used, with asperity radius and surface 
roughness being the influential parameters. Tan 
et al.82 studied the dynamic behaviour of wax-in-
oil flow at the contact between a rigid glass plate 
sliding below a stationary polyurethane elasto-
meric sphere, where the behaviour of entrapped 
wax particles was found to depend on the soft 
lubrication observed.

4  Thin and Free Geometries (Membranes, 
Beams, Sheets, Films and Vesicles)

The flow of work presented in this section fol-
lows. We first present the works of Carlson and 
Mahadevan12 and Arutkin et al.1, who have stud-
ied flexible sheets near rigid walls with interven-
ing fluid; next are the works of Rivetti et al.65 
and Zheng et al.100, who have studied flow over 
an elastic substrate or membrane with the other 
face exposed to air. Subsequently, work by Howell 
et al.34, 35 is presented where flow over an elastic 
beam is studied. Then we present the works of 
Carlson and Mahadevan60 and Arutkin et al.17, 
who have all studied membrane attached to 
microchannels. The section ends with brief men-
tions of the work of Karpitschka et al.42, who has 

modelled a typical physiological phenomenon 
involving deformable boundaries in microflows.

Carlson and Mahadevan12 studied the dynam-
ics of an elastic sheet close to adhesion to a wall 
with fluid in between. The effects of van der 
Waals adhesion potential was considered, leading 
to the transverse load balance as

where p̂ is the local pressure, x̂ is the x-coordi-
nate, t̂ is time, B is the bending stiffness, ĥ is the 
height of the elastic sheet from the wall and A is 
the Hamaker’s constant.

The standard Reynolds equation was arrived 
at with the pressure term as given in equa-
tion 7. Adopting the similarity conversion as 
h(x, t) = (tC − t)αH(η) (h, x, t are the dimen-
sionless version of ĥ , x̂ , t̂, respectively) with the 
similarity variable η = x−xC

(tC−t)β
 ( α and β are arbi-

trary parameters, both being 1 / 3, tC is the con-
tact time, xC is the contact point), an ordinary 
differential equation for the variable H(η) was 
arrived at (whose solution includes a singular-
ity as time approaches tC ). A simple power law 

(7)p̂(x̂, t̂) = B
∂4ĥ

∂ x̂4

∣

∣

∣

∣

∣

(x̂,t̂)

+ A

3ĥ3(x̂, t̂)
,

Figure 12: a Theoretical profiles for the liquid–air interface z = h(x,t) and the solid–liquid interface z = δ 
(x,t), both shifted vertically by − h1 (with s0 (elastic layer thickness) = 2 m, h1 = h2 = 2h0/3 = 120 nm, μ 
(elastic layer’s Young’s modulus) = 25 kPa, γ = 30 mN/m, η = 2.5 MPa‑s); inset displays a close‑up of the 
dip region; b finite element simulation (COMSOL) of solid’s total displacement (black arrows) and its verti‑
cal component δ (colour coded) (result obtained by imposing the Laplace pressure field corresponding to 
the first profile in a to a slab of elastic material exhibiting comparable geometrical and mechanical prop‑
erties, and maximal displacement of 22 nm found in good agreement with theoretical prediction shown 
in (a). Reprinted figure with permission from Rivetti et al.65 Copyright (2017) by the American Physical 
Society.
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formulation between height and deformation 
was thus established, and the similarity analysis 
led to a self-similar shape for the elastic sheet as it 
approached touchdown.

Arutkin et al.1 studied the elastohydrody-
namics of a thin elastic sheet lubricated by a 
narrow liquid film and subjected to a moving 
pressure disturbance, with focus on the defor-
mation wake and wave resistance. The externally 
applied pressure disturbance on the top elastic 
film was ψext(x − vt, y) (x and y being axes along 
the substrate’s plane and v being the speed of 
motion of the externally applied pressure along 

x), which translated to an axisymmetric Lorent-
zian pressure field. It was found that the elastic 
Bond number appears as the key non-dimen-
sional parameter given as Bel = (aκel)

