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Recent Advances in Single Particle Cryo‑electron 
Microscopy and Cryo‑electron Tomography 
to Determine the Structures of Biological 
Macromolecules

1 Introduction
Structural biology is expanding widely due to 
technological advances that developed alongside 
molecular biology during early in the twentieth 
century. Structural biology is capable of solving 
structures to understand the associated function 
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Abstract | A detailed three‑dimensional structure of macromolecular 
assemblies is necessary to understand their function which in turn helps 
to understand life. Cryo‑electron microscopy (cryo‑EM) is a powerful 
method for structural studies of a wide range of different sizes biological 
macromolecules and their complexes. Cryo‑EM has three different imag‑
ing modalities based on specimen and imaging condition: single particle 
analysis (SPA), cryo‑electron tomography (cryo‑ET) plus sub‑tomogram 
averaging (STA)/sub‑volume averaging (SVA) and electron diffraction. 
Richard Henderson and Nigel Unwin revealed the structure of the first 
membrane protein bacteriorhodopsin from electron diffraction data. This 
led to the beginning of understanding molecular structures of biomole‑
cules in three‑dimension. Soon after that, a unique vitrification method of 
biomolecules has been successfully developed by Jacques Dubochet 
more than two decades ago. Ordered 2D array or biomolecules with 
internal symmetry have long been considered for structure determination 
to achieve better resolution. But structure calculation by electron micros‑
copy was at that time known as blobology to others due to low resolution 
(image with less information) compared to X‑ray. Since then imaging and 
software technologies have steadily improved and after 2013, with the 
development and success of direct detectors, the world witnessed a res‑
olution revolution in cryo‑EM. Now cryo‑EM more specifically single par‑
ticle analysis has achieved the resolution at which protein complex can 
be studied at near‑atomic level. This once a highly skilled and difficult 
technique has now become a widely accepted biophysical technique in 
structural biology. Here the two methods of cryo‑EM (SPA and cryo‑ET) 
and recent studies are reviewed.
Keywords: Cryo-electron microscopy, Single particle analysis, Cryo-electron tomography, Sub-
tomogram averaging, Direct detector, Defocus, Resolution, Dose symmetry, Conformational heterogeneity
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and deducing a molecular model. Structural biol-
ogy initially developed based on two techniques: 
X-ray crystallography and nuclear magnetic res-
onance (NMR). At the same time ultrastructure 
analysis of cells and tissues using electron micros-
copy was flourishing in the field of cell biology. 
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Vitrification: It is a cryo-
preservation method when 
water from the liquid state 
directly transformed to 
amorphous non-crystalline or 
glass-like form without turn-
ing into crystalline form.

Low resolution image: Im-
ages with small number of 
pixels and less information 
and less detail.
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During 1950s negative staining was developed 
as a working technique for biological samples. 
Negatively stained images of large, stable and 
homogeneous proteins will undergo averaging 
technique to increase the signal-to-noise ratio 
(SNR) and thus allow further details of the mol-
ecule to be visualized.1 For symmetrical particles 
such as icosahedral viruses, computational align-
ing and averaging of several negatively stained 
particles achieved better resolution of the three-
dimensional reconstruction calculated.2 But due 
to distortion and artifacts which are integral part 
of negative staining, the resolution of structures 
was limited to 25 Å. Richard Henderson with 
Nigel Unwin studied the first structure of mem-
brane protein bacteriorhodopsin by electron 
diffraction pattern and imaging.3 The low dose 
electron micrographs were analyzed and 3D map 
at 7 Å resolution was calculated from 2D projec-
tions based on central section theorem by Aaron 
Klug’s group.4 Henderson’s theory of replacing 
water with glucose solution to preserve bacteri-
orhodopsin structure did not work well for other 
membrane proteins. During that time sample 
freezing in liquid nitrogen was applied by Tay-
lor and Glaeser to protect from radiation dam-
age.5 However, ice crystals were formed which 
destroyed the signals coming out of the specimen. 
To overcome the problem of crystalline ice Swiss 
scientist Jacques Dubochet first introduced the 
method of vitrification (rapid plunging of sam-
ple into very low-temperature cryogen such as 
liquid ethane at − 190 °C to form non-crystalline 

