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Abstract | This work is a review article focused on exploring the interac-
tions between external and induced electric fields and fluid motion, in the 
presence of embedded charges. Such interactions are generally termed 
electrohydrodynamics (EHD), which encompasses a vast range of flows 
stemming from multiscale physical effects. In this review article we shall 
mainly emphasize on two mechanisms of particular interest to fluid dyna-
mists and engineers, namely electrokinetic flows and the leaky dielec-
tric model. We shed light on the underlying physics behind the above 
mentioned phenomena and subsequently demonstrate the presence of 
a common underpinning pattern which governs any general electrohy-
drodynamic motion. Hence we go on to show that the seemingly unre-
lated fields of electrokinetics and the leaky dielectric models are indeed 
closely related to each other through the much celebrated Maxwell 
stresses, which have long been known as stresses caused in fluids in 
presence of electric and magnetic fields. Interactions between Maxwell 
Stresses and charges (for instance, in the form of ions) present in the 
fluid generates a body force on the same and eventually leads to flow 
actuation. We show that the manifestation of the Maxwell stresses itself 
depends on the charge densities, which in turn is dictated by the under-
lying motion of the fluid. We demonstrate how such inter-related dynam-
ics may give rise intricately coupled and non-linear system of equations 
governing the dynamical state of the system. This article is mainly 
divided into two parts. First, we explore the realms of electrokinetics, 
wherein the formation and the structure of the so-called electrical double 
layer (EDL) is delineated. Subsequently, we review EDL’s  relevance to 
electroosmosis and streaming potential with the key being the presence 
and absence of an applied pressure gradient. We thereafter focus on 
the leaky dielectric model, wherein the fundamental governing equations 
and its main difference with electrokinetics are described. We limit our 
attentions to the leaky dielectric motion around droplets and flat surfaces 
and subsequent interface deformation. To this end, through a rigorous 
review of a number of previous articles, we establish that the interface 
shapes can be finely tailored to achieve the desired geometrical charac-
teristics by tuning the fluid properties. We further discuss previous stud-
ies, which have shown migration of droplets in the presence of strong 
electric fields. Finally, we describe the effects of external agents such 
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as surface impurities on leaky dielectric motion and attempt to establish 
a qualitative connection between the leaky dielectric model and EDLs. 
We finish off with some pointers for further research activities and open 
questions in this field.
Keywords: Electrokinetics, Electrohydrodynamics, Leaky dielectric model, Electrical double layer, 
Droplet, Electroosmosis, Streaming potential, Thin film, Interfacial phenomena

polymer transport, protein manipulation etc.26–

29. Streaming potential phenomenon has been 
utilized to sense flows through porous media30–37 
and for harvesting mechanical energy into electri-
cal energy18–20, 38–43.

While the above development of EDL and 
electrokinetic phenomena took place for single 
phase flows there was a parallel development of 
the area of electrohydrodynamics (EHD) which 
refers to the study of fluid flow interacting with 
electric fields. Historically the studies of EHD 
have been to study two phase flows in the pres-
ence of electric fields44–46. The developments of 
the last century can be traced back to47, 48 who 
studied the action of electric fields at liquid inter-
faces and their stability in particular. Much of the 
developments of the flows between conducting 
and insulating fluids was undertaken by Melcher 
and coworkers49. The assumption of fluids being 
completely conducting or completely insulating 
however incorrectly predicted some of the obser-
vations of deformation of oil droplets suspended 
in other oils. The discrepancy was resolved by46 
who considered the fluids to be leaky dielectrics 
in which the small yet finite conductivity of the 
fluids is accounted for. In this way the net charge 
accumulated at the interface between the two flu-
ids leads to remarkably different behaviour than 
the analysis in which the two fluids are consid-
ered to be either conducting or insulating. The 
leaky dielectric model has found success in a wide 
variety of situations involving commonly used 
insulating oils such as silicone oil, castor oil, corn 
oil etc.50, 51. The leaky dielectric model was then 
utilized extensively by Melcher and coworkers to 
address a host of problems ranging from stability 
of flat interfaces44 to travelling waves with conju-
gated heat transfer45.

The influence of AC electric fields with high 
frequencies on the interface between two flu-
ids was studied by52. Later on53 demonstrated 
that the instability at the surfaces arises from the 
action of the Maxwell stress and not due to dielec-
tric breakdown. Later, the influence of a thermal 
gradient on bulk electroconvection was studied45, 

1 Introduction
Electrokinetic phenomena refers to those pro-
cesses in which the fluid flow affects and is 
affected by the presence of electric fields. Reuss1 
was the first to investigate the phenomenon in 
which the action of an electric field led to the flow 
of liquid and a potential difference at the end of 
two columns. Based on these ideas2 showed that 
the process of driving a flow across a charged 
membrane leads to the generation of a poten-
tial across the two ends. The former case where 
the application of an electric field leads to the 
generation of a flow is termed as electroosmosis 
while the later phenomenon in which the flow of 
a fluid in contact with a charged substrate in the 
absence of any electric field leads to the genera-
tion of a potential difference is known as stream-
ing potential. The fundamental coupling between 
the charged substrate and fluid flow is possible 
due to the generation of the electrical double 
layer (EDL)3–14. The idea is that the preferrential 
attraction of counterions towards a charged sur-
face leads to the formation of a region with net 
charges in the vicinity of the wall. This region 
with a net charge is then able to interact with 
applied electric fields. The fundamental concepts 
behind the EDL were introduced by13 and later 
improved by14, who incorporated the effects of 
thermal energy due to Brownian motion, which 
were previously neglected in the capacitor based 
model put forward by15. The developments in 
the theory of the EDL led to developments in 
the linear relationship between the net mass 
flux and the applied electric field for the case of 
electroosmosis8, 16. On similar lines, the linear 
relationship between the applied pressure gradi-
ent and induced electric field was developed17–20. 
The development of these theories was central to 
the development of colloidal science. Manipula-
tion of micron and submicron sized particles 
bearing a surface charge suspended in aqueous 
solutions by means of electric fields is termed as 
electrophoresis5, 21–25. Electrophoresis is a widely 
utilized phenomenon for many lab-on-a-chip 
applications which deal with particle separation, 
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54. The idea is that the presence of temperature 
gradients lead to the formation of permittiv-
ity gradients. This allows for the electrostriction 
term (see Appendix A) to yield a net volumetric 
force. This mechanism acts in such a manner that 
the temperature gradient is nullified. The idea of 
utilizing electric fields to achieve an augmented 
heat transfer has also been discussed by55. Later 
on, there have been attempts to achieve enhanced 
rates of condensation by utilizing electric fields as 
well56–58. On similar lines, there have been stud-
ies to understand the influence of injected space 
charge on electrohydrodynamic instabilities aris-
ing due to the EHD volumetric force described in 
the appendix A of59. On the basis of53, 60 analyzed 
theoretically the problem of the action of an AC 
electric field on a flat interface. Later61 studied 
the effect on the similar flat interface between 
two fluids due to the action of a transverse elec-
tric field. In an attempt to bridge the gap between 
electrokinetic phenomena and the electrical dou-
ble layer phenomena,62, 63 studied the influence 
of electrical forces towards interfacial instability. 
One of the first analyses to understand the influ-
ence of AC fields on the dynamics of droplets was 
undertaken by64. The fundamental idea behind 
such analysis is described in the later sections. A 
combined action of acoustic waves and electric 
fields has been studied to manipulate droplets at 
the microscale65. Later, Choi and Saveliev66 have 
analyzed the influence of AC electric fields on the 
coalescence of droplets.

The fundamental ideas behind analyzing thin 
film systems have been described in detail by67. 
Miksis and Ida68, 69 have described the theoreti-
cal basis of the dynamics of thin films. Schaef-
fer et al.70 utilized the aforementioned thin film 
equations and obtained a relationship between 
the observed patterns on an initially flat substrate 
and the magnitude of the applied field. Based 
on the key observation, there have been several 
attempts to understand and exploit such insta-
bilities to generate desired patterns on various 
polymer substrates71. Based on the lubrication 
analysis, there have been attempts to understand 
the flows of liquids in such electrified environ-
ments72. The action of such transverse electric 
fields has also been studied for the case of forma-
tion of bilayers from such thin films73. Li et al.74 
have utilized the aforementioned ideas regarding 
unstable interfaces in such electrified environ-
ments to obtain patterned cylinders. In recent 
times, Thaokar and coworkers have also analyzed 
the instability of two fluidic layers due to AC elec-
tric fields75, stability of fluid layers at the limit of 
‘small features’76, air liquid patterning77, and the 

link between the electrokinetic model and the 
leaky dielectric model. Recently, efforts have been 
made to unveil the combined influence of fluid 
rheology and applied electric fields in multiphase 
systems78, 79. The fact that droplets can be coa-
lesced or sheared due to electric fields allows one 
to study emulsions in such systems80. We shall 
build upon the various aspects of this in the sub-
sequent sections.

At the heart of both the effects is the presence 
of charges which are acted upon by electric fields. 
The coupling of fluid flow and electric fields is 
achieved through the Maxwell stress and ionic 
advection5, 23, 24, 81–87. In this article we shall look 
into some of the fundamental aspects of electro-
kinetic transport through narrow confinements. 
Later on we shall dwell upon the leaky dielectric 
framework with an emphasis on the dynamics of 
droplets and fluid interfaces in the presence of 
high electric fields. The potential for further work 
is outlined as a conclusion.