2, where a 
is the characteristic horizontal size of the exter-

nal pressure field and κel =
(

B

ρ · g

)(−1/4)

 is the 

gravito-elastic length, with B = Ed3

12(1−ν2)
 being 

the bending stiffness, d the sheet thickness, E 
and ν the Young’s modulus and Poisson ratio of 
the sheet respectively, ρ the fluid density and g 
the acceleration due to gravity. Low-speed and 

Figure 13: Experimental apparatus. a Side view (thin elastic beam of length L fixed at the left wall with 
constant flow rate q injected along the beam, wetted length denoted by σ (t), deflection angle at the 
advancing front by ф (t) and local deformation angle at arc length s by ψ (s,t), with time progressing as 
t0 < t1 < t2 < t3 ; b front view: cross‑sectional shape of the liquid rivulet on the beam.

Reproduced from Howell et al.35 with permission of Cambridge University Press.

Figure 14: Side and top views of liquid flow over the elastic beam. a Small beam deflection case 
( E = 2.4 GPa, q = 1.4× 108 m3s−1, L = 100 mm, w = 0.51 mm, 2b = 7 mm ); b large beam deflection case 
(E = 3.6 GPa, q = 2.2× 108 m3s1, L = 50 mm, w = 0.076 mm, 2b = 4 mm). Reproduced from Howell et al.35 with 
permission of Cambridge University Press.
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high-speed regimes were taken up to obtain ana-
lytical asymptotic solutions, considering a thin 
layer. It was observed that for small velocities, 
there was no wake and only a symmetric distur-
bance occurred, but for large velocities there was 
a wake behind (i.e. dipped interface) and an accu-
mulation ahead (i.e. bumped interface). Larger 
elastic Bond number was seen to lead to a wider 
pressure field and hence lower wave resistance 
and vice versa (approaching the one associated 
with Dirac pressure field, i.e. �̂ = 1 , see Fig. 10).

Rivetti et al.65 did the experimental study 
(AFM based) and theoretical modelling of a thin 

polymeric film on elastic substrate. The start-
ing geometry is a stepped layer of fluid spread 
infinitely along the width as well as length, and 
height h1 + h2 right of the step. Mathemati-
cal solutions were obtained using Fourier trans-
formations. Polystyrene (PS) was the material 
considered, since for the timescales of the experi-
ment, it functions like a Newtonian viscous fluid. 
In the experimentation, it was observed that as 
the interface evolves, a dip and a bump appear 
and the depth of dip as well as height of bump 
eventually saturate (in contrast to rigid sub-
strate case where the maximum and minimum 

Figure 15: a Deflection height profile h(y) of the membrane wall at various flow rates Q obtained using 
fluorescence imaging; b maximum deflection of the membrane wall hmax versus flow rate Q with compari‑
son of model predictions with experimental data. Reprinted by permission from Springer Customer Ser‑
vice Centre GmbH: Springer Nature Microfluidics and Nanofluidics,60.

Figure 16: a Average axial deflection profile 〈�h〉 of the membrane wall at various flow rates Q with 
fp=1.02105 Pa‑1 and comparison with experimental data; b average axial deflection profile 〈�h〉 of 
the membrane wall at various compliance parameters fp (w = 500 μm, h0 = 83 μm, Q = 1000 μl/min). 
Reprinted by permission from Springer Customer Service Centre GmbH: Springer Nature Microfluidics 
and Nanofluidics60.
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heights are entirely determined by starting 
heights and stay constant through evolution). 
It was inferred that the negative Laplace pres-
sure underneath the dip pulls PDMS upwards 
and the opposite occurs for bump, and no-slip 
condition coupled with the flow induces a hori-
zontal displacement field, causing deformations 
that subsequently affect the liquid–air interface 
due to the requirement of volume conservation.
The definition of profile width considered was 
w(t) = x(h = h1 + 0.6h2)− x(h = h1 + 0.4h2), 
and it was seen to scale as one-sixth power of time 
(see Fig.  11a). It was observed that scaling of pro-
file width as one-sixth power of time accounts for 
most of the evolution for practical purposes. Pro-
file width was expected to vary linearly with 