glass like vitreous ice) of water-based unstained 
biological samples in their native state.6, 7 These 
samples are of low contrast, but high-resolution. 
Thereafter, the word cryo has been added with 
electron microscopy and a new wing of struc-
tural biology has developed namely, cryo-electron 
microscopy or electron cryo-microscopy. This 
wing of structural biology has steadily improved 
in last 10 years with rapid advances in microscope 
design with improved stability, introducing field 
emission gun, constant power lens system, Cs/
Cc corrector, energy filter, phase plate technol-
ogy, automatic, and high throughput data collec-
tion8,9, user friendly and sophisticated software10, 

11, image processing algorithms and most impor-
tantly development of direct detectors12, 13. In the 
era of resolution revolution, cryo-EM is capable 
of doing high-resolution structures which were 
exclusive to X-ray crystallography and NMR 
spectroscopy.14 The flowchart in Fig. 1 shows a 
comparison of X-ray crystallography and cryo-
EM methods.

In 2015 cryo-EM was declared as the method 
of the year by Nature group of publishers 15, but 
the foundation was laid decades ago. As an obvi-
ous result, the Noble prize in Chemistry in 2017 
had been awarded to Jacques Dubochet, Richard 
Henderson and Joachim Frank for their pioneer-
ing works in the development of cryo-EM as a 
structure determination technique. In recent 
years, single particle analysis (SPA) and cryo-elec-
tron tomography (cryo-ET) with improved and 
simplified technologies have set new horizons for 

Figure 1: X‑ray crystallography vs cryo‑EM.

SNR (signal-to-noise ratio): 
This is a measure used to 
compare the level of signal 
output to the level of back-
ground noise.
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their usefulness in structural biology and many 
other fields. The basic procedure of the two tech-
niques of cryo-EM is reviewed in the following 
sections with reference to the current advances 
and their contribution in recent studies.

2  Technological Advancements
For the remarkable advancement of cryo-EM 
structural studies of biomolecules and macromo-
lecular complexes, a number of newly developed 
technologies have been implemented. In this sec-
tion that technological progress is discussed.

2.1  Direct Detector Device (DDD) 
and Aligning Movie Frame

The transmission electron microscopy classic 
imaging technique involves indirect detection of 
electrons. At first, the primary electrons are con-
verted to photons by a scintillator, which is cou-
pled to the charged-coupled device (CCD) sensor 
through a fiber-optic coupling. In comparison, 
direct detection is a better alternative based on 
complementary metal–oxide–semiconductor 
(CMOS) technology using electrons directly on 
the thin layered DDD sensor to generate image 
(Fig. 2). The direct detector has the practical 
advantage over CCD in terms of high-detective 
quantum efficiency (DQE) and readout speed16. 
It has two different modes: integrating and count-
ing mode. Direct detectors allow collecting 
images in movie mode with several raw frames 
for each image and all of them have usable infor-
mation because of their high frame rates. While 
processing data the frames could be aligned to 

DQE (detective quantum ef-
ficiency): DQE actually means 
how effectively a camera can 
detect an electron or produce 
an image with high signal-to-
noise ratio.

perform motion correction using available soft-
ware program motioncor13, motioncor217 and 
unblur18 which dramatically reduces beam-
induced motion of imaged molecules and stage 
drift and thereby enhances data quality signifi-
cantly. All direct detector cameras can operate at 
moderate to high frame rates.

2.2  Phase Plate Technology
Low dose imaging technique is used to take cryo 
images with low signal-to-noise ratio (SNR), but 
without radiation damage. Therefore, contrast 
enhancement is needed to visualize the molecules 
in cryo-EM using defocus phase contrast and sac-
rificing high-resolution information. This limi-
tation motivated researchers to develop a better 
contrast enhancement technique of cryo images. 
A few decades ago, in light microscopy, a similar 
problem was solved by Zernike by placing a phase 
plate in the diffraction plane for pure phase imag-
ing19. A similar method was tried by researchers 
in transmission electron microscope, but they 
were not very successful during initial days.20 
The first TEM phase plate that showed promising 
results was known as Zernike phase plate (ZPP).21 
In this phase plate a thin film, able to retard phase 
by 90° with a central hole of 1 μm, is placed in 
the back focal plane or diffraction plane of the 
objective lens. Thereby shifting the phase of the 
scattered electrons and their interference with 
the unscattered electrons at image plane results 
in amplitude contrast. But this technique has also 
some practical disadvantages: small lifespan of 
the phase plate, centering the beam into the small 