2  Electrokinetics
2.1  Electrical Double Layer
The genesis of electrokinetics lies in the devel-
opment of a surface charge due to the chemical 
equilibrium between the aqueous solution and 
the substrate. For example in the early experi-
ments by1, various clay plugs were used. In such 
clays, the regions in the pores where the crys-
tal face is exposed, the edge groups, which may 
contain silicates, aluminates, etc. lose hydrogen 
ions, depending primarily on the solution pH, 
as a result of which the surface has a net nega-
tive charge. Another mechanism by which natu-
rally occuring clays may acquire net charges is 
through isomorphic substitution where ions with 
a certain valency, e.g.  Al+3 is replaced by an ion 
with a lower valency, e.g.  Ca+2, thereby rendering 
the wall negatively charged88. Similarly another 
mechanism of substrate charging is specific ion 
adsorption88–93. In this, the silica/glass based 
substrates may adsorb hydrogen ions to the sur-
face (or lose the ions, depending on the pH) to 
achieve a net negative charge.

The charge at the wall consequently affects 
the distribution of ions in the aqueous solu-
tion, especially in the vicinity of the wall94, 95. 
To understand this, let us consider the situation 
where there is no flow. If we consider the walls to 
possess a net negative charge, then the positively 
charged ions (counterions) are attracted towards 
it. Simultaneously the negatively charged ions 
(coions) are repelled by the wall. Therefore, the 
region near the wall has an excess of counterions. 
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Besides being attracted by the wall, there is ther-
mal motion for each of the particle which causes 
the ions to wiggle around continuously instead 
of forming a single stacked layer on the charged 
wall. The sheilding of the wall by the coions is 
such that as we move away from the wall the con-
ditions of the bulk are reached, i.e. the number of 
counterions and coions becomes equal far from 
the bulk. Thus, there is a region near the wall 
having a net charge. The thickness of the layer 
depends on the concentration of the aqueous 
solution. This layer is called as the electrical dou-
ble layer (EDL)4, 5, 94, 95. The original idea of such 
a sheilding was put forth by Helmholtz at a time 
when statistical mechanics was not developed. 
Consequently the idea was that the charge at the 
wall is screened by the counterions from the bulk 
in the form of a single layer. This was the idea of a 
molecular capacitor. The thermal agitation inher-
ent for all systems causes such a condensed image 
to become diffuse. The idea behind the electri-
cal double layer is represented in Fig. 1.The elec-
trostatic attraction (or repulsion) of ions when 
combined with the concept of thermodynamic 
equilibrium defines a Boltzmann distribution of 
ions such that we have94, 95:

where n+ and n− define the ionic concentrations 
of the cations and anions respectively, n = n0 rep-
resents the concentration which corresponds to 
the zero potential (far from the surface), z+ and 
z− represent the valency of the ions, e represents 
the electronic charge, kB represents the Boltz-
mann constant, and T represents the absolute 
temperature. In order to simplify the situation 
let us consider a z:z symmetric electrolyte (for 

(1)n± = n0 exp

(−z±eζ

kBT

)

,

example, NaCl) such that z+ = z , z− = −z allow-
ing us to write the above distribution as94, 95:

In order to find out the distribution of the poten-
tial we make use of Gauss’ law (see appendix) to 
write

where ǫ = ǫ0ǫ (see appendix) represents the per-
mittivity of the medium. Note that the above 
equation is written for the situation where the 
ionic distributions are in equilibrium. This 
implies that there is no flow taking place. In the 
presence of a flow, we must appropriately account 
for the effect of the flow by solving completely for 
the ionic transport equation with due regard to 
the fluxes caused by flow, diffusion, and electro-
migration. This will be discussed later. For a one 
dimensional planar system with uniform surface 
properties and the Poisson–Boltzmann distribu-
tion may be written as94, 95:

The above equation governs the potential distri-
bution in the fluid, ψ . The boundary conditions 
are that at y = 0 , ψ = ζ while at y → ∞ , ψ = 0.

In order to gain some insight into the equa-
tion, we may linearize the sinh term to obtain the 
linearized Poisson–Boltzmann equation11, 94–96:

which may be further simplified by taking a 
dimensionless electric potential, ψ = zeψ/kBT  
and the channel half-height, H, to be the charac-
teristic length to obtain

(2)n± = n0 exp

(∓zeζ

kBT

)

.

(3)ǫ∇2ψ = −ρe,f = −(z+en+ + z−en−),

(4)ǫ
d2ψ

dy2
= 2n0ze sinh

(

zeψ

kBT

)

(5)d2ψ

dy2
= 2n0z

2e2

ǫkBT
ψ

(a) (b) (c)

Figure 1: a Physical situation in the vicinity of the wall. The charged substrated attracts more counterions 
(red spheres) near the wall and repels cooins away from the wall. b The relative attraction of counterions 
and coions is schematically shown for a negatively charged wall for the case where the concentration of 
both the species tends to the bulk concentration of n0 . c The potential at the charged surface is effectively 
screened by the charges due to which the potential varies with the distance into the bulk. The potential at 
the interface of the first immobile layer (where the ions are held firmly to the surface) and the diffuse layer 
is called as the zeta potential, ζ . For all practical interest, it is enough to specify the zeta potential at the 
surface.
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where κ−1 =
√

ǫkBT
2n0z2e2

 represents the inverse of 

the characteristic thickness of the EDL94, 95, signi-
fying the relative penetration depth of the effect 
of the potential of the wall into the bulk. It is 
interesting to note that the thickness of the EDL 
is smaller for a larger bulk concentration. The 
solution for the above linearized equation yields 
the solution for the electric potential away from 
a wall as11:

Moreover for the case of channels having nar-
rower confinements such that the centerline 
is not very far from the wall, the above solu-
tion for the electric potential may be appropri-
ately adapted with the following conditions. The 
boundary condition at the wall is still the zeta 
potential while the boundary condition at infinity 
must now be replaced by a symmetry boundary 
condition at the channel centerline. This implies 
that ψ(H) = ζ and ψy(0) = 0 , where the center-
line is considered to be at y = 0 and the wall is 
considered to be at y = H . Using these boundary 
conditions the solution for the electric potential 
in a channel with the coordinate axis at the cen-
terline as7, 96:

Below, we note the approximations in the analysis 
and how those can be overcome.

2.1.1  Point Sized Ions
Working in the continuum framework, we have 
assumed the fields of the ionic density as being 
continuous. However, in the vicinity of the wall, 
the concentration of counterions is significantly 
large, that too in a small volume (this is especially 
true for situations with a thin EDL). Physically, 
however, there cannot be an arbitrarily high con-
centration of ions near the wall. The limit on the 
maximum ionic density in the vicinity of the wall 
occurs due to the fact that in reality ions are finite 
sized94, 95, 97. In fact the ionic size is amplified by a 
solvation radius of the ions. To account for this, 
one must introduce a steric factor, ν = 2n0a

3
ion , 

where n0 represents the bulk concentration, and 
aion represents the size of the ion. Let us briefly 

(6)d2ψ

dy2
= κ2H2ψ = κ2ψ ,

(7)ψ = ζ exp
(

−κy
)

,

(8)n± = n0 exp(∓ψ)

(9)
ψ = ζ

cosh κy

cosh κH
; ψ = ζ

cosh κy

cosh κ

outline the strategy to obtain the ionic distribu-
tion by accounting for the finite volume occu-
pancy of ions instead of assuming them to be 
point sized ions.

The free energy of a system is comprised of 
contributions from the electrostatic self energy, 
the chemical potential of the ions, and the 
entropic contributions from the various species. 
Mathematically, this may be written as94, 95, 98, 99:

The variational minimization of the above with 
respect to the electric potential, ψ , yields the 
standard Poisson equation. The variational deriv-
ative of the free energy with respect to the ionic 
densities leads to to the modified Boltzmann dis-
tribution94, 95, 98, 99:

2.1.2  Constant Permittivity
In the standard model the permittivity of the 
medium is assumed to be the permittivity of 
water. However, if we consider the physical scn-
eario painted by Eq. (8) we see that the electric 
field in the vicinity of the wall is rather large. An 
approximate estimate of the electric field near the 
wall is given by ζκ where ζ ≈ 0.25 V and κ ≈ 10 
nm. In this case the water dipoles in the vicinity 
of the walls tend to be oriented along the wall 
instead of being randomly oriented100–104. In the 
bulk region away from the wall, there are enough 
ions which have shielded the wall, thus allowing 
the water molecules to be randomly oriented. The 
constrained orientation of water dipoles near the 
wall leads to the drastic fall in the permittivity in 
the region near the wall. The decreased permit-
tivity is also partially attributed to the decrease 
in the water concentration due to the preferren-
tial attraction of counterions near the wall and 
an expulsion of water away from the wall. Based 
on the original model by Booth, the relative per-
mittivity decreases in regions of high electric field 
(since high electric fields orient dipoles). The 
functional relationship between the permittivity 
and the magnitude of the electric field strength, 
|dψ/dy| is given by102:

(10)

F =
∫

[

− ǫ

2
|∇(ψ)|2 + eψ(z+n+ − z−n−)

]

dV

+ kBT

a
3
ion

∫

[

n+a3ion ln(n+a
3
ion

+ n−a3ion ln(n−a
3
ion

)

+ (1− n+a3ion − n−a3ion) ln(n+a
3
ion

]

dV

(11)n± =
n0 exp

(

∓ zeψ
kBT

)

1+ 2ν sinh2
(

zeψ
kBT

)
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where A is defined as the solvent polarization 
number given by 5 νd

eL (n
2
ri + 2) where νd repre-

sents the dipole moment of water, nri represents 
the refractive index of water, e represents the elec-
tronic charge, and L represents the system length-
scale. The timescale of atomic polarization and 
orientational polarization ( O(10−15 − 10−18) s 
and O(10−11) s, respectively) is much faster than 
the typical timescales of applied frequencies 
(which may be as fast as 10−9s). In such cases the 
influence of the rapidly changing electric field on 
the magnitude of the permittivity is solely mani-
fested through the instantaneous variations in the 
electric field.

