
1 3J. Indian Inst. Sci. | VOL 98:3| 273–281 September 2018 | journal.iisc.ernet.in

The New Era of Microcrystallography

1 Introduction
Precise function is an important feature of pro-
teins in a crowded cellular environment. Eventu-
ally, and in most cases, a protein’s characteristic 
lies in the property of not sticking with copies 
of itself or other micro/macromolecules to form 
aggregates or structured assemblies. Both aggre-
gation and crystallization of proteins inside the 
body of an organism (in vivo), either inside (in 
cellulo) or outside cells (ex cellulo) may have a 
detrimental effect on the cells or the organism.13 
Alternatively, evolution imparts negative selection 
pressure on the proteins to avoid these two phe-
nomena, as highlighted by the fact that it remains 
difficult to crystallize many soluble proteins 
in vitro. The native, functional form of a protein 
inside the cell is, therefore, its solution state.

In vivo protein crystallization has been con-
sidered to be an anomalous behavior till the late 
twentieth century. Due to their small sizes, these 
crystals had not been explored by X-ray diffrac-
tion until recently. In vivo-grown protein crys-
tals have been observed from a varied group of 
organisms.12, 13, 22, 24 Positive natural selection 
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Abstract | The function of a protein dictates its physical state in a cell. 
Evolution has imparted selection pressure on proteins to maximize their 
function and minimize cell death. Most of the proteins exist in their solu-
ble form inside or outside the cells. However, a small fraction of proteins 
in the total protein pool crystallizes with functional consequence. These 
in vivo-grown protein crystals perform a diversity of functions, ranging 
from food storage to defense. Sometimes limited by the volume of the 
cells and the cellular concentration of proteins, these crystals are very 
small in size. Hence, it has been difficult to carry out conventional X-ray 
crystallography on these crystals. With the advent of microcrystallogra-
phy, it is now possible to study the structures of these tiny crystals. In 
this review, some of the diverse examples of in vivo crystals and the new 
approaches towards microcrystallography are summarized.
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pressure acts on these proteins for in vivo crys-
tallization due to their functional significance. 
In most cases, high protein concentration drives 
crystallization of these proteins inside the living 
organism. Some of the biological functions for 
these in vivo protein crystals include: food storage 
as observed in plant seeds,13 cockroach milk pro-
teins17 and eggs;22, 25, 34 pathogenicity in Bacillus 
thuringiensis;37 defense mechanism as observed 
in Paramecium38 and Tetrahymena36; storage for 
infectious viruses7–9 and avoiding proteolytic 
cleavage like in insulin.11 In vivo crystals have also 
been identified in some pathological conditions 
in human such as histiocytosis,12 hemoglobin C13 
and cataract.24

Recent developments in the field of X-ray 
crystallography have shifted gears from mac-
rocrystals to microcrystals. Microcrystals are 
referred to small crystals grown by either in vivo 
or recombinant methods. Microcrystallogra-
phy refers to the specific set of experimental 
approaches for handling these crystals for struc-
ture determination4 and computational methods 
used to process these data. In vivo crystallography 
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presents the advantage of studying the proteins in 
their functional niche.2, 21 It also gives the oppor-
tunity to study functionally important post-
translational modifications—often ordered only 
partially.

In this review, we first list some examples of 
naturally occurring in vivo crystals and the crys-
tallography studies carried out on some of them. 
It is followed by the development of technologies 
for microcrystallography and examples of few 
proteins, for which structures were determined by 
these emerging methods.

