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Eastern Ghats Belt, Grenvillian‑Age Tectonics 
and the Evolution of the Greater Indian Landmass: 
A Critical Perspective

1 Introduction
The ca. 1.70–0.75 Ga time frame of the Earth wit-
nessed remarkable similarity in terms of lith-
ospheric, atmospheric, hydrospheric and 
atmospheric characters which has been attributed 
to the stability of two ancient supercontinents 
Columbia (or Nuna) and Rodinia.25 The super-
continent Rodinia is believed to have assembled 
through a series of subduction–accretion–colli-
sion processes during ca. 1200–850 Ma combin-
ing most of the continental fragments.26, 80, 85, 88 
These continental fragments were joined by large-
scale orogenic belts encircling the assembled con-
tinents, of which the Grenville Belt is an 
archetypal example.26, 113 How and when these 
continental fragments were joined in the growing 
supercontinent Rodinia is an intriguing question 
and many competing hypotheses exist80, 85, 88 and 
references therein). The all-inclusive Rodinia fit 
model by Li et al.80 is now contested by many27, 81, 

88 as some of the continental blocks interpreted to 
have constituted a part of Rodinia in the former 
model are now considered “lone wanderers”.88 It 
is now apparent that the assembly of Rodinia 

Craton—The tectoni-
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continent.
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belts produced by tectonic 
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Abstract | The configuration of the Greater Indian Landmass was 
achieved during the late Proterozoic era (Grenvillian‑age) through tec‑
tonic cycles involving cratonic blocks of India and East Antarctica in the 
broad framework of the assembly of the supercontinent Rodinia. Geo‑
logical evidences are recorded from orogenic belts separating southern, 
northern and western cratonic blocks of India and its transcontinental 
neighbor East Antarctica. Eastern Ghats Belt of India played a pivotal 
role in the continental amalgamation process and it evolved in tandem 
with the Central Indian Tectonic Zone and the Aravalli Delhi Mobile Belt. 
We have collated geological and geochronological evidences from 
the cratonic blocks and the bounding orogenic belts to trace back the 
Grenvillian‑age tectonics surrounding India and its eventual manifesta‑
tion as the configuration of the Greater Indian Landmass. The status of 
the Greater Indian Landmass as a part of Rodinia is debated and unre‑
solved issues are highlighted.
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occurred over a prolonged period which started 
with the joining of Laurentia with Baltica and 
Siberia through the Grenville orogen during ca. 
1200–1000 Ma.80 The Rayner-Eastern Ghats 
(R-EG) orogen evolved during ca. 1000–900 Ma 
and is believed to have joined the cratonic blocks 
of India and East Antarctica as a part of Rodinia 
assembly19, 43–45, 64, 67, 89, 96 and references therein). 
This time lag of orogenic development is possibly 
linked with the position of the assorted continen-
tal blocks in terms of interior and exterior parts 
of the supercontinent.102

The R-EG orogen has long been considered 
as a Meso-Neoproterozoic belt within the broad 
framework of Rodinia until recent reconstruction 
of the supercontinent.88 Prominent tectonother-
mal activities occurred at the Eastern Ghats Belt 
and the Rayner Complex during ca. 1000–900 
Ma. Moreover, similar structural, metamorphic 
and isotopic signatures (Pb, Sr) of the source 
materials 54 imply that the R-EG orogen evolved 
as a single belt through accretionary orogenesis 
(reviewed in44, 45). A detailed tectonic develop-
ment of the Eastern Ghats Belt is presented in 
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Dasgupta et al. 44, 45 and we are not repeating 
the same here. A peep into the recent literature 
prompts us to review the tectonic processes that 
were operating around the Indian continent in 
the broad time frame of Rodinia assembly.

As far as the Archean nuclei are concerned, the 
Indian continent consisted of three southern (in 
the present geographical coordinate) cratonic 
blocks, namely the Dharwar, Bastar and the Sing-
hbhum, which are believed to have attached 
together since inception, possibly as a supercra-
ton. Commonly termed as the South Indian Block 
or SIB, this supercraton was joined with the Ara-
valli-Bundelkhand and Marwar cratons (com-
prising the Northern Indian Block or NIB) 
during the ca. 1000 Ma orogenic processes though 
the Central Indian Tectonic Zone or CITZ11, 13 
and references therein). This amalgam is com-
monly perceived as the Greater Indian Landmass 
(GIL) and it is argued that the present configura-
tion of India (Fig. 1) was achieved at ca. 
900 Ma;13, 15, 19, 34 Saha et al.119 Here, we present 
the tectonic scenarios surrounding the GIL to 
correlate with the ongoing assembly of Rodinia. 
There is a possibility that a proto-GIL was 
achieved during ca. 1600–1540 Ma5, 7, 12, 14 during 
the assembly of Columbia. Since this configura-
tion does not include the larger part of the East-
ern Ghats Belt, we are not exploring it further in 
the present context.