The two simplifying assumptions are valid 
for cases where the ionic concentrations are 
low. A low concentration implies that the EDL 
thickness is large. A low concentration is leads 
to a smaller steric factor, ν = 2n0a

3
ion . Addition-

ally the thicker EDL leads to a gentler gradient 
inside the EDL (the field strength is proportional 
to ζκ . Therefore, while accounting for systems 
with larger ionic concentrations, it is worth tak-
ing into account the aforementioned effects into 
consideration.

2.2  Electroosmosis and Streaming 
Potential

The development of the EDL on various sub-
strates mentioened above has significant impact 
on the processes which involve fluid flow of aque-
ous solutions over such surfaces. Most impor-
tantly, the fact that there is a region near the 
substrate surface possessing a net charge leads 
to the direct conclusion that an external electric 
field may cause motion in the ions. The presence 
of net charge in the region of fluid also leads to a 
net body force acting on the fluid—thereby caus-
ing or altering the fluid flow11, 82. The fluid flow in 
return is able to alter the ionic transport through 
advection. In order to understand the complex 
interplay of ionic distribution, ionic transport, 
and fluid flow, we must first look into the various 
fluxes that the ion can encounter.

(12)

ǫr

ǫr,0
= n2ri
ǫr,0

+
�

1− n2ri
ǫr,0

�





3

A
�

�

�

dψ
dy

�

�

�





×



coth

�

A

�

�

�

�

dψ

dy

�

�

�

�

�

− 1

A
�

�

�

dψ
dy

�

�

�



,

2.2.1  Advection–Diffusion–Electromigration 
Equation

The mass flux of a system in general is given by the 
density of the particular species multiplied by the 
velocity of the species. Thus, Ji = nivi

82, 105. The 
velocity of the species in such a case is comprised 
of the background convection velocity and contri-
bution from other effective fluxes. Thus, the flux 
may be split as94, 95: Ji = ρiui + ni(vi − ui) , where 
the latter term is regarded as the density multi-
plied by the drift velocity. The drift velocity for an 
uncharged species is comprised of a diffusion flux 
due to the gradients in concentrations. The dif-
fusive component of the flux may be represented 
as94, 95: Jd = −D∇ni . Besides the advective and dif-
fusive flux, there exists a flux of species which are 
acted upon by various external fields. For the case 
of an electric field, there is a electromigrative flux 
which may be understood as follows. The force act-
ing on an ion is given by the electric field multiplied 
by its own charge.This leads to a net migration. In 
the absence of any viscous forces, the charge would 
accelerate. But at equilibrium, there is a balance of 
the two forces. In general such fluxes are defined in 
terms of the mobility, defined as94: ωi = vemi /Fext . 
Therefore, the electromigrative flux of a species is 
given by95, 106 Jem = niωiFext . The transport of ions 
of an aqueous electrolyte are governed by three 
kinds of fluxes as explained below106.

The specification of the mobility may be done 
in the following way: At equilibrium, the forces 
acting on an ion moving through a liquid are 
given by zeE = 6πηaionv where η is the viscos-
ity of the solvent. Upon rearranging we obtain 
ω = v/F = 1

6πηaion
107, 108. However, using the 

ideas of random walks and its connection with 
diffusion coefficients, Einstein proposed the 
relationship (also known as the Nernst–Einstein 
relationship)106:

using which we can write

where we have utilized the fact that Fext = zeE 
and the fact that the electric field may be repre-
sented as the gradient of a potential as E = −∇ψ , 

(13)
Ji = ρivi = Ja + Jd + Jem

= ρiui − Di∇ni + niωiFext

(14)ωi =
Di

kBT

(15)
Ji = ρiui − Di∇ni + ni

Di

kBT
Fext

= ρiui − Di∇ni − ni
Dize

kBT
∇ψ
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where ψ represents the potential. With this notion 
of the ionic flux, we can define the conserva-
tion of flux at steady state with no reactions as 
∇ · Ji = 0 . The current density corresponding to 
the mass flux due to the ith species is defined as 
zieJi (Fig. 2).

2.2.2  Electroosmosis
The action of electric fields on ions leads to a 
preferrential movement in the solvent liquid as 
discussed above (see Fig. 2 for a schematic rep-
resentation). However, the EDL leads to an accu-
mulation of a preferrential charge in the vicinity 
of the wall and thus there is a net charge near the 
wall. Far from the wall, the total charge in a rep-
resentative control volume will be zero. Because 
of this, there is no net effect of the action of the 
electric field. The positive flux of one kind of ions 
due to the action of the electric field is exactly 
balanced by the negative flux due to the action of 
the electric field on the other kinds of ions; this 
fact along with the net electroneutrality condition 
leads to a net zero flux in the bulk. Near the wall, 
however, the net charge is ρe = e(z+n+ + z−n−) . 
Upon the assumption of the Boltzmann distribu-
tion (Eq. (2)) and a z : z symmetric electrolyte we 
obtain

The above consideration yields the total charge 
density in a channel as94, 95:

(16)ρe = zeno

(

exp

(

− zeψ

kBT

)

− exp

(

zeψ

kBT

))

.

In electrophoresis there is an electric field applied 
in the longitudinal direction as well. Due to the 
orthogonal direction and slender nature of the 
channels, it is fair to assume that the longitudinal 
electric field does not lead to a temporal change 
in the ionic distribution (despite the fact that 
the ions are moving). This is same as assuming 
an x-invariance in the channel. Thus, the above 
charge density is maintained in the channel.

For solving for the fluid flow, we utilize the 
fact that flows in such channels are essentially 
inertia free. Therefore the governing equation for 
the fluid flow in the longitudinal direction may 
be written as7, 82, 105, 109:

which for a simple two dimensional flow, the 
momentum equation along the channel (x-direc-
tion) may be written as110:

where Ex represents the magnitude of the applied 
electric field along the channel. The effect of grav-
ity is typically neglected in such analysis as can be 
found out from a simple order of magnitude cal-
culation. Utilizing the expression for the charge 
density derived above the x-momentum equation 
may be modified to be written as110:

(17)ρe = −2zen0 sinh

(

zeψ

kBT

)

.

(18)0 = −∇p+ η∇2v + ρeE

(19)0 = −∂p

∂x
+ η

∂2u

∂y2
+ ρeEx

Figure 2: Schematic depiction of the electroosmotic flow in a narrow confinement. The channel walls 
have negative charge, which leads to the development of a positively charged electrical double layer 
(EDLs) close to the wall. These charges tend to reach equilibrium and obey the Boltzmann distribution, as 
discussed in (2). If an external electric field is applied, the EDL as a whole experiences a net force (here) 
in the positive axial direction. This eventually manifests as a net body force on the fluid. In absence of 
any opposing force, the fluid would thus start flowing in the positive x-direction. This phenomena is called 
Electroosmotic flow and the resulting velocity profile for a typical uniform surface charge has been shown 
in the figure.
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The above equation may be integrated twice 
under the assumption that the pressure gradient 
is constant to obtain the velocity as110:

where we have used the no slip and symmetry 
boundary conditions for the x-component of 
the velocity, i.e. u(H) = 0 and uy(0) = 0 . The 
first term depicts the classical Poiseuille compo-
nent of the flow and the second term depicts the 
velocity due to the electroosmotic component. It 
is clear that if the length of the EDL is very thin, 
then the electroosmotic component of the veloc-
ity changes rapidly only near the wall. In the bulk, 
where y ≈ 0 the value cosh κy/ cosh κH tends to 
become zero as κH → ∞ , which is true for large 
H or large κ (which implies thin EDL).

The idea of driving flows electrically has been 
exploited in recent times to achieve good mix-
ing111. This has been made possible by utiliz-
ing patterned electrodes. Moreoever, the idea 
has been applied to drive a net flow solely by 
the action of AC fields by achieving a break in 
symmetry through unequally sized electrodes. 
Boy and Storey112 have analyzed numerically 
the influence of time periodic electric fields on 
triggering instabilities in an otherwise stable 
configuration.

2.2.3  Streaming Potential
In the electrokinetic phenomenon discussed 
above the prime mover for the flow was the appli-
cation of the electric field. However, we may ask 
ourselves the question that can a pressure driven 
flow for the case of a net charged fluid (due to the 
EDL) lead to the development of an electric field? 
The pressure driven flow causes the net advec-
tion of ions in the downstream direction. The fact 
that there is a preferrential counterion charge in 
the vicinity of the wall leads to the advection of a 
net charge. The advection of a net charge is iden-
tified as the component of the ionic flux due to 
the velocity field, i.e. the advective flux. The cur-
rent associated with the advection of these ions is 
also referred to as a streaming current. However, 
we cannot have a system in which there is a cur-
rent in the absence of any electric field. In order 
to have a net zero current, there is an electric field 
induced along the length of the channel. This is 
called as the streaming potential, since the genesis 

(20)0 = −∂p

∂x
+ η

∂2u

∂y2
− ǫ

∂2ψ

∂y2
Ex.