2  Naturally Occurring In Vivo Protein 
Crystals

2.1  Plant Seed Proteins
Seed germination during the life cycle of plants 
requires nourishment and energy to drive the 
process. The plant seeds store proteins ranging 
from ~ 10% (in cereals) up to ~ 40% (in certain 
legumes).33 These pools of proteins provide met-
abolic, structural and nutritional support during 
germination and seedling development. Most 
dicotyledonous plant seeds contain 7S and/or 11S 
globulins and albumins as the major storage pro-
teins in the embryo or cotyledons.33 The proteins 
are deposited in crystalline form in the protein 
storage vacuoles (PSVs), highly specialized com-
partments. X-ray diffraction studies carried out 
on the dry and wet slices of pumpkin and rock 
melon seeds showed powder-like diffraction6 
although the structure of the protein in situ could 
not be resolved. It may be hypothesized that evo-
lution has imparted positive natural selection on 
the plant seed storage proteins for two reasons: 
(1) in vivo crystallization to store concentrated 
forms of the proteins in their functional state 
even in the dormant stage of the life cycle and 
(2) to escape the lytic environment of the PSVs. 
It may be hypothesized that to store a concen-
trated form of the protein to remain functional 
even in the dormant stage and to escape the lytic 
environment of the PSVs, evolution has imparted 
positive natural selection on the plant seed stor-
age proteins for in vivo crystallization. Although 
these crystals were discovered a very long time 
ago, no structures have yet been determined from 
the in vivo crystals. In most of the near-native 
structural studies performed, the structure was 
studied after proteins have been isolated from 
the seeds and re-crystallized.6 This could also be 
because large crystals observed are an aggregate 
of small crystals. Often, attempts at diffraction 
on these only give powder patterns. So, the entire 

field of in vivo crystallography for seed storage 
proteins remains to be explored.

2.2  Trichocysts in Paramecium
Paramecium is known to release crystalline 
secretory granules as a defense mechanism13. In 
response to various external stimuli such as dif-
ferences in its chemical environment or presence 
of a predator, Paramecium swims on the oppo-
site direction, leaving behind a trail of crystal-
line needle-shaped ‘trichocysts’. These trichocysts 
are secretory products with stimulus-dependent 
release. The intracellular crystal is a mixture of 
small, acidic polypeptides with a molecular mass 
range of 15–20 kDa. This heterogeneity is a result 
of extensive proteolytic processing of the poly-
peptides. Structural studies on both undischarged 
and discharged trichocysts have been carried out 
using electron microscopy.3 With the advent of 
the latest technologies, initiatives could easily be 
foreseen to undertake in vivo structural studies 
on trichocysts from Paramecium and related spe-
cies. The understanding of the processes which 
results in controlled release of these polypeptides 
will throw light into how nature uses crystalline 
material to carry out function.

2.3  Pro‑toxin Proteins in Bacillus 
thuringiensis

Bacillus thuringiensis is a gram-positive bacteria 
used widely in agriculture as a bio-pesticide.32 It 
forms in vivo parasporal crystals of pro-toxins 
during the stationary phase of its growth cycle, 
which has insecticidal property. These proteins 
(Cry proteins) form a single large crystal cover-
ing the entire mother compartment. Figure 1 
shows parasporal crystals of Cry3A toxin.31 There 
are different types of these proteins, each form-
ing different shapes. The shapes could vary from 
cuboidal to rectangular to rhomboidal.32 After 
ingestion by insect larvae, these crystals dissolve 
in the alkaline environments of the gut, produc-
ing toxins and thus facilitating its entry into the 
insect.13 The ability of in vivo crystallization in 
B. thuringiensis could have evolved for the stor-
age function of a highly concentrated protein in 
a limited space.31 In this particular case, crystal-
lization also reduces the susceptibility of the pro-
toxins for proteolytic cleavage.32 Interestingly 
here, Sawaya et al. determined the in vivo crystal 
structure of the Cry3A toxin using XFEL sources 
on Bt cells containing the naturally crystallized 
Cry3A toxin at 2.9 Å resolution.31 Already then, 
the authors suggest that in vivo diffraction studies 
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Figure 1: Cry3A toxin crystals used for XFEL diffraction studies. a Phase contrast light micrograph of 
sporulating rod-shaped Bt cells containing the dark rectangular-shaped toxin crystals. b Scanning elec-
tron micrograph of isolated Cry3A crystals. c Transmission electron micrograph of thin-sectioned Bt cells 
showing that the rectangular crystals, which are so large that the cells take the shape of the crystals. 
Adapted from Sawaya et al.31 with permission.