γ h3
0
t

η
 , 

where t is time and h0 = h1 + h2/2 . Evolution of 
profile (both liquid–air and liquid–liquid) and 
the corresponding PDMS bulk deformation sim-
ulations are also presented (see Fig.  12). From the 
simulation results, for all viscosities, the profile 
was expected to approach the case of rigid sub-
strate with time, starting farther off and taking 
longer for lower viscosity. However, this expec-
tation was not fulfilled by experimental observa-
tions where the scaling was observed as one-sixth 
power of time rather than the one-fourth power 
of the rigid case. It was argued that the resulting 
curvature of the fluid–air interface that occurs as 
a result of translation of the fluid–solid interface 
due to volume conservation leads to a relatively 
lower Laplace pressure and, therefore, slowing 
down of the levelling process (leading to a smaller 
effective exponent).

Zheng et al.100 studied the propagation of 
a thin fluid film over a thin elastic membrane, 
driven by buoyancy. The system is a coupled 
physical system comprising film thickness, mem-
brane shape and radial tension within the film’s 
region and membrane shape and radial tension 
outside. For small time, spreading of liquid and 
stretching of membrane were observed to be 
buoyancy controlled, liquid front evolution scal-
ing with square-root of time, while for large time, 
membrane stretching caused the spreading and 
the system was found to be quasi-static (with a 
flat air–liquid interface), liquid front evolution 
scaling with the fourth root of time (edge effects 
come into effect further late in time). Laboratory 
experiments for constant fluid injection was done 
and good agreement with theoretical predictions 
was observed.

Howell et al.34 studied the flow of a thin liquid 
film towards the free end on a flexible beam, con-
sidering gravity to be the dominant force. Math-
ematical modelling and non-dimensionalization 

similar to that by Howell et al.35 was employed. 
It was observed that the fluid film thickness 
first increases and then decreases with the beam 
length, the reason being posited that the longer 
beam, suffering larger deflection, enhances the 
gravitational forcing on the fluid and, hence, 
exacerbates flow away from source. Howell et al.35 
expanded on their former work and validated 
their work with experimentation as well. Dynam-
ics were found to fall into a small-deflection 
regime and a large-deflection regime and power 
laws for three time periods were established—
the liquid just begins deforming the beam, beam 
deflection rises fast due to weight of the liquid 
film and the beam is bent to almost vertical. Stud-
ies were done with the flow rate of the fluid kept 
constant. The geometry of the problem state-
ment is represented in Fig. 13 (flow rate of fluid 
kept constant), and the small deflection and large 
deflection regimes are represented in Fig.  14. For 
small deflection regime, deflection was seen to 
scale as four-fifth power of time for small time 
limit and fourth power of time for large time 
limit, and, maximum deflection angle was seen 
to scale as thirteen-fifth power of time for small 
time limit and ninth power of time to large time 
limit. For the large deflection regime, for up to 
intermediate time limits, similar behaviour as 
for small deflection regime was observed, but for 
large time limits, deflection was seen to scale lin-
early with time and maximum deflection angle 
approached π/2.

Raj and Sen60 studied the flow-induced 
deformation of compliant membrane taken 
as the top surface of microchannels. Side 
walls and lower wall were semi-infinite and 
considered rigid. Using theoretical model 
as per Bruus11, the expression for height as 
h(z) = h0(1+ (fPp(z))

1/3) (z being the axis 
along the channel) was considered. Pressure was 
observed to decrease linearly with axial position, 
increase linearly with fluid viscosity and decrease 
almost linearly with the compliance parameter. 
Linearly increasing pressure drop with flow rate 
for both rigid and compliant microchannels was 
observed with a faster slope for the rigid micro-
channel. The observed deformation was approxi-
mately parabolic (see Fig. 15). Average deflection 
was observed to decrease along the axial posi-
tion (approximately linearly), with higher values 
for higher flow rate and for higher compliance 
parameter (see Fig. 16). The maximum devia-
tion from experimental results was 18 % . Finally, 
pressure drop characteristics of compliant micro-
channel showed a 63 % lower pressure drop due 
to top wall deformability.
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Cheikh & Lakkis17 designed microfluidic 
transistors for amplification and flow control of 
lab-on-a-chip devices based on elastic membrane 
microchannels (that are pressure difference actu-
ated). An improved modelling of single mem-
brane microchannel was claimed that allows for 
more accurate estimation of pressure profile and 
membrane deflection. Modelling of the system 
analogous to DC electricity was done by equat-
ing pressure over flow rate to resistance, and 
hence MOSFET-like behaviour is modelled. It 
was deduced that for a single membrane, capac-
itor-like behaviour occurs when the membrane 
deflects away from channel and transistor-like 
behaviour occurs when the membrane deflects 
into the channel.