(21)

u = −∂p

∂x

h2

2η

[

1−
( y

H

)2
]

− ǫExζ

η

[

1− cosh κy

cosh κH

]

,

of this potential lies in the streaming of ions38, 40, 

102, 110. The developed potential at the ends of the 
channel leads to a conduction current through 
the system. This is essentially the electromigrative 
flux of the system. The diffusive flux is neglected 
in the process because the concentrations in the 
reservoirs are equal and we expect no such flux 
driving ions across the channel. A conceptual 
representation of Streaming Potential generated 
from a pressure driven flow has been depicted in 
Fig. 3.

The starting point of the analysis is with the 
solution for electroosmosis. For convenience, we 
rewrite it here17:

where Es represents the yet unknown stream-
ing potential. The total ionic current, as per the 
discussion above, is zero. When we disregard 
the diffusive flux, we have for a z:z symmetric 
electrolyte:

which upon substitution of the velocity field and 
integrating over the channel may be written as17:

3  Electrohydrodynamics
Electrohydrodynamics (EHD) is a more general 
class of phenomena, which encompasses Electro-
kinetics as a special case. Since we have already 
discussed electrokinetic flows in details in the 
previous section, here we would focus our atten-
tion on a separate class of creeping electrohy-
drodynamic flows, actuated by external electric 
fields, which do not necessarily depend on the 
formation of EDLs and thus can generate flows 
even in poorly conducting fluids46, 106, 113. Much 
of the investigations on EHD flows stem from the 
early work of Taylor and Melcher, who studied 
electric field driven motion of very poorly con-
ducting fluids. Aptly named “The Leaky Dielec-
tric Model”, Taylor’s theory deals with multiphase 
flows, involving fluids with distinct permit-
tivities and conductivities. The motion is actu-
ated because of Maxwell’s Stresses acting at the 
interface between the fluids, where a net charge 
accumulation occurs because of the permittiv-
ity differences between the fluids46, 114. Note that 

(22)u = −∂p

∂x

H2

2η

(

1− y2

H2

)

− ǫζEs

η

(

1− ψ

ζ

)

,

(23)

iion = zeJion = zeu(n+ − n−)+
z2e2Es

f
(n+ + n−)

(24)

Es =
zen0

∫ H
0

(

− ∂p
∂x

H2

2η

)(

1− y2

H2

)

sinh

(

zeψ
kBT

)

dy

n0z2e2

f

∫ H
0

cosh

(

zeψ
kBT

)

dy+ zen0ǫζ
η

∫ H
0

(

1− ψ
ζ

)

sinh

(

zeψ
kBT

)

dy
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this kind of motion does not need the presence of 
electrical double layer at the interfaces, although 
presence of an interface is necessary for charge 
accumulation and unbalanced Maxwell stresses. 
The rest of the section is arranged in the follow-
ing way: first, we give a brief overview of the gov-
erning equations pertaining to the leaky dielectric 
model46, 114–116. This is followed by its applica-
tions to multiphase systems in order to probe the 
physics of such flows. To this end, we shall first 
discuss EHD motion of liquid droplets46, fol-
lowed by EHD flows near flat interfaces, pertain-
ing to the motion of thin films and superimposed 
fluids70, 117–120.

3.1  The Leaky Dielectric Model
As mentioned earlier, leaky dielectric model often 
deals with multiphase flows, which involves two 
or more fluids, with distinct interfaces. We assume 
that the j-th phase/liquid has viscosity ηj , con-
ductivity σj and permittivity εj . Apart from the 
fluid properties, the flow is mainly governed by 
the following variables: the velocity and pressure 
field in the j-th fluids ( vj , pj ) and the electrostatic 
potentials ( φj ). Typically, the flows are governed 
by Stokes equations along with the incompress-
ible continuity equation. This is because, the fluids 
which exhibit leaky dielectric properties, possesses 
large viscosity and hence their flows are domi-
nated by viscous stresses. For instance, a typical 

leaky dielectric fluid often used in experiments is 
Castor Oil114, has ∼ O(103) times larger viscos-
ity as compared to water114, 121. Therefore, if the 
typical length scales of the flow are in the range of 
∼ 1 mm–1 cm , the flow can be characterized as 
creeping motion. On the other hand, the potential 
φj varies such that the net current is conserved eve-
rywhere in the domain. At the interfaces, the usual 
no-slip, kinematic, tangential stress and normal 
stress conditions are applied for the velocity, while 
the potential remains continuous and the jump in 
the electric field results in net charge accumula-
tion therein. This interfacial charge in turn is gov-
erned by a separate surface conservation equation. 
We now express the physical paradigms described 
above in compact mathematical forms. To this end, 
we note that the fluid flow is governed by the fol-
lowing equations, for the j-th fluid114:

The electric field in the j-th fluid is given by 
Ej = −∇φj , while the resulting current is 
Ij = σjEj , according to Ohm’s law46, 114. In the 
absence of any net charge in the fluids, the con-
servation of current thus leads to: ∇ · Ij = 0 . 
Assuming the conductivities in both the fluids to 
remain constant, this leads to the following equa-
tion for the potential:

(25)ηj∇2vj −∇pj = 0; and ∇ · vj = 0.

(26)∇2φj = 0.

Figure 3: Schematic depiction of the physical situation leading to the generation of Streaming Potential. 
A channel with charged wall naturally develops electrical double layers (EDLs) around it as shown in the 
figure. Now, if a mechanical flow is actuated in the channel, for instance with an applied pressure gradi-
ent, it drives a current along the axial direction in the channel. For instance here, a current flows in the 
positive x-direction. This current is often termed as the “Streaming Current” and it leads to an effective 
(or, conceptual) accumulation of charge at the ends of the channel. For example, since here the current is 
positive, it would lead to the effective (or, conceptual) accumulation of positive charge downstream. This 
accumulated charge creates an electric field of its own, which counteracts the Streaming Current and 
tries to make the net current at every cross section 0, in order to maintain electroneutrality. This induced 
electric field is called “Streaming Electric field” and the resulting electric potential is called the “Streaming 
Potential”.
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The above equations must be complemented 
with appropriate boundary conditions. Usually, at 
the boundaries of the fluid domain (these might 
be solid boundaries as well), the values of poten-
tial and the velocity components are specified. 
For instance, at a solid boundary located at xs , we 
can enforce no-slip, no-penetration condition as 
follows122: vj = 0 at x = xs , while the potential 
usually has a specified value at the solid bounda-
ries: φ(xs) = φ0 . However, the most important 
boundary conditions for leaky dielectric models 
are perhaps applied at the fluid-fluid interface, 
since the motion is essentially actuated by the 
stresses at the interfaces. To this end, we shall con-
sider a generic interface between fluids 1 and 2, 
as shown schematically in Fig. 4. This interface is 
described by the equation: F ≡ z − h(x, y, t) = 0 
and the surface normal at a given point on the 
interface reads: n̂ = ∇F/�∇F� . Here we have 
chosen a Cartesian description of the interface, 
although the same description also remains valid 
for other coordinate systems as well.

At the interface, four conditions need to be 
applied, which govern the motion of the fluids. 
Two additional conditions governing the spa-
tio-temporal evolution of the potential are also 
required to complete the description. The four 
boundary conditions governing the fluid motion 
are as follows:

(a) The kinematic condition:

(b) The no-slip condition:

(27)
DF

Dt
= 0

(28)
(

δ − n̂n̂
)

· (v1 − v2) = 0

(c) The stress balance across the interface:

In the above, δ is the identity matrix, γ is the sur-
face tension and ∇s is the surface gradient opera-
tor, expressed as: ∇s =

(

δ − n̂n̂
)

·∇ . All of the 
above conditions are satisfied at z = h(x, y, t) . 
The quantities τ j are the total stresses in the fluid, 
which are expressed as follows:

In the above, τ (m)
j = −pjδ + ηj

[

∇vj +
(

∇vj
)T

]

 
is the hydrodynamic (or, mechanical) stresses 
and τ (e)j = εjEjEj − 1

2εj
(

Ej · Ej

)

δ is the electri-
cal stresses, also known as the Maxwell stresses 
(see Appendix-A for a detailed derivation). The 
imbalance in the electrical stresses in fluids 1 
and 2, as attributable to their permitivitty differ-
ences, naturally gives rise to a net flow through 
the boundary condition (29). The potential, on 
the other hand satisfies the following conditions 
at the interface46, 114: (a) Continuity in Potential:

(b) Jump in electric field:

Once again, the above equations are applied at 
z = h(x, y, t) . In (33), qs is the net charge per unit 
area at the fluid-fluid interface. This is a-priori 

(29)(τ 1 − τ 2) · n̂ = γ
(

∇ · n̂
)

n̂ −∇sγ

(30)τ j = τ
(m)
j + τ

(e)
j

(31)
= −pjδ + ηj

[

∇vj +
(

∇vj
)T

]

+ εjEjEj −
1

2
εj
(

Ej · Ej

)

δ

(32)φ1 = φ2.

(33)(ε1∇φ1 − ε2∇φ2) · n̂ = −qs.