Figure 2: Lili-Mip crystals from D. punctata embryos. a Polarized microscopic image of protein crystals 
enclosed inside the embryo midgut and an enlarged view of the extracted crystals (inset). b X-ray crystal 
structure of Lili-Mip consisting of one C-terminal α-helix (light blue) and nine β-strands (magenta) forming 
a barrel to coordinate the lipid. The N-glycans (yellow) at the four glycosylation sites are modeled in 2Fo–
Fc electron density (white). Repro duced  with permi ssion  of the Inter natio nal Union  of Cryst allog raphy ..

https://journals.iucr.org/
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can be carried out with authenticity to provide 
atomic-level structural information.

2.4  Milk Proteins in Diploptera punctata
Diploptera punctata is the only known viviparous 
cockroach, which gives birth to young ones. After 
fertilization, the ootheca containing the fertilized 
eggs is deposited in the brood sac of the pregnant 
females.29 The mother nourishes these develop-
ing embryos by secreting milk proteins (Lili-Mips 
for Lipocalin-like-Milk Proteins) from the brood 
sac. As the concentration of the proteins increase 
inside the gut of the embryos, the surplus milk 
ingested is stored in crystalline form. Figure 2a 
shows the in vivo crystals of Lili-Mips crystal-
lized inside the gut of the developing embryos. 
Lili-Mips are a heterogeneous mixture of poly-
peptide sequences with different primary amino 
acid structures, like observed in the trichocysts 
of Paramecium. However, it is also heterogeneous 
with respect to the extent of glycosylation and 
the bound fatty acids.2 The milk protein crystals 
serve as complete food for the embryos consisting 
of proteins, sugars and fats. The energy provided 
by Lili-Mips is 3–4 times more than most mam-
malian milks. Due to the higher volume of gut of 
the cockroach as compared to the cells, relatively 
large protein crystals (up to 10 × 10 × 30 μm3) 
could be observed.2 In spite of the large heteroge-
neity, these crystals diffract to atomic resolutions. 
The structure of this milk protein was determined 
by conventional X-ray crystallography (owing to 

the large size) using the anomalous signal from 
sulfur for phase determination. Figure 2b shows 
the 1.2 Å X-ray crystal structure of Lili-Mip. This 
is the first structure of a naturally occurring and 
chemically unaltered, heterogeneous protein crys-
tal grown in vivo at atomic resolution.

2.5  Alcohol Oxidase in Hansenula 
polymorpha

Peroxisome is an important organelle in eukary-
otes implicated in sequestered lipid metabo-
lism and scavenging of reactive oxygen species.40 
In vivo crystallization has been observed for 
peroxisomal enzymes in many organisms. Some 
of the examples of these peroxisomal enzymes 
include rat hepatocyte uricase16 and plant cata-
lase.15 Crystals of alcohol oxidase in yeast peroxi-
somes10, 39 is one of the most common examples. 
Alcohol oxidase (AO) converts methanol and 
oxygen to formaldehyde and hydrogen peroxide. 
Their crystalline inclusions are found in meth-
anol-utilizing yeasts like H. polymorpha (Hp) 
when grown on methanol as the carbon source.18 
Figure 3 shows the in vivo crystals of HpAO 
grown inside the peroxisomes of the yeast.

The attempt to determine the in cellulo struc-
ture of HpAO was accomplished by Jakobi et al. 
18. They used femtosecond pulses from an X-ray 
free-electron laser to collect diffraction data 
directly on yeast cells containing peroxisomal 
AO crystals. SFX diffraction up to 6 Å resolu-
tion from single micrometer-sized AO crystals 

Figure 3: Crystalline alcohol oxidase (AO) in Hansenula polymorpha. Electron micrograph of Hp cells 
showing crystals of AO in peroxisomes (P) seen next to mitochondria (M) and a vacuole (V). The right 
section of the image shows the crystal in high magnification. The single membrane outlining the organelle 
and enclosing the crystal is to be noted. Repro duced  with permi ssion  of the Inter natio nal Union  of Cryst 
allog raphy ..

https://journals.iucr.org/
https://journals.iucr.org/
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was observed. The authors of the paper have 
developed the concept of in cellulo serial crystal-
lography on protein targets imported into yeast 
peroxisomes without the need for protein purifi-
cation or subsequent crystallization.