Figure 2: Working principle of direct detector device (DDD). Conventional digital cameras (left) with a 
charged‑coupled device (CCD) uses a scintillator to convert primary electron into photons to be detected 
by an imaging sensor. In this process, a signal is degraded by scintillator and fiber‑optic coupling 
whereas direct detection camera (right) detects electron directly in the microscope. [Courtesy of Benja‑
min Bammes, Direct Electron LP, San Diego, CA].
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hole of the phase plate and fringe artifacts. This 
lead to the development of a simply designed 
phase plate known as Volta phase plate (VPP) 
with a thin amorphous carbon film constantly 
heated to ~ 250 °C.22 Compared to ZPP there is 
no central hole and the phase shift occurs on-the-
fly, the higher longevity of the plate and there are 
no fringe artifacts (Fig. 3).

2.3  Energy Filters
When a beam of high-energy electrons passes 

through a thin sample some electrons remain 
unchanged while passing through the sample, but 
some of them interact with the sample and scat-
tered both elastically and inelastically. The inelas-
tically scattered electrons lose energy and change 
their momentum and result in adding only noise 
to the image. Energy filters have a slit in the mid-
dle to stop the inelastically scattered electrons by 
allowing only elastically scattered and unhindered 
electrons to pass through the slit to improve the 
quality of the image. Energy-filtered transmission 
electron microscope (EFTEM) uses two types of 
energy filters: one is in-column and the other one 
is bottom mount23. In terms of design, the in-col-
umn filter works better with its symmetric design 
compared to bottom mount which is prone to dis-
tort the image but recent upgradation of bottom 
mount energy filters has shown less geometric 

Elastically scattered elec-
trons: These are coherent 
electrons contributes signal 
for image formation.

Inelastically scattered 
electrons: These are electron 
that lost some of their kinetic 
energy and contributes noise 
to an image. For example, 
thick specimens result in 
more inelastically scattered 
electrons.

distortion and along with direct detectors 
enhances the contrast and successfully applied to 
study vitrified cells and giant viruses.

2.4  Sample Support Film
Recent developments of direct detector camera 
have allowed cryo-EM to be considered as an 
alternative technique to determine protein struc-
ture which was previously approached only with 
X-ray crystallography. But even after the success 
of direct detector, the fragile nature of biological 
samples and beam-induced motion of support 
film impedes regular achievement of high-reso-
lution structure beyond 2 Å. There are continu-
ous efforts to push the resolution for cryo-EM 
structures by optimizing sample preparation 
technique.24

Exposure of electron beam creates an unre-
coverable deformation in the carbon support 
film that induces image blurring and difficulties 
in aligning 2D images. In 2014 MRC-LMB sci-
entist Lori Passmore and colleagues addressed 
this problem using hydrogen plasma-treated gra-
phene support film to reduce the beam-induced 
motion and better sample distribution.25 Later 
they worked on the same problem using gold 
support film (Fig. 4) and found a further reduc-
tion in motion or almost eliminate motion.26 The 
proposed gold support grid is straightforward to 

Figure 3: Design of thin film phase plates (middle and right). The most recent is the Volta phase plate 
suitable for automatic data acquisition because it does not have any central hole rather a large open 
area to use multiple phase plates. [Courtesy of Dr. Radostin Danev, Max Planck Institute of Biochemistry, 
Department of Molecular Structural Biology, Germany].



235

Recent Advances in Single Particle Cryo-electron

1 3J. Indian Inst. Sci. | VOL 98:3| 231–245 September 2018 | journal.iisc.ernet.in

manufacture than graphene grids. Additionally, 
they pointed out gold grids can generate better 
images not only in high-end microscopes with 
new generation detectors, but also in the old ones.