Figure 4: Shows a schematic depiction of a generic interface between fluids 1 and 2. The unit normal 
and the height of the interface from a given plane have been depicted in the figure. Owing to the appli-
cation of electric field and the permitivitty differences between the fluids 1 and 2, there would be some 
accumulated charge at the interface, as shown in the figure. Here we have chosen a Cartesian coordinate 
system to describe the interface, although any other convenient coordinate systems might also be chosen 
to best suit a given scenario.
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unknown and must be determined from a gov-
erning equation of its own. To this end, we arrive 
at the interfacial charge transport equation, 
which only applies to motion of charge along the 
interface. This equation can be expressed as fol-
lows113, 114: At z = h(x, y, t):

In the above equation, vs is the velocity tan-
gential to the interface, which is expressed as: 
vs =

(

δ − n̂n̂
)

· v , evaluated at z = h(x, y, t) . The 
above equation basically states that the interfacial 
charge can show spatio-temporal variation owing 
to current flow from the bulk of the fluid towards 
the interface. A very important non-dimensional 
number coming out of (34) is Ree = εcvc/acσc , 
where ξc is the characteristic value of the quan-
tity ξ . Ree is often called the Electrical Reynolds 
Number121, which can be very small for creep-
ing motion and for fluids with low electrical 
permitivitty. If, Ree ≪ 1 , the LHS in (34) can 
be dropped entirely and the charge conserva-
tion equation is essentially replaced by continu-
ity of current across the interface, which may be 
expressed as follows46: (σ1∇φ1 − σ2∇φ2) · n̂ = 0 
at z = h(x, y, t) . Equations (25) and (26), subject 
to conditions (27)–(33) and (34) complete the 
mathematical description of the leaky dielectric 
model. We shall now move on to some of the 
most prominent applications of the leaky dielec-
tric model discussed herein.

(34)
∂qs

∂t
+∇s · (vsqs) = (σ1∇φ1 − σ2∇φ2) · n̂.

3.2  Electrohydrodynamics of Drops
One of the most classical applications of the leaky 
dielectric model is to study EHD motion, migra-
tion and deformation of dielectric liquid drop-
lets in another immiscible dielectric fluid106. We 
present a brief overview of such phenomena in 
this section. The rest of the section is arranged 
as follows: first we would consider the simplest 
kind of EHD flows ignoring the effects of charge 
convection. Subsequently, we will look into some 
important previous studies, which accounted 
for interfacial charge convection in studying the 
EHD flows around the droplets. Finally, we shall 
review studies exploring the effects of other exter-
nal entities (such as surfactants) on EHD flows 
around dielectric droplets. A representative sche-
matic of a deformed droplet under the action 
of externally imposed field has been depicted in 
Fig. 5.

3.2.1  Mechanics Without Charge Convection
One of the earliest studies on EHD flows dates 
back to123, who theoretically investigated the 
deformation of a poorly conducting droplet in 
another dielectric liquid, subject to EHD motion 
and subsequently compared the theoretical 
results to the experimental observations of124, 

125. Taylor studied the deformation of a dielec-
tric droplet, originally spherical of radius a in 
the presence of a steady uniform electric field 
( E0 ) applied in the background (see Fig. 5 for a 

Figure 5: Deformation of an initially spherical drop into a prolate shape occurs when the system is acted 
upon by an electric field. Here, the electric field is pointing upwards. The polar accumulation of charges 
(a consequence of the leaky dielectric model) leads to the elongation. The electric tangential stresses are 
balanced by the hydrodynamic stress, thus leading to a net flow both inside and outside the droplet. Inter-
estingly, the nature of deformation depends not just on the strength of the electric field but the relative 
ratios of the conductivities and permittivities of the two fluids.
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schematic depiction). Following the notation of 
the previous section, the droplet phase will be 
denoted as liquid-2 and the outer fluid would be 
called fluid-1. Taylor used the governing equa-
tions discussed in the previous section along with 
the assumptions Ree ≪ 1 and small deformation, 
to deduce the flow and the electric field around 
the droplet. The electrostatic potential was shown 
to be of the form46:

Here, R = σ2/σ1 , θ is the polar angle and r is the 
distance from the origin in spherical coordinate, 
the origin being at the center of the droplet. The 
background electric field is aligned with the posi-
tive z-axis. The resulting velocity field was solved 
using the Stream Function approach, subject to 
the proper interfacial conditions as outlined in 
the previous section. The stream functions were 
shown to be of the form46:

The constants A, B, C and D all have the dimen-
sions of velocity. Using the normal stress condi-
tion, Taylor showed that the deformation of the 
droplet (assuming the deformation to remain 
small) can be analytically expressed as follows46, 106:

In the above, D is the deformation, defined as 
ratio of the length of the droplet parallel to the 
applied field ( ℓ‖ ) and the length perpendicular to 
the same ( ℓ⊥ ). The factor � is expressed as46, 106:

(35)φ1 = E0 cos θ

(

r + 1− R

2+ R
· a

3

r2

)

,

(36)φ2 =
3E0r cos θ

2+ R
.

(37)ψ1 =
(

Aa4

r2
+ Ba2

)

sin2 θ cos θ ,

(38)ψ2 =

(

Cr3

a
+

Dr5

a3

)

sin
2 θ cos θ .

(39)D = ℓ�
ℓ⊥

= 9

16

aε1E
2
0

γ
�.

(40)� = S(R2 + 1)− 2+ 3(SR− 1)
2M + 3

5(M + 1)

Here, S = ε1/ε2 and M = η1/η2 . The above 
expression shows that the droplet becomes pro-
late if � > 1 , while oblate shape is achieved when 
� < 1 . Taylor’s theory successfully predicted 
the qualitative nature of deformation for a large 
number of observations in Allan and Mason’s 
experiments.

Taylor’s analysis essentially sheds light on the 
fact that even the slightest amount of conduc-
tivity in a liquid can drastically alter the behav-
ior of a droplet of that liquid in the presence of 
an electric field. This can be attributable to the 
fact that even a very small conductivity would 
also drive a current in the fluid, which would 
eventually lead to net free charge accumula-
tion at the interface. This charge accumulation 
would in turn lead to a jump in the electric field 
across the interface, as per Eq. (33), which would 
finally lead to imbalance in the Maxwell stresses 
across the interface, hence giving rise to fluid 
motion. This is the most fundamental mecha-
nism behind the flow dynamics of a large num-
ber of EHD phenomena.

Later,64 deduced the deformation of a die-
lectric droplet owing to an applied oscillat-
ing electric field, with undisturbed strength: 
E = E0 cosωt . Their analysis was carried 
out in much the same way as that of Taylor’s. 
Finally, it was shown that the deformation can 
be expressed as: D = DS +DT , where DS is the 
steady deformation of the droplet and DT is the 
oscillating component of the deformation. The 
oscillating component was shown to be of the 
form: DT = Re

{

H∗e2iωt
}

 (here H∗ may be a 
complex quantity), where Re() is the real part 
and i =

√
−1 . It should be noted that the fre-

quency of the oscillation of the deformation is 
twice the frequency of the applied electric field, as 
attributable to the quadratic non-linearity in the 
Maxwell stresses. The steady state deformation 
was derived as:

(41)DS = 9aε1Ē
2
0

16γ
�S

(42)�S = 1− R̄(11�+ 14)+ R̄2[15(�+ 1)+ 9(19�+ 16)] + 15b2ω2(1+ �)(1+ 2Q)

5(1+ �)[(2R̄+ 1)2 + b2ω2(Q + 2)2]
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In the above, Ē0 is the RMS value of the applied 
field, R̄ = R−1, Q = S−1, � = M−1 and 
b = ε1/σ2 . Again, �S > 1 denotes prolate defor-
mation, �S < 1 denotes oblate deformation.

More recently,126 have probed into the tran-
sient deformation of a stationary droplet subject 
to EHD forces, constrained inside a spherical 
confinement of radius ac . To this end, the tem-
poral variations of charge at the interface was 
taken into account, while the effects of charge 
advection were neglected. Mandal et al.126 carried 
out a regular perturbation analysis by assuming 
ζ = Oh−2 ≪ 1 , where Oh is the Ohnesorge num-
ber defined as, Oh = η1/

√
ρ1aγ  , which enabled 

them to omit the temporal component of the 
inertial forces in the Navier–Stokes equations. It 
was shown that the droplet exhibits a transient 
deformation of the following type:

In the above D̄S = 9CaŴ2
R�

∗

16(R̄+2)2
 , where Ca = η1uc/γ 

is the Capillary number and ŴR = R̄+2
(R̄+2)−α3(R̄−1)

 , 

where α = a/ac is the ratio of the droplet radius 
to the radius of the confinement. Further, 
τk = εk/σk , k = 1, 2 are the characteristic time 
constants. The constants �∗, �k ( k = 1, 2, 3 ) 
have complicated expressions and may be found 
in the original paper. Presence of multiple time 
scales in the transient deformation is perhaps the 
most noteworthy feature of the work by Mandal 
et. al., which might, in special circumstances, lead 
to non-monotonic deformation.