2.6  Crystalline Yolk Platelets 
in Non‑mammalian Vertebrates

Yolk platelets are the most important component 
in the oocyte cytoplasm of non-mammalian ver-
tebrates. They serve as inert reservoirs for utiliza-
tion during embryonic and larval development 
of the organisms.20 Yolk proteins are produced 
in the liver as a result of estrogen stimulation 
and are derived from the cleavage of the lipogly-
cophosphoprotein called vitellogenin (VTG) in 
non-mammalian vertebrates. The mammalian 
liver has lost the ability to make VTG during the 
course of evolution.30 After synthesis, VTG is 
transported to the oocyte where it finally forms 
yolk globules, which get converted to yolk plate-
lets. In the platelets, VTG is enzymatically cleaved 
into the two main yolk proteins, lipovitellins and 
phosvitins.27

Yolk platelets have two unique structural 
organizations. In many amphibians, ancient bony 
fishes and some teleosts, the crystalline structure 
corresponds to an orthorhombic array. In other 
teleosts, reptiles and birds, the yolk platelets are 
arranged as homogeneous non-crystalline struc-
tures. Electron diffraction patterns have given the 
unit cell dimensions for the crystals, which are 
highly similar across the species.

The biological significance for separate crys-
talline and non-crystalline structures is not 
known.27 It has been speculated that the highly 
conserved crystals in bony fishes and amphibian 
is a consequence of storing nutritional material 
in a limited volume of the ovum. Furthermore, 
it has been observed that most of the animals 
with crystalline yolk platelets live in fresh water 
habitats. It is possible that the platelet crystal 
provide some essential nutrients not available to 
the embryo in fresh water.22 Three-dimensional 
structural studies can now be undertaken given 
the progress of microcrystallography.

2.7  Protein Crystallization in Human 
Diseases

In cellulo crystals in plasma cells and lympho-
cytes are known to occur in many pathological 
conditions in humans like plasmacytoma, mye-
loma and lymphocytic leukemia. The crystalline 
bodies (CBs), i.e., the cells harboring the crystals 
have diverse shapes varying from rod-shaped, 

to rhombohedral, cubic, oval and spherical. The 
intracellular crystallization for immunoglobulins 
occurs in endocytic reticulum and lysosome com-
partments where phagocytosed immunoglobulins 
(Igs) are trafficked for recycling or for degrada-
tion.14 Crystal-storing histiocytosis (CSH), a rare 
condition in which crystalline material accumu-
lates in the cytoplasm of histiocytes, is typically 
associated with disorders that express monoclo-
nal immunoglobulins, such as multiple myeloma 
(MM), lymphoplasmacytic lymphoma (LPL), 
and monoclonal gammopathy of undetermined 
significance.12

Human γD crystallin is a member of a highly 
homologous family of mammalian lens proteins 
called the γ crystallins. Together with the α and β 
crystallins, these proteins are essential for main-
taining lens transparency. Due to their intrin-
sic property, γ crystallins are more susceptible 
to aggregation and phase separation resulting in 
opacity of lens and finally cataract. Mutations in 
γD crystallin gene make the protein less soluble 
than wild type resulting in crystalline deposits.24

3  Recent Advances 
in Microcrystallography

Protein structure determination from in vivo-
grown crystals has always been challenging. The 
cellular volume and the protein concentration 
within the cells limit the sizes of these crystals. 
Isolation and handling of these micrometer-
sized crystals have been difficult in the conven-
tional X-ray radiation sources. The ability to 
now undertake experiments that will allow 
structure determination of these in vivo and in 
cellulo crystals comes from significant develop-
ments in microcrystallography. Development of 
microfocus beamlines at third-generation syn-
chrotrons and several X-ray free-electron laser 
(XFEL) beamlines have enabled crystallographers 
to determine structures from intrinsically small 
in vivo-grown protein crystals.