2.5  Sample Preparation 
and Standardization

Sample preparation is a key step towards a suc-
cessful high-resolution reconstruction in cryo-
EM. Grid choice (200–400 mesh), treatment of 
grids (glow-discharged) and support films also 
contribute significantly. A typical protocol is as 
follows: a small volume (3–5 μl) of highly con-
centrated sample is applied to a treated grid for 
about a minute, extra liquid is blotted to leave a 
thin film of liquid containing sample, and then 
rapidly freezing at a rate of ∼ 106 °C/s by plung-
ing into liquid ethane or ethane–propane mixture 
cooled by liquid nitrogen. In this procedure, the 
water in, and surrounding the specimen will be 

fixed in a vitreous state with the protein embed-
ded in a different orientation. However, every 
sample is different and needs standardization to 
provide ideal cryo-EM data. During initial days 
plunging devices built in-house were used, but 
these devices were often unable to reproduce 
results when temperature and humidity in the 
room and grid batches were changed.27 There-
fore, commercial plunge-freezing instruments 
were made by different companies (Leica, Gatan, 
and FEI) with more controlled environment and 
automation to increase the productivity.

2.6  Advanced Microscope Design 
and Data Collection

Most of the new generation microscope comes 
with multi specimen autoloader to load up to 12 
grids and screen them continuously for 5 days 
without any contamination and manipulation 
of each grid. Specimen stage stability has been 
increased by removing the side entry holder in 
new design and specimen cartridge remain inside 
the microscope column. Automated alignment 
procedure allows the microscope to maintain 
optimal settings for SPA or tomography experi-
ments. Remote operation of almost all function 
including apertures has prompted to make auto-
mated data collection software for high through-
put cryo-TEM. Available software in cryo-EM are 
Leginon,9 SerialEM,28 UCSF-Image4,29 FEI EPU/
Tomography4, JEOL JADAS. With the continuous 
run, every day at least 3–5 TB data will be gener-
ated depending on the movie frames. For tomog-
raphy data collection it could be higher and also 
time-consuming. John Briggs and colleagues have 
proposed a new tilt series data collection scheme 
to maintain the high-resolution information by 
collecting low tilt angle images first without any 
damage due to prolonged exposure30.

Cryo-electron tomography is predominantly 
used to study pleomorphic cellular structures and 
often suffers from the thickness of the sample 
(> 5000 Å).31 To overcome the problem of sam-
ple thickness two different approaches were devel-
oped successfully. Cryo-EM of vitreous sections 
(CEMOVIS) that requires vitrification of biologi-
cal material and cutting it into ultrathin sections, 
which are observed in the vitrified state, and later 
combined with electron tomography.32 The other 
method is cryo-focused ion beam (cryo-FIB) mill-
ing that enables cryo-ET to analyze native cells and 
tissues thinner than 3000 Å.33 But often unique and 
transient structures are lost while thinning samples 
and introduces another method known as correla-
tive light and electron microscopy (CLEM).34

Figure 4: Ultrastable substrate design. The 
ultrastable gold support comprises a 3‑mm diam‑
eter disk of gold mesh a where ~ 500 Å thick 
layer of gold foil with a regular array of microm‑
eter‑sized holes is suspended across the square 
openings in the mesh (diagramed along the sec‑
tion indicated). After application of an aqueous 
protein sample and plunge freezing at ~ 80 K, 
each hole contains a thin film of protein particles 
embedded in vitrified ice. a–c Optical micro‑
graphs of the gold grid at low, medium, and high 
magnification, respectively, each hole is 1.2 μm in 
diameter and sets the scale for b and c. Repro‑
duced from 26 with permission obtained through 
RightsLink.
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3  Single Particle Analysis
For decades, researchers have used X-ray crystal-
lography and NMR to solve structures of biomo-
lecular complexes at high-resolution. However, 
solving membrane protein structures by X-ray 
crystallography is extremely difficult. Similarly, 
NMR is capable of determining structures of the 
only small protein. As an alternative, cryo-EM 
single particle analysis was introduced during 
70–80 s and radiation sensitivity of biomolecules 
was also discovered.35 At that time, low dose 
imaging technique was proposed36 and image 
processing and analysis of low SNR low dose 
cryo-EM data of macromolecules were devel-
oped.37 But recent progress in EM optics, stage 
stability, data collection software, energy filter, 
phase plate technology and successful implemen-
tation of direct detector cameras has brought sin-
gle particle analysis in the forefront as a routine 
approach in structural biology laboratories38, 39. 
Soon after the discovery of direct detector cam-
eras in 2013, an exponential growth has been 
observed in the deposition of cryo-EM derived 

high-resolution structures at EMDB (www.emdat 
abank .org) within few years40.