2  Geological Setting
Peninsular India is constituted of dispersed 
Archean cratonic nuclei tied together by orogenic 
belts of broadly Proterozoic age. Five known cra-
tonic blocks, namely Singhbhum, Bastar, Dhar-
war, Bundelkhand and Aravalli contain nuclei 
that are largely tectonically unaffected since ca. 
2500 Ma, while the Proterozoic orogenic belts 
record episodic growth (mostly reworking of 
older crust with minor juvenile addition) dur-
ing ca. 1700–500 Ma. With the exception of the 
Himalayas and the Southern Granulite Terrane, 
the rest of India (including the vast terrane now 
covered by the Deccan basalt) represents the GIL 
(Fig. 1), which remained remarkably stable until 
the Phanerozoic era. The moot question that 
intrigues one is how and when the configura-
tion of the GIL was achieved. The answer to this 
question can be sought from the E–W trend-
ing Central Indian Tectonic Zone (CITZ) which 
separates the NIB from the SIB. With the publi-
cation of new and improved geological, paleo-
magnetic and geochronological data from the 
CITZ and the bounding cratons, new models for 

Greater Indian Landmass—
The coherent landmass of 
present day India that was 
formed at ca. 1.0 Ga by large-
scale tectonics and continental 
amalgamation.

the configuration of the GIL have been proposed 
recently.11, 13, 14, 119 Based on these data, it is more 
or less accepted that the GIL configuration was 
achieved during the ca. 1060–1000 Ma when the 
SIB was underthrusted below the NIB as a result 
of continental collision, although an earlier phase 
of amalgamation at ca. 1600–1540 Ma has been 
considered for the assembly of the proto-GIL.13, 

14, 119 The present review will address this issue in 
a later section, but before that, let us have a brief 
overview of the different components of the GIL.

3  Archean Cratonic Nuclei
The NIB is constituted of the Bundelkhand and 
Aravalli cratons, often considered as a combined 
proto-continent with unmistakable Archean 
ancestries.120 A separate cratonic unit, named 
the Marwar block, is postulated to have existed 
at the western part of the Aravalli craton. For the 
Aravalli craton, the Banded Gneissic Complex 
(BGC) represents the basement for the overlying 
Proterozoic metasedimentary rocks of Aravalli 
and Delhi Supergroups.48, 69, 114, 115, 131 The BGC 
has a checkered history with complex interplay 
of magmatism, metamorphism and deformation 
since ca. 3.3 Ga.58 The cratonization of the BGC 
(Aravalli craton) and the adjoining Bundelkhand 
craton occurred at 2.5 Ga with emplacement of 
granite.142, 143 The Bundelkhand craton is com-
posed of granitic basement (massif) over which 
lie the Proterozoic sedimentary successions and 
Deccan Trap volcanics of Cretaceous age. It is 
argued that the massif component of the craton 
is composed of TTG gneisses of ca. 3.59–3.30 Ga 
age77, 94, 119 and reworked by subduction–accre-
tion–collision setting at the end Neoarchean-
Early Paleoproterozoic era109 and references 
therein). A close look at the history of the two 
adjoining cratonic blocks of NIB finds no major 
difference except the fact that these are separated 
by a lineament which is considered as northern 
extension of the CITZ.119 The information about 
the Marwar block is cryptic without much infor-
mation about the nature of basement over which 
lies the sedimentary successions.46, 47 The west-
ern (Marwar block) and the eastern (Aravalli-
Bundelkhand) cratonic blocks are separated by 
the Phulad lineament, a major terrane boundary 
shear zone with characteristics of a suture.33

Three cratonic blocks, namely the Singhb-
hum, Bastar and Dharwar, constitute the SIB; 
each having distinct Archean ancestries. The 
Singhbhum craton constitutes ca. 3.50 Ga Iron 
Ore Group of rocks 101 which is an enclave 
suite containing metavolcanics and banded iron 
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formation (BIF)-bearing greenstones within ca. 
3.45–3.10 Ga granitoids of TTG affinity.1, 93, 100, 