Karpitschka et al.42 studied the dynamics of 
inward folding of a soft gel surface with a gel-
based controlled-deformation setup. Mathemati-
cal analysis of the system revealed the cusp width 
to scale as 3/2 power of the distance from the 
tip. To demonstrate the suitability of mechan-
ics of elasticity for mathematical modelling of 
such systems, a two-dimensional (plane strain) 
finite element simulation using the theory of 
finite deformations with an incompressible neo-
Hookean constitutive equation was carried out. 
The same features as in the experiments (includ-
ing the similarity collapse with the same universal 
shape superimposed) were obtained.

5  Associated Works
In this section, works related to flow-control 
devices that employ deformability of fluid–struc-
ture interfaces (i.e. valves, pumps, actuators, etc.) 
have been presented. The works in this section 
thus represent research that does not directly 
approach the problem of deformable boundaries 
in microconfined flow, but draw from it.

Flow actuation using deformable channels 
has been researched for a while now. One of the 
pioneering works in this field is by Unger et al.85, 
who proposed an extension to soft lithography 
(named as multi-layer soft lithography) using soft 
materials that can be used to build active micro-
fluidic systems with valves, switches and pumps 
made entirely out of elastomers.

Studer et al.76 carried out the evaluation of 
scaling characteristics of low-pressure actuated 
microfluidic valves. Characterization was done by 
measuring actuation pressure and flow resistance 
(and subsequently compared to finite element 
simulations and alternative valve geometries). 
It was argued that although the aspect ratio of 

geometries for formerly reported works were 
required to be low, it is desirable to have unit 
aspect ratios in some applications. Two methods 
for flow actuation using pressure control were 
presented—push-down, where membrane thick-
ness is dependent on geometry, and the device 
is like a stick-on on the substrate; and push-up 
where the membrane thickness is uniform and 
independent of the geometry of the device, and 
the device has to be fabricated with the substrate. 
For validation of the results with finite element 
modelling, the membrane material was consid-
ered to be a near-incompressible neo-Hookean 
solid. Subsequently, parametric studies were done 
to assess the effects of channel width and mem-
brane thickness on the actuation pressure. It was 
found that push-up valves show an order of mag-
nitude lower actuation pressure than push-down 
valves, which show hysteretic behaviour because 
of sticking of the membrane to the opposite wall.

Liu et al.48 carried out experimentation, mod-
elling and numerical simulation of the response 
characteristics of a microscale pneumatic actua-
tor for microfluidic chips. For the same, PDMS 
elastomer was modelled as near-incompressible 
neo-Hookean material and plane-strain theory 
(large-deformation membrane behaviour the-
ory) was employed. It was found that the maxi-
mum displacement of deflection was found to 
be proportional to one-third power of pressure 
difference across the membrane. Finite element 
simulation of the system was done and reason-
able match between experimental, modelling and 
simulation results was demonstrated. A fourth-
order fit of pressure offset to get the maximum 
deflection was obtained.