A typical workflow of high-resolution cryo-
EM SPA illustrating sample preparation and data 
analysis is shown in Fig. 5. The advantage of sin-
gle particle cryo-EM is that it is capable of solving 
the structure of non-crystalline macromolecules 
and their assemblies. Single particle averaging 
method was first showed by Joachim Frank for 
determining the correct orientation of the same 
molecule in multiple views and averaging of 
those views43. In single particle data collection, 
low dose procedure is used to take high-resolu-
tion images to minimize the radiation damage 
and images are taken at a slightly under focus to 
increase phase contrast. CTF modifies the ampli-
tude of an EM image and, therefore, has a direct 
relation with defocus. Therefore, contrast transfer 
function (CTF) correction is routinely done in 
single particle analysis computationally using the 
software. Thousands of identical particles in ran-
dom orientation are imaged from frozen samples 
and then computationally averaged together to 

CTF correction: CTF is a 
function that modulates the 
amplitude and phases of the 
electron diffraction pattern 
of the object formed by the 
objective lens while image 
formation in bright field 
electron microscopy. The 
point where it first crosses the 
spatial frequency axis called 
first zero or point resolution 
of the microscope and where 
the CTF dampened to zero is 
called the information limit of 
the microscope.

Figure 5: Cryo‑electron microscopy (EM) Workflow. This figure is reproduced with kind permission from 
Dr. Ho Min Kim, based on the review.41 Briefly, purified sample is applied to the grid and then vitrified in 
liquid ethane. Particles embedded in the thin ice with random orientations are imaged at low dose imag‑
ing condition using a cryo‑TEM. Image processing software to do motion and contrast transfer function 
(CTF) correction were applied. Individual particles are then selected and aligned to calculate two‑dimen‑
sional (2D) class average. Three‑dimensional (3D) classification and further iterative refinement of 3D 
reconstruction will finally calculate the high‑resolution cryo‑EM structure (Here a 3 Å cryo‑EM structure of 
archaea 20S proteasome processed with RELION 2.0 is shown) 42.

http://www.emdatabank.org
http://www.emdatabank.org
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increase the SNR dramatically. Next, orientation 
searches and aligning of the projections are done 
iteratively and a three-dimensional (3D) map is 
reconstructed. Another important cryo-EM 
structure determination technique is by helical 
reconstruction. In this method, a small segment 
of helices is treated as single particle and impos-
ing the correct helical symmetry a high-resolu-
tion structure of helical viruses and flexible 
filaments can be calculated. Compared to single 
particle analysis, multiple copies of the same 
repetitive, asymmetrical unit with fixed relative 
orientation need to be averaged44.

An ideal single particle specimen has to be 
homogeneous. But heterogeneity in the sam-
ple may appear from conformational variation 
and flexibility. Advanced image processing algo-
rithms are capable of classifying and averaging 
heterogeneous sample10. However, heterogeneity 
in sample sometimes restricts the structure deter-
mination to negative stain EM analysis. Single 
particle cryo-EM has expanded in last 10 years 
and entered the realm of crystallography to take 
the challenge in solving small, heterogeneous and 
difficult to crystallize molecules. To date, a wide 
range of dynamic biomolecules and macromo-
lecular complexes including many important 
membrane proteins have been solved by single 
particle cryo-EM because of its advantage of data 
collection without any crystals. Electron crys-
tallography has long been used to study many 
important membrane proteins such as bacte-
riorhodopsin, aquaporin, tubulin and several 
others. But in this golden era of single particle 
cryo-EM many biologically important membrane 
proteins are successfully studied.45, 46 Some nota-
ble works using advanced SPA technique have 
been reported at remarkably high-resolution 
(~ 2–3 Å) including revisited structures and some 
small size proteins.47–56 Figure 6 shows the gallery 
of few examples of recently solved high-resolu-
tion structures of broad range molecular weight 
of biomolecules.