3.2.2  Mechanics with Charge Convection
Active charge convection at the interface requires 
one to account for Eq. (34), instead of imposing 
current continuity at the interface. This leads to 
increased non-linearity and coupling in the systems 
of equations, that eventually creates some intrigu-
ing physical effects. One of the standard ways to 
account for charge convection is to apply a simple 
regular perturbation series, with Ree = (εcuc/aσc) , 
i.e., the electrical Reynolds number as the gauge 
function. Physically, this simply means that the 
interfacial advection of the surface charge is weak 
and only slightly changes the potential distributions 
in the fluids. A typical asymptotic expansion for any 
variable (say, ξ ) would look like the following113:

In the above, ξ might represent any variables like 
pk , vk , . . . etc. Further, one might also take into 

(43)

D̄ = ℓ� − ℓ⊥
ℓ� + ℓ⊥

= D̄S

[

1−�1e
−t/τ1 −�2e

−2t/τ2 −�3e
−t/τ2

]

(44)ξ = ξ0 + Reeξ1 + Re2e ξ2 + · · ·

account the deformed interface shape, provided 
the deformation is small enough. Recalling that 
in the regime of creeping flows the deformation 
is proportional to the Capillary number Ca, one 
may employ a dual perturbation series121 using 
both Ree and Ca as gauge functions as follows:

It is very easy to infer that at steady state, the lead-
ing order terms in the above asymptotic expan-
sions would lead to Taylor’s results. Feng113 
showed using numerical simulations as well as 
asymptotic analysis using the form in (44) that 
the most dominant effect of charge advection is 
to transport them from the equator to the poles, 
which increases the free charge density near 
the poles. This eventually weakens the tangen-
tial component of the electric field at the inter-
face and hence hinders the so-called “base” flow 
without charge convection. The overall result 
is that the tangential component of the veloc-
ity at the interface is weakened and the position 
of the peak of this velocity is shifted towards the 
equator. This assertion has been verified through 
both numerical and asymptotic analysis by113. He 
showed that the tangential velocity at the droplet 
interface upto O(Ree) has the following form113:

Here, uc is the characteristic velocity of the prob-

lem, defined as: uc = 9�SR̄−1�ε2γE2

10η2(2+R̄)(M+1)
 , while the 

expressions for the constants β1, β2 , etc. can be 
found in the original paper of Feng113. It should 
be noted that Feng assumed the droplet to remain 
spherical in his analysis. Das and Saintillan127 
have investigated the transient deformation of 
a droplet under uniform applied electric field 
using the leaky dielectric model. They assumed 
Ree ∼ O(1) , while an asymptotic analysis was 

carried out using δ = 3CaE
4(1+2R̄)2

 as the gauge func-

tion, where CaE is the electrical Capillary number 

defined as: CaE = aε1E
2
0

γ
 . As such all the variables 

are expanded like: ξ = ξ0 + δξ1 + δ2ξ2 + · · · , 
where ξ can represent any variable. The deformed 
shape of the droplet is defined as127:

The functions f1, f2 are expressed as:

(45)ξ = ξ0 + Reeξ(1,0) + Caξ(0,1) + Re
2

e ξ(2,0)

+ Ca
2ξ(0,2) + ReeCaξ(1,1) + · · ·

(46)

uθ |r̄=1

uc
=−

{

2(SR̄− 1)

�SR̄− 1�
+ Ree

[

β1 + β2(7 cos
2 θ − 3)

]

}

sin θ cos θ

(47)
F ≡ r̄ − (1+ δf1 + δ2f2 + · · · ) = 0; r̄ = r/a.
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In the above, Pn(µ) is the Legendre Polynomial of 
order n and µ = cos θ , where θ is the polar angle, 
measured from the direction of the applied elec-
tric field. Ordinary differential equations for the 
transient deformation functions f12(t), f22(t) 
etc., can be deduced from the combination of the 
boundary conditions as discussed in the previous 
section. The detailed expressions can be found in 
the original paper by Das and Saintillan127.

More recently,116, using the leaky dielectric 
model have demonstrated that application of trans-
verse electric field relative to an established back-
ground parabolic flow can generate cross-stream 
migration. They considered the motion and defor-
mation of a droplet in a Plane Poiseuille flow in a 
channel of height 2H, with applied axial ( Ez ) as well 
as transverse fields ( Ex ). Both the deformed shape of 
the interface as well as charge advection at the inter-
face have been taken into account in the said analysis 
and an asymptotic expansion of the form given in 
(45) was employed. Mandal et al.116 applied Lamb’s 
general solution128 along with the general method 
outlined by129–132 to evaluate the flow field, droplet 
deformation and droplet migration velocity. It was 
shown that the migration velocity has the form:

The droplet shape was of the form:

The functions fij may be expressed in terms of 
spherical harmonics as follows:

In the above, Pm
n (µ) are associated Legendre poly-

nomials of degree n and m and ϕ is the azimuthal 
angle. The droplet migration velocities were 
shown to have the following expressions:

(48)f1 = f12(t)P2(µ)

(49)f2 = −1

5
f 212(t)+ f22(t)P2(µ)+ f24(t)P4(µ)

(50)
Ud = U

(0,0)
d + ReeU

(1,0)
d + CaU

(0,1)
d + · · ·

where U
(i,j)
d = U

i,j
d,zez +U

i,j
d,xex

(51)

r̄ = r

a
= 1+ Caf10 + CaReef11 + Ca2f20 + · · ·

(52)

fij =
∞
∑

n=1

n
∑

m=1

[

L
ij
nm cos(mϕ)+ L̂

ij
nm sin(mϕ)

]

Pmn (µ)

(53)U
(0,0)
d,z = k0 +

�

3�+ 2
k2; U

(0,0)
d,x = 0

(54)U
(1,0)
d,z =

6M(R̄− Q)(3R̄− Q + 3)
{

(36�2 + 119�+ 75)E2
x + (8�2 + 42�+ 40)E2

z

}

35(3�+ 2)2(�+ 1)(�+ 4)(R̄+ 2)2(2R̄+ 3)

Here, M = aε1E
2
c

µVc
 , Ec is the char. elec-

tric field, Vc is the char. velocity, 
k0 = 4x̄d(1− x̄d), k2 = −4/H2 , with x̄d = xd/H 
is the position of the droplet centroid with respect 
to the channel centerline. The O(Ca) velocity 
fields can be found in the original paper by116. 
The above expressions clearly demonstrates that 
there is a cross migration of the droplet as a result 
of charge migration on the droplet interface. This 
assertion is confirmed by the fact that the first 
migration velocity appears at O(Ree) . Note that 
the droplet would not migrate in the absence of 
the transverse electric field, i.e., Ex , as outlined 
by the proportionality of the velocity with Ex . 
Deformation of the droplet also leads to cross-
stream migration. The general conclusion from 
the analysis of116 is that a tilted electric field with 
respect to the dominant direction of the flow is 
necessary for cross-stream migration. In another 
work,121 have further shown that similar cross 
stream migration also occurs for vertically set-
tling droplets, under the influence of transverse 
and parallel electric fields. They showed through 
a perturbation analysis that for a settling droplet 
as well, the first cross stream migration comes 
about at O(Ree) . In the same work, they also per-
formed experiments, which verified the theoreti-
cal predictions.

3.2.3  Mechanics with Other External Effects
Ha and Young carried out a number of pioneer-
ing investigations133, 134 on the effects of non-ionic 
surfactants on the deformation and stability of 
conducting as well as non-conducting droplets 
in DC field. They first executed a series of experi-
ments133, where the break-up characteristics 
of droplets with varying degrees of conductiv-
ity and surfactant concentration were studied 
in the presence of external DC field. The results 
showed that even a slight non-uniformity in the 
surfactant concentration can lead to a drastic 
change in the mechanism of droplet break-up. 
For lower surfactant concentrations, break-up 
occurred through the formation of bulbous ends 
giving away to multiple smaller droplets. How-
ever, as the concentration was increased beyond 
a certain level, the bulbous break-up mechanism 
changed to “tip-streaming”, wherein, the ends of 

(55)U
(1,0)

d,x
= 6MExEz(R̄− Q)(3R̄− Q + 3)(2�2 + 63�+ 45)k2

35(3�+ 2)2(�+ 1)(�+ 4)(R̄+ 2)2(2R̄+ 3)
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the droplet became pointy and shot out several 
smaller droplets in the process of breaking up. 
Even higher concentration of surfactants brought 
back the bulbous-end and subsequent break-up 
mechanism prevalent at the lower concentration 
values. The break-up occurred for larger values of 
the Electrical Capillary number, defined as CaE , in 
agreement with previous numerical simulations 
of135. A subsequent theoretical analysis by134 show 
good comparison with the experimental results. 
The main reason of changes in the shape of the 
droplet and its subsequent break-up was attrib-
utable to the change in the surface tension of the 
droplet owing to the flow-driven re-distribution 
of surfactants. More recently114 have developed 
a theoretical model for small deformation and 
nearly spherical droplets as well as for large defor-
mation with prolate droplets using the spheroidal 
coordinate system. Their semi-analytical solu-
tions were compared with existing numerical and 
experimental data, showing good agreement.

We end our discussion on the EHD of drop-
lets with a brief discussion on the recent findings 
by136, wherein the dynamics of a nearly spheri-
cal droplet was considered, in the presence of a 
steady uniform electric field. The droplet as well 
as the suspending phases are assumed to carry 
ionic species, which are adsorbed into the sur-
faces. However, the adsorption from the two 
phases into the surface are different, which leads 
to the presence of a net charge on the interface. 
This interfacial charge eventually leads to the 
formation of electrical double layer (EDL, see 
Sect. 2) around the interface. Schnitzer and Yariv 
considered the EDL to be thin, which indicates, 
� = �D/a ≪ 1 and hence the interface along 
with the EDLs on the either side act as an effective 
interface—the Taylor’s interface. The magnitude 
of the applied electric field was assumed to be low 
to moderate, indicated by eaE0/kT ∼ O(1) . It is 
well known that � ≪ 1 naturally leads to a sin-
gular problem12, 82, 85, 137. The authors probed into 
the resulting dynamics using matched asymp-
totic expansion82, wherein the Poisson–Nernst–
Planck–Navier–Stokes model described in Sect. 2 
was employed. To this end, � was used as the 
gauge function, while the EDLs in both the fluids 
were considered to be the inner layer and the bulk 
fluids were treated as the outer layer. The analysis 
of Schnitzer and Yariv demonstrated that in the 
leading order of � the interfacial charge is com-
pletely screened by the EDL. However, at O(�) , 
there is a charge imbalance when the two EDLs 
and the interface are accounted for together. 
Schnitzer and Yariv argued that this O(�) charge 
in the effective interface gives rise to the surface 

charge qs in the leaky dielectric model. In addi-
tion to this, the authors were also able to dem-
onstrate that using the electrokinetic description 
of the interface and the surrounding EDLs, the 
leaky dielectric equations of Sect. 3.1 can be suc-
cessfully recovered. This analysis thus established 
a strong link between two apparently separate 
branches of electrohydrodynamics. This work of 
Schnitzer and Yariv also verifies the existence of 
a deeper and more fundamental theory under-
neath the leaky dielectric model. In other words, 
the leaky dielectric equations work as effective 
“lumped” first-approximation equations, describ-
ing the Electrohydrodynamic phenomena.