Gerasimenko et al.26 performed modelling 
and characterization of a pneumatically actu-
ated peristaltic micropump. The resistance of 
the channel was considered when calculating 
deflection of the membrane. Displacement of the 
membrane from quiescent position was described 
employing the dynamic equations of motion. 
PDMS was modelled using the Kelvin–Voigt 
model and the Young’s modulus was considered 
to depend on the pressure over the membrane 
and other geometric parameters (centre deflec-
tion from quiescent position, design geometries, 
etc.) as

where E is the PDMS Young’s modulus, R is 
the membrane radius, h is the thickness of 

(8)E = 3

16

R4

h3

(

1− ν2
) p

w0

,
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the membrane, ν is the Poisson’s ratio, p is 
the pressure over the membrane and w0 is the 
deflection of the membrane centre from its qui-
escent position. The membranes were actuated 
by air pressure in pneumatic tubes, and the time 
dependency of air pressure in pneumatic tubes 
was obtained from established governing equa-
tions. Shear deformations of membrane was not 
considered and analysis of membrane was done 
by representing it as a finite thickness of the 
film at the mid-plane. Semi-empirical solutions 
employing Bessel functions and Green’s function 
were obtained.

Oh et al.56 proposed an alternative and more 
effective (in terms of flow rate and valve effi-
ciency) structural design of pneumatic valve 
(made of PDMS, whose deformability was 
employed for actuation) as opposed to the typi-
cal rectangular cross-sectional valves. The effec-
tiveness of the proposed structure was elucidated 
with finite element analysis using COMSOL, 
employing the linear elastic model for PDMS.

6  Conclusion
In this review article, we have aimed to present an 
overview of contemporary research that involves 
fluid flow in small-scale geometries with deform-
able boundaries. There have been substantial 
amount of in-depth mathematical analyses of 
the associated phenomenon for different geom-
etries as has been reported. It is noteworthy that 
although the standard linear elastic model and its 
derivatives and offshoots have been studied com-
monly, there has been no dearth of modelling 
the deformable boundaries (and underlying bulk 
if applicable) as viscoelastic solids92, 57 as well as 
hyperelastic solids42, 76; furthermore, one study 
of finite deformation fluid–structure interactions 
has also been explored77. The most ubiquitously 
studied substrate was PDMS (owing to its suit-
ability and ease of application for a vast expanse 
of research activities), and its modelling as a vis-
coelastic solid appeared to yield more appropri-
ate results than as linear elastic. Although the 
fluid being studied was mostly Newtonian, there 
were noteworthy instances of non-Newtonian 
fluid being studied (shear-thinning fluid stud-
ied by Raj and Sen60, Casson fluid by Vajrave-
luet al.88, power law fluid by Goswami et al.30 
and pressure-dependent viscosity by Balmforth 
et al.3); furthermore, studies involving disper-
sion or dissolved species in fluid were also pre-
sent (wax-in-oil by Tan et al.82 and multiple 
instances of electrolytic solutions). There was a 
vast plethora of coupled physical phenomenon 

being modelled with the fluid–structure interac-
tions as well, like contact line dynamics65, electro-
kinetic effects54, fluid mixing36, bolus motion80, 
van der Waals forces12, porosity59 and pneumat-
ics56. All three approaches towards the problem 
(viz., analytical, numerical and experimental) 
have been substantially represented. There are 
instances of analytical approaches incorporating 
transforms—Hilbert73 and Fourier57, 65, exotic 
mathematical functions—Green’s function73, 
empirical expression-based methods96, 60, scal-
ing analyses67, 28, asymptotics34, 35 and similarity 
solutions12, 100. The primary choice for numerical 
solutions has been finite element analysis using 
available packages such as COMSOL and Abaqus. 
Experimental studies spanned those intended 
for physical studies, validation of mathemati-
cal/numerical results and design of devices. One 
major stream of work that stood apart was that 
by Restagno et al.63, Leroy et al.46, Villey et al.90, 
Carpentier et al.13 and Garcia et al.24, which rep-
resents a steady approach towards understanding 
squeeze flow phenomenon to enable effective sur-
face force measurements at a distance for material 
property determination.

Although a wide range of themes incorpo-
rating elasticity–flow interactions has been pre-
sented in this work, there is still a vast web of 
similar disciplines whose magnitudes would war-
rant a separate treatment and hence been deemed 
beyond the scope of this article. Examples include 
studies of fibre appendages protruding out of 
channel walls47, 95, modelling of microswimmers4, 

2, flow through collapsible tubes32, 37 and effects 
of surface tension and contact line dynamics on 
soft solids78, 79.
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