A perfect area to image for single particle 
analysis is where the holes are covered fully with 
identical particles distributed closely, but not 
touching each other and in multiple orienta-
tions. High-quality image acquisition is another 
important step in single particle analysis which 
includes alignment of the microscope, selection 
of right aperture, magnification, defocus setting, 
spot size, direct alignment, and optimum dose 
calculation. Low resolution maps calculated by 
single particle analysis are usually validated by 
fitting atomic model (if available) as a rigid body 
into the density map 57 which also determines the 

handedness. But recent progress has made flexible 
fitting as a better choice for high-resolution cryo-
EM data.58 Assessment of resolution to detect 
overfitting and validity of model increases the 
reliability of functional interpretation. A method 
was proposed to obtain the absolute hand of the 
cryo-EM map and improve the accuracy of parti-
cle orientation and contrast loss, thus improving 
the quality of the resulting map.59

The growing field of single particle cryo-EM 
with more advanced hardware or software will be 
able to solve much more structure of proteins and 
their complexes, but there are still certain issues 
that will impede the resolution to go beyond 2 Å. 
Air–water interface causing denaturation of frag-
ile macromolecules in a thin layer of vitreous ice 
is a major problem. Other barriers are confor-
mational heterogeneity, the thickness of sample, 
beam-induced motion, charging effect and radia-
tion damage. Better sample preparation tech-
nique and more stable and homogeneous sample 
are needed to go beyond 1.8 Å using a modern 
cryo-EM platform.

4  Cryo‑electron Tomography 
and Sub‑tomogram Averaging

In spite of the success in obtaining atomic-level 
details of many important proteins and pro-
tein complexes, single particle analysis has some 
limitation. It is unable to study macromolecules 
within cells, proteins that are difficult to purify 
and biomolecules that exhibit continuous con-
formational flexibility.60 Generally, the isolated 
and purified molecules hardly reveal the biologi-
cal functions performed by them in a native envi-
ronment. Cryo-ET has been developed to link 
high-resolution electron microscopy and struc-
ture–function relation. Using cryo-ET we can 
visualize a protein in situ within its native envi-
ronment compromising with the resolution. In 
other words, cryo-ET is bridging a gap between 
light microscopy and in vitro structure determina-
tion techniques. In recent years with the develop-
ment of direct detector camera, energy filters and 
a phase plate, the resolution of cryo tomograms 
has improved drastically. Cryo-ET is applicable 
to get the three-dimensional structure of com-
plex objects such as whole cells, cellular organelles, 
molecular machines, pleomorphic viruses.

Data collection in tomography is much more 
challenging than single particle analysis as the 
dose distribution in the whole set of images is 
crucial to avoid radiation damage in the field of 
imaging. Figure 7 illustrates a general workflow 
of cryo-ET where a series of images are collected 
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for each specimen area by tilting the specimen 
stage through a range of angles ± 60°, usually 
about a single axis and the whole series of images 
is called a tilt series. High cumulative electron 
dose (80–120 e/A2) needed to obtain optimum 
contrast in each image of a tilt series for better 
alignment. After that, the collected tilt series are 

computationally reconstructed into a 3D tomo-
gram showing the macromolecules with more 
clarity compared to individual 2D images. Gold 
fiducial markers are used in tomogram recon-
struction to precisely orient each image in a tilt 
series.62 But sometimes the gold particles are also 
shown to undergo independent beam-induced 

Figure 6: Representative biomolecules of a wide range of molecular weight recently solved by cryo‑EM 
at near‑atomic resolution. EM database number and resolution of the reconstruction are indicated below 
the respective map. First row: (L) beta‑galactosidase,47 (M) human p97 bound UPCDC30245 inhibitor,48 
(R) human gamma‑secretase complex.50 Middle row: (L) TRPV1 ion channel,51 (M) human hemoglobin,52 
(R) yeast spliceosome,53 bottom row: (L) E. coli RNAP sigma70 holoenzyme and promoter DNA com‑
plex,54 Insulin Receptor‑Insulin Complex,55 (R) mammalian respiratory complex I 56.
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motion that reduces the quality of reconstruc-
tion and also the strong artifacts caused by gold 
fiducials obscure features. Therefore, fiducial less 
alignments have been developed.63, 64