3.3  Electrohydrodynamics of Flat 
Interfaces

Apart from EHD motion of droplets, another 
classic application of the leaky dielectric model 
has been in the realm of thin film dynamics70, 117–

120, 138–147, with flat or nearly flat interfaces. Simi-
lar to the EHD of droplets, studies on EHD of 
films have also investigated the deformation and 
the resulting flow near the interfaces. A key fea-
ture of EHD motion of flat interfaces is that there 
has to be a non-uniformity in the electric field 
applied across or near the flat interface118–120. The 
reason for such requirement can be traced back 
to the boundary conditions outlined in Sect. 3.1. 
Since, here the interfaces are inherently flat, a 
uniform electric field would only cause a pres-
sure jump across the interface, while the fluids 
will stay in equilibrium and the interface would 
remain flat. Therefore, the only way to introduce 
imbalance in the tangential Maxwell stresses 
at the interface is to introduce non-uniformity 
in the electric field itself, which in turn would 
actuate fluid flow and lead to interface deforma-
tion. It is important to note that, for EHD flow 
around droplets, the curvature of the interface 
itself was a source of non-uniformity, which lead 
to imbalances in the Maxwell stresses. One of the 
most widely used ways to achieve the said non-
uniformity is to employ patterned electrodes120, 

138 on surrounding solid walls, while the exter-
nal field acts across the interface. A schematic 
representation of a nearly flat interface confined 
between two parallel plates, under the action of 
externally imposed field has been demonstrated 
in Fig. 6.

Overall, the fundamental mechanism of inter-
face deformation and flow actuation basically 
remains the same as outlined mathematically 
in Sect. 3.1 and described qualitatively in Sects. 
3.2.1 and 3.2.2. In what follows, we would briefly 
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review some of the selected prior studies on EHD 
motion of films and flat interfaces and outline 
their key features.

The pioneering experimental work of138 
demonstrated that thin films can be deformed 
in a controlled way to form pillar like structures 
in the presence of non-uniform electric fields, 
applied through patterned electrodes. Their 
study used polymeric films and showed that the 
pillar-like structures always follow the electrode 
shapes/patterns. More recently, Mandal et. al.146 
have investigated the overall flow dynamics of 
superimposed fluids in a narrow confinement 
and probed into the transient interface deforma-
tion pattern and alterations to the flow dynamics 
caused by it (see Fig. 6 for a schematic depiction). 
In their study, the non-uniformity in the Maxwell 
stresses were provided by actuating an electroos-
motic flow (see Sect. 2) with non-uniform surface 
potential. It can be shown137 that for thin EDLs, 
for electroosmotic flows, the no-slip boundary 
conditions may be replaced with slip velocity 
condition, called the Smoluchowski Slip velocity. 
This slip velocity can be expressed as follows137:

In the above, ζ is the “Zeta Potential” at the solid-
liquid interface and 

(

δ − n̂n̂
)

· E is the tangential 
component of the electric field to the surface, 
while other symbols bear their usual meaning. 
The above condition may be shown12, 148 to be 
valid for arbitrary variations in ζ as well as sur-
face geometry, provided the applied electric field 

(56)v = −
εζ

(

δ − n̂n̂
)

· E
η

, at x = xs.

E and ζ are not asymptotically large. In the afore-
mentioned study of146 assumed a zeta potential of 
the form: ζ(x) = ζ0(n+ cos qx) . It was assumed 
that at the interface between the two fluids, no 
charge accumulation occurs, which allowed the 
authors to apply the boundary condition (33) in 
the following form: (ε1∇φ1 − ε2∇φ2) · n̂ = 0 . 
Approximate analytical solutions were obtained 
using a domain perturbation approach, where an 
expansion similar to (45), albeit only in terms of 
Ca was employed and velocity fields till O(Ca) 
and the resulting deformations till O(Ca2) were 
deduced. Their analytical solutions showed that 
the interface deformation has the following form:

The detailed expressions for the various functions 
can be found in the original paper. Mandal et al. 
showed that the the deformed interface distorts 
the streamlines, which can be extreme for large 
deformations. They also demonstrated that for 
special cases, multiple recirculation rolls might 
appear in the channel, which are otherwise absent 
from such flows. Mandal et al.146 verified their 
analytical results by comparing them to inde-
pendent numerical simulations using the Phase-
field formalism149–151.

(57)h = Cah1 + Ca2h1 + · · ·

(58)

h1 = K1(t) sin(qx); K1(t) = L1(1− e−t/T1);

(59)h2 = K21(t) cos(2qx)+ K22(t) sin(qx)

+ K33(t) cos(qx); etc.

Figure 6: When a stable film (may be thick or thin) is subjected to an electric field, small initial perturba-
tions may lead to charge accumulation and a net unbalanced electric stress. The consequence of this is 
regions of strong undulations. If the field strength is too high then the lower fluid may eventually hit the top 
electrode.
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Usually, formation of re-circulation rolls are a 
common theme of EHD motion near flat inter-
faces, with patterned electric fields. Esmaeeli and 
Reddy120 have recently probed into EHD motion 
of superimposed dielectric fluids in a narrow 
confinement, with a potential φ = φ0 cos(kx) 
applied on the bottom wall. An asymptotic 
analysis similar to the form given in (57) was 
employed, wherein only the leading order velocity 
field and the O(Ca) deformation was determined. 
The effects of the charge convection at the inter-
face was neglected and otherwise the equations 
outlined in Sect. 3.1 were assumed to be valid. 
The solutions were deduced in terms of stream 
function, with ψ for both the fluids satisfying 
∇4ψ = 0 . It can be verified that the stream func-
tion for both the fluids has the following form:

On the other hand, the deformation was shown 
to be of the form:

Note that the frequency of axial variation of the 
interface deformation and the velocity field is 
twice as that of the applied surface potential as 
the leading order electric field. Quite obviously, 
this is attributable to the quadratic non-linearity 
inherent in the Maxwell’s Stresses.

More recently,117 have investigated the dynam-
ics and stability of thin superimposed films in 
narrow confinements subject to potential differ-
ences varying arbitrarily in time. As such, the fol-
lowing description for the applied potential was 
chosen:

The interface was subsequently subject to small 
arbitrary deformation of the form (for a pictorial 
depiction, one may refer to Fig. 6):

Here, k = kxêx + kyêy is the wave vector of the 
disturbance along the channel. Assuming the sur-
face deformation to be small, one can carry out 
a regular perturbation (domain perturbation) 
analysis taking ξ̂ as the gauge function. As such, 

(60)
ψk =[

(

C1 + C2y
)

cosh(2qy)+
(

C3 + C4y
)

sinh(2qy)] cos(2qx); k = 1, 2.

(61)h1 = a0 cos(2qx)

(62)φ = ±V (t) at the wall: z = h1, h2

(63)V (t) =
∞
∑

n=0

βn cos(nt)+
∞
∑

n=1

γn sin(nt)

(64)F ≡ z − ξ(x, y, t) = 0

(65)ξ(x, y, t) = ξ̂ (t) sin k · x

the potential would have an expansion of the 
form:

The other relevant variables (such as velocity, 
pressure etc.) might also be expanded in a similar 
manner. The governing equations and the bound-
ary conditions remain the same as outlined in 
Sect. 3.1. In the leading order, the fluid is station-
ary and the potential would vary linearly between 
the electrodes. However, at O(ξ̂ ) , the perturba-
tions to the interface shape leads to an imbalance 
in the Maxwell stresses across the interface, which 
naturally leads to a flow in the confinement. This 
flow and the original interface deformation can 
be represented with the help of normal modes as 
follows:

[117] used the above forms of the disturbance 
functions and converted the differential equa-
tions governing the evolution of ξ̂ and ŵl into 
an eigen value problem for s using the Floquet 
theory152. We can easily infer that s > 0 would 
indicate instability, while s < 0 would lead to 
either marginally or neutrally stable states. A key 
conclusion from the analysis of Bandopadhyay 
and Hardt is that the presence of viscous fluids 
and confinement generally dampens the unsta-
ble growing modes. In addition, they also showed 
that the presence of viscous dissipation gener-
ally shifts the critical Mason Number (defined 

as Ma = ε1V
2
ref

η1ωh
2
1

 , Vref  is the char. applied poten-

tial, ω is the char. time scale of variation of the 
applied voltage) required for instigating instabil-
ity towards a larger value. Their analysis has also 
revealed that the system becomes particularly 
sensitive to the distance between the electrodes as 
the viscous forces grow stronger.