X-ray free-electron laser sources produce 
femtosecond X-ray pulses with wavelength of 
the range of 0.1–10 nm. Serial femtosecond 
crystallography (SFX) enables data collection by 
streaming across the beam, thousands of small, 
hydrated, randomly oriented protein crystals 
using a ‘one crystal, one shot’ approach.19 The 
use of XFEL in serial crystallography has enabled 
structural biologists to probe nano- and microm-
eter-sized crystals. Figure 4 schematically depicts 
an SFX experiment using XFEL sources. SFX 
experiments generate large datasets comprising 
of snapshots, with each snapshot capturing Bragg 
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diffraction of single crystals in random orienta-
tions just before their destruction.23 Novel tech-
nologies related to data management strategies 
are being continuously developed to handle such 
large amounts of data.19

Beamlines with a cross-section in the range 
of 1–20 μm are known as microfocus beamlines. 
The increasing availability of dedicated microfo-
cus beamlines has allowed a great expansion of 
the use of microcrystals for structure determina-
tion.4 This is achieved by increasing the signal to 
noise ratio, which can be achieved by two ways. 
First, the increased flux at the sample position is 
critical in determining if the beamline is suitable 
for the smallest crystals.4 The second is to reduce 
the surrounding noise, which can be achieved 
by replacing air between the crystal and detector 
by inert gases at low pressure. A combination of 
reduction of flux and decrease of surrounding 
noise can dramatically increase the signal to noise 
ratio.

The combined use of microfocus synchrotron 
beamlines with serial crystallography approaches 
allows protein structure determination with rea-
sonably low number of micron-sized protein 
crystals. The technologies behind these methods 
are nascent and under intensive developments.28, 

35 Crystallographers have pushed the boundaries 
of in vivo crystallography by inducing crystalliza-
tion by heterologous expression, in the cytoplasm 
or in specific subcellular compartments (Chavas 
et al., unpublished data). Examples of induced 
systems include Trypanosoma cathepsin B21, 26 
and cypopolyhedrin virus.1 Induced systems 
could enable the possibility to obtain crystals of 
proteins for which classical in vitro crystallization 
has been unsuccessful. Figure 5 depicts the differ-
ences between the workflow from sample prepa-
ration to data collection for in vitro crystals with 
in vitro diffraction, purified in vivo crystals with 
in vitro diffraction and in vivo crystals with in 
cellulo diffraction.5 When properly understood, 
in vivo crystallography could minimize the efforts 

Figure 4: Schematic representation of an SFX experiment. X-ray femtosecond pulses are targeted to a 
suspension of flowing crystals. When the X-ray hit the crystals, there is a diffraction, which is recorded in 
the detector. Low hit rate, large datasets generated and small number of indexable frames are some char-
acteristics of SFX. This leads to requirement of many thousands of crystals for successful complete data 
collection.
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invested in optimizing sample purification and 
in vitro crystallization.

4  Conclusion
While the presence of crystalline materials in vivo 
and inside cells (in cellulo) has been known for 
several decades now, structure determination of 
these proteins has not been easy and as described 
above very few structures have been determined. 
The development of serial microcrystallography 
has allowed for exploration of these crystals and 
structure determination at atomic resolution by 
X-ray crystallography. The number of known 
structures is limited and our (and others) contin-
ued efforts to determine more structures of in vivo 
crystals we hope will allow us to understand the 
principles (thermodynamic, kinetic and structural) 
of protein crystallization in vivo. This understand-
ing will allow us to hopefully engineer cell lines 
that can then drive crystallization of proteins that 
have not been amenable to crystallization in vitro.
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