Like SPA data collection, defocus is applied to 
enhance the contrast of the imaging area during 
tilt series. Since defocus is directly related to the 
specimen height in the microscope column, 
tomography samples produce a variable CTF 
across the imaging plane due to tilting. As a result, 
correction of CTF in tomography data is far more 
complicated than SPA cryo-EM. Before direct 
detector and other CTF correcting software,65–67 
the resolution was limited between 30–60 Å or 
more depending on sample and imaging parame-
ters. But recently with the technical advance-
ments, the resolution has improved rapidly and 
lies between 8 and 20 Å. However, this resolution 
is anisotropic due to the restricted tilt angle data 
collection. The mechanical constraints of the 
specimen holder do not allow to tilt − 90° to 

Segmentation: This is a 
computational process to 
partition a digital image into 
several segments to simplify 
the image into a more useful 
representation to better 
analyze the data.

+ 90° range. As a result, the tomograms are 
stretched in the direction of the electron beam 
and this effect is called missing wedge due to the 
shape of the missing information in Fourier 
space. In general, the 3D volume or tomogram is 
quite noisy and subjected to noise reduction 
while preserving the structural details. After that, 
segmentation is usually done in the denoised 
tomogram to visualize the structural components 
and to understand their spatial relationship.

There is another specialized technique associ-
ated with cryo-ET applicable on the aligned and 
denoised tomogram, based on the principle of 
single particle analysis, which is also gaining pop-
ularity with the improvement in instrument and 
automated data collection, known as sub-volume 
averaging or sub-tomogram averaging. It can be 
applied to calculate 3D map of an object present 
in the tomogram in multiple copies and scattered 
at a different orientation. The resolution will be 
much higher than the original tomogram. The 

Figure 7: Image processing workflow in structural studies by cryo‑ET. This figure kindly provided by Dr. 
J. J. Fernandez, based on the review.61 Reproduced from https ://sites .googl e.com/site/3demi magep roces 
sing/resea rch_proje cts/comet  with permission of the author. 2D images are acquired at different tilt 
angles around a single axis and aligned. In high‑resolution structural studies, CTF is determined and cor‑
rection is done. Next, the tomographic reconstruction computationally combines the aligned images to 
get the 3D volume or tomogram. After that, the tomogram is subjected to denoising with preservation of 
details. Next, the tomogram is segmented into structural components. Finally, if repetitive sub‑volumes are 
present those will be extracted for sub‑volume averaging. This analysis includes 3D alignment and aver‑
aging of the sub‑tomograms to obtain a high‑resolution map and quantitative analysis of the distribution of 
the sub‑volumes are done.

Denoising: It is a signal 
processing method to remove 
noise from an image and to 
preserve the useful informa-
tion.

https://sites.google.com/site/3demimageprocessing/research_projects/comet
https://sites.google.com/site/3demimageprocessing/research_projects/comet
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principle is very similar to random conical tilt 
(RCT) and orthogonal tilt reconstruction (ORT) 
tilting concept of taking multiple views and, 
therefore, it is also referred to as single particle 
tomography. But the advantage is calculating the 
structure of a protein or protein complex in situ 
whereas the challenge is to extract information 
from a very noisy, crowded and complex environ-
ment. Additionally, the sub-volumes are extracted 
from tomogram at a various orientation which 
means the orientation of missing wedge also 
varies accordingly. Therefore, the missing infor-
mation of one sub-volume in Fourier space is 
compensated with the sampled region of another 
sub-volume and the overall missing wedge effect 
is removed from the final merged image.68 There-
fore, the structures that are calculated using sub-
volumes averaging are meaningful and allow to 
interpret the structure–function relation.