4  Looking Ahead
A detailed account of the fundamental principles 
governing electrokinetics and the leaky dielectric 
models have been presented here. We have also 
discussed a number of prominent previous stud-
ies, which outline various interesting facets of the 

(66)φ = φ0 + ξ̂φ1 + O(ξ̂2)

(67)(wl , ξ) =
(

ŵl(z, t), ξ̂ (t)
)

sin k · x

(68)ŵl(z, t) = e(s+iα)t
∞
∑

n=−∞
Wn,l(z)e

int

(69)ξ̂ (t) = e(s+iα)t
∞
∑

n=−∞
Zne

int , l = 1, 2.
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EHD motion in single and multiphase systems. 
We started from the fundamental building blocks 
of charge accumulation near a solid surface lead-
ing to the formation of EDLs. We established that 
in equilibrium the charge density follows the 
Boltzmann distribution, which, upon activating 
an externally applied electric field generates flow 
in the fluid. Several improvements upon the basic 
electrical double layer theory were discussed, 
including the effects of finite sized ions and vari-
able permittivity. We can thus conclude that fluid 
flow is affected quite significnatly by the action of 
electric fields. Analysis of electrokinetics allows 
us to appreciate how microscale flows can be 
manipulated with relative ease by exploiting the 
physicochemical equilibrium between the aque-
ous solution and the channel substrate. Moreo-
ver, we have demonstrated how the flow in the 
absence of any applied electric field can lead to 
the generation of an induced electromotive force 
(EMF), which counteracts the streaming cur-
rent produced by the mechanically driven flow. 
This induced potential (or, EMF) is often termed 
as the streaming potential. A common theme in 
both of the above cases is that the electric field 
acts on net charge densities, usually near an inter-
face (such as the electrical double layer near the 
wall), which gives rise to a net volumetric or 
“Body Force” on the fluid itself. The idea behind 
generation of a voltage by driving flows through 
such narrow confinements may be exploited 
to harvest a fraction of mechanical energy into 
electrical energy which may be utilized to power 
flow-induced low-power electronics and other 
small-scale energy conversion devices20, 41, 43, 

153–155. Recently attention has shifted to func-
tional nano- and microchannels where the walls 
are coated with polyelectrolyte brushes156–161. The 
presence of such brushes leads to several intrigu-
ing physical effects ranging from ion-exclusion 
near the wall to a sharp variations in dielectric 
properties of the fluid157, which may be exploited 
to achieve significant improvements in energy 
harvesting ability of such systems and for detect-
ing analytes157.

Contrary to the above situation, leaky dielec-
tric motion in poorly conducting fluids do not 
require the presence of such an electrical double 
layer123. The resulting unbalanced force is only 
concentrated at the interface rather than being 
spread-out over the volume of the fluid. It thus 
follows that to actuate leaky dielectric motion, 
we must require at least one fluid-fluid interface 
with distinct permittivity on either sides. We sub-
sequently discussed the governing equations and 
established how unbalanced Maxwell Stresses 

can actuate fluid motion through the tagential 
stress balance conditions. The analysis of leaky 
dielectric phenomena reveals how droplets as well 
as flat interfaces may be caused to deviate and 
deform based on pure hydrodynamic effects. The 
mechanism of charge convection at the interface 
adds further complexities to the overall dynamics 
of the fluids by actively displacing charges along 
the interface leading to alterations in the electric 
fields in the process. In essence, the leaky dielec-
tric model demonstrates that the presence of 
even a very small conductivity can lead to dras-
tic changes in the flow dynamics through charge 
accumulation at the interfaces and as such one 
would need to consider the conservation of cur-
rent in order to arrive at a physically consistent 
mathematical model. We have further given over-
views of several previous studies, which showed 
that strong electric fields may be utilized for sort-
ing of droplets based on their conductivity, size, 
or dielectric property. In such cases, it has been 
well established that the influence of dielectro-
phoresis110, 162 (migration in presence of non-
uniform electric fields) may also be effective in 
conjunction of electrophoresis (defined as the 
motion of a charge particle upon applying an 
electric field) to enhance the efficiency and fine 
tuning of the sorting process.

Despite a large number of previous studies on 
the topics discussed herein, there remains a num-
ber of open challenges both in electrokinetics and 
leaky dielectric flows. For instance, electrokinet-
ics near fluid-fluid interfaces are not yet fully 
understood and hence it remains an area of active 
research136. The complete behavior of the full 
Poisson–Nernst–Planck–Navier–Stokes equations 
are also poorly understood for complex systems 
because of the non-linearities involved82. Spatio-
temporal variations in salt and charge concen-
trations with unsteady external forcing and their 
subsequent effect on the overall dynamics of the 
system is still not fully resolved and remains a 
strong area of research163. The interplay between 
other non-electrostatic ineractions (such as the 
Yukawa potential) and the Columbic forces have 
also remained largely unexplored39, 105, 164. On 
the other hand, as regards to the leaky dielectric 
model, although the role of the interfacial stresses 
and the charge dynamics is well established, their 
influence on interfacial instabilities and eventual 
liquid/droplet break-up is not yet fully under-
stood135. Furthermore interactions between 
multiple droplets and their subsequent effect on 
the rheology of a suspension of droplets in the 
presence of uniform and non-uniform electric 
fields are also among the potentially interesting 
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and active research topics114, 165. Many issues in 
the dynamics of thin films in presence of exter-
nal electric fields also remain unresolved. For 
instance effect of electric fields on the rupture of 
dielectric or, poorly conducting films is an attrac-
tive future avenue of research, with potentially 
new physical effects to be unraveled. Finally, we 
hope that the methods described in this work will 
set the tone for future research of fluid flow and 
its subsequent manipulation with electric fields.
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Derivation of Maxwell Stress
The form of the Maxwell stress may be deduced 
by starting with the force acting on a unit volume 
due to the simultaneous action of an electric field, 
E , and a magnetic field, B . The Lorentz force is 
obtained as49

where the former is the total force and the lat-
ter is the force per unit volume. ρe depicts the 
charge density and J represents the amperic flux 
(current). We must now appeal to the Maxwell’s 
laws to relate ρe and J to the fundamental quanti-
ties E and B . Gauss’s law yields ρe = ǫ0∇ · E while 
Ampère’s law yields J = 1

µ0
∇ × B− ǫ0

∂E
∂t  . The 

physical meaning of the above two expressions 
is clear. Gauss’s law indicates that the flux of the 
electric field through a surce is due to the charge 
enclosed by that surface. Ampère’s law indicates 
that the magnetic field around a contour is pro-
portional to the electric current, J , and the dis-
placement current, ∂E/∂t . Thus, we obtain

where we can utilize the identity

along with the Maxwell-Faraday equation 
∇ × E = − ∂B

∂t  to modify equation (72) to yield

(70)Fe = qE+ qv × B

(71)fe = ρeE+ J× B

(72)fe = ǫ0∇ · EE+ 1

µ0
∇ × B× B− ǫ0

∂E

∂t
× B

(73)
∂

∂t
(E× B) = ∂E

∂t
× B+ E× ∂B

∂t

(74)fe = ǫ0(∇ · EE− E×∇ × E)+ 1

µ0
(−B×∇ × B)− ǫ0

∂

∂t
(E× B).

In order to symmetrize the above expression, we 
make use of the Gauss’s law of magnetism which 
asserts us that there are no magnetic monopoles, 
i.e. ∇ · B = 0 . This can then simply be added to 
equation (74) to obtain

upon which further simplification is obtained by 
noting the vector identity E∇E = 1

2∇(|E|2) to yield

When the effects of the magnetic field is neglected 
the above expression may be set in the form of a 
divergence of a tensor form as

where I and δij represent the identity tensor and 
Kronecker delta respectively.

While the above derivation is done for a vol-
ume in vaccum, one can logically extend the same 
to a medium with a permittivity given by ǫ = ǫ0ǫr 
where ǫr represents the relative permittivity. In 
that case the body force may be evaluated by tak-
ing the divergence of the Maxwell stress tensor

For negligible magnetic effects we may assume that 
∇ × E = 0 , i.e. the electric field is irrotatonal. We 
will also make use of the fact that for a medium 
with permittivity ǫ , the Gauss’s law implies that 
∇ · ǫE = ρe,f  , where ρe,f  represents the free charge 
density. Thus we obtain the force as

(75)

fe = ǫ0((∇ · E)E− E×∇ × E)

+ 1

µ0

((∇ · B)B− B×∇ × B)

− ǫ0
∂

∂t
(E× B)

(76)

fe = ǫ0((∇ · E)E+ (E·)E)− 1

2
ǫ0∇|E|2

+ 1

µ0

((∇ · B)B+ (B·)B)− 1

2µ0

∇|B|2

− ǫ0
∂

∂t
(E× B).

(77)

fe = ∇ · τE;

τE = ǫ0E⊗ E− 1

2
ǫ0|E|2I =⇒

τEij = ǫ0EiEj −
1

2
ǫ0EkEkδij

(78)
τE = ǫE⊗ E− 1

2
ǫ|E|2I =⇒ ∇ · τE

= (∇ · ǫE)E + (ǫE · ∇)E− 1

2
∇(ǫE · E)

(79)fe = ρe,f E− 1

2
|E2|∇ǫ
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where we have neglected the additional volumet-
ric body force which is called as the electrostric-
tion force given by

which accounts for the force generated by the 
variation of the permittivity with density. Being a 
gradient of a quantity, this force may be absorbed 
in a modified pressure.

The electric body force described in equation 
(79) is comprised of the force acting due to an 
electric field on a region of net charge while the 
second term represents the body force arising due 
to the spatial inhomogeneity of the permittiv-
ity. Typically, the former effect is responsible for 
electrokinetic phenomena for single phase flows 
while the latter is important for analyzing the 
forces at multiphase interfaces.
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