There are two ways to calculate sub-volume 
averaging: one is multi-reference alignment and 
classification and the other one is classification by 
alignment. In multi-reference alignment which is 
the most used procedure, the sub-tomograms are 
aligned with respect to a common reference by 
rotational and translational alignment. Then the 
aligned particles undergo multivariate data analy-
sis, classification and alignment steps and best 
classes are selected to be used as references for the 
next cycle. This iterative procedure runs until the 
structure no longer changes with subsequent iter-
ations. Finally, the refined transformations are 
used to generate the final sub-tomogram aver-
age.69 But to reveal the spatial distribution of any 
macromolecular complex in their physiological 
environment, the actual orientation of the raw 
motif has been determined by inverting the calcu-
lated rotations and this procedure is known as 
map-back procedure.70 With time, the resolution 
and clarity of original tomogram and sub-tomo-
gram averaged structures steadily improved using 
new generation microscope, automated data col-
lection for high throughput, sample specific imag-
ing scheme, energy filters, direct detectors and the 
phase plate. The next section reviews recent devel-
opments in the in situ applications of cryo-ET and 
sub-volume averaging.

The field of structural virology has largely 
benefited from technological advances of the 
cryo-ET field. Human immunodeficiency virus 
type I, a pleomorphic virus, difficult to study due 
to structural heterogeneity and intrinsic flexibil-
ity was first viewed in 3D successfully by cryo-
ET sub-volume averaging.71–73 HIV Gag lattice, 
budding sites, immature virus, CA protein and 
their change in arrangement during maturation 

Multivariate data analysis: It 
refers to a statistical method 
used to observe and analyze 
data where more than one 
variable outcome is present.

process were thoroughly studied by cryo-ET.74–78 
Envelope (Env) protein of retroviral spikes 
(including HIV) and their conformational change 
during interaction with the target cell, interac-
tion with broadly neutralizing antibodies had 
also caught attention to extract structural infor-
mation for Env specific vaccine design.73,79–82 
Similarly, another enveloped virus influenza 
(flu virus) has been studied by several groups to 
understand entry into a host cell, maturation and 
budding.83–86 Figure 8 shows the gallery of few 
examples of recently solved in situ structures of 
dynamic biomolecular complexes.

Macromolecular assemblies are the key play-
ers in cellular processes to maintain the integrity 
of the dynamic intracellular architecture. Stud-
ies on whole cells (both eukaryotic and prokary-
otic) including host–pathogen interactions, 
cellular organelles have been shown by cryo-ET 
in unprecedented details in their native envi-
ronment. Professor Baumeister and colleagues 
have shown for the first time the disassembly 
intermediates of vaccinia virus on mammalian 
cells by whole cell cryo-ET before the resolu-
tion revolution era.92 In the laboratory of Grant 
Jensen many eukaryotic cells and their organelles, 
intracellular complexes, bacterial cell ultrastruc-
tures including secretion systems were revealed 
using cryo-ET.93–97 After phase plate mounted on 
a TEM as a part of technological advancement 
and with direct detectors the field of cryo-ET has 
expanded the boundaries by exploring previously 
challenged areas.98–100

5  Conclusion and Future Directions
Here I have discussed two popular techniques of 
cryo-EM and their uses in studying a wide range 
of complexes of macromolecules. Single particle 
analysis has already achieved a resolution bet-
ter than 2 Å. With the further advancement and 
better sample making procedure, it may achieve 
theoretical resolution in future. Even cryo-ET and 
sub-tomogram averaging have shown progress 
and the best resolution of solved structures so far 
is in the range of 6–8 Å. Applying dose-symmetric 
tilt scheme in a better-designed microscope there 
is scope for improvement in resolution. Cryo-ET 
suffers from resolution limitation mainly due to a 
thickness of the sample and low SNR. Other than 
transmission electron microscopic techniques 
(negative staining and cryo-EM), there are other 
microscopic techniques (FIB-SEM, Serial Block-
face SEM, CLEM) making progress side by side 
and when applied altogether with cryo-ET drastic 
improvements occur in understanding dynamic 
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processes of cell biology in unprecedented detail. 
Cryo-EM has also expanded its functionality in 
areas such as neuroscience, nano-biotechnology, 
and pharmaceutical industries. Leaving the world 
of blobology, cryo-EM has begun studying pro-
teins at molecular detail and yet to explore full 
potential of this technique in future.
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