116, 134, 138 The Singhbhum craton at its south is 
flanked by the Rengali Province which records 
the southward growth of the craton through 
complex tectonothermal evolution during ca. 
3.0–2.50 Ga 21, 34, 82 and development of succes-
sive sedimentary basins down to the Paleopro-
terozoic era.41 The Y-shaped Rengali Province 
also separates the Singhbhum craton from the 
southwesterly placed Bastar craton and southerly 
placed Eastern Ghats Belt (Fig. 2). The Bastar 

craton consists of ca. 3.56–3.51 Ga TTG gneiss-
granite57, 108, 124 which formed the basement of 
the Proterozoic sedimentary successions. The 
Dharwar craton is separated from the Bastar 
craton by the Karimnagar belt-Pranhita–Goda-
vari basin (Fig. 1) and exposes a large section 
of Archean continental crust having a complex 
evolutionary history. The western part of the cra-
ton is consisted of ca. 3.40–3.00 Ga TTG gneiss, 
intruded into and overlain by greenstone.73, 75, 97, 

105 The late Archean (ca. 2.74–2.55 Ga) granite-
greenstone succession bears important evidence 

Figure 1: Broad geological map of India showing the approximate boundaries (in red stippled line) of 
the GIL (modified after.119 A cartoon diagram of the GIL (modified after13 is shown in the inset which is 
stitched by the orogenic belts. MB Marwar block, ADMB Aravalli‑Delhi Mobile Belt, BKC Bundelkhand 
craton, VB Vindhyan Basin, CGB Chattisgarh basin, CGGC Chhotanagpur Granite Gneiss Complex, SC 
Singhbhum craton, BC Bastar craton, EGB Eastern Ghats Belt, CB Cuddapah Basin, DC Dharwar cra‑
ton, SGT Southern Granulite Terrain, CITZ Central Indian Tectonic Zone, SPGC Shillong Plateau Gneissic 
Complex.
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of crust-mantle coupling in an accretionary set-
ting49, 74 and references therein). The eastern 
part of the craton is composed of younger (ca. 
2.7–2.53 Ga) granite-greenstone succession.74, 106  
Voluminous granite of ca. 2.52–2.50 Ga emplace-
ment age occurs between the two cratonic 
blocks, but their abundance is higher in the east-
ern side.98

4  Proterozoic Eastern Ghats Belt
The Proterozoic Eastern Ghats Belt (EGB) occur 
along the east coast of India flanking the SIB 
(Fig. 3) and played crucial role in connecting the 
cratonic blocks of India with East Antarctica44, 45 
and references therein). This regionally extensive 
geologically complex orogenic belt exposes ultra-
high temperature (UHT) lower crustal section 
that recorded growth histories of the supercon-
tinent Columbia and Rodinia. While the entire 
belt is a collage of several crustal provinces and 
isotopic domains, the southern part of the EGB 
(Ongole domain) evolved during the assembly of 
Columbia during ca. 1.80–1.54 Ga.19, 45, 126 The 
regionally extensive northern part of EGB (East-
ern Ghats Province after52 and domains 2 and 3 
after112 records the assembly of Rodinia joining 
the cratonic India with East Antarctica (45 for a 
review). Despite much disagreement regarding 
the evolution of EGB, it is now established beyond 
doubt that the northern part of the EGB (Eastern 
Ghats Province) evolved together with the Rayner 

Complex as a single orogenic belt (the R-EG belt 
by 96 through subduction-accretion processes dur-
ing the time frame ca. 1.13–0.90 Ga.19, 40, 79, 89, 137 
In a recent review, Dasgupta et al.45 presented in 
detail how the different domains/provinces of 
EGB evolved, which is not repeated here. We are 
more interested in evaluating the consanguin-
ity of EGB in the light of recent supercontinent 
reconstruction models where India is considered 
an outsider in the Rodinia framework,27, 81, 88, 107 
which is quite different from the earlier models.80 
At the same time, we will make a tour surround-
ing the SIB to check whether the sequence of 
events has any correlation between EGB and the 
formation of the GIL. To begin with, let us draw 
our attention to the contacts of EGB with the 
bounding cratons of the SIB.

5  The EGB‑SIB Contacts
5.1  EGB‑Bastar Craton
The boundary between the EGB and the Bastar 
craton has long been recognized as a tectonic 
discontinuity and is variably referred to as the 
‘Eastern Ghats Frontal Thrust’,103 the ‘Eastern 
Ghats Boundary Shear Zone’52 and the ‘Terrain 
Boundary Shear Zone’.16 Marked by a steep grav-
ity anomaly,133 this boundary is also structurally 
characterized by a wide mylonitic zone.4, 61, 103 
Structural and petrological studies suggest that 
the hot granulitic lower crust was thrusted on 
the craton, which caused heating of the craton 

Figure 2: Geological map of the Rengali Province (modified after21 which is bound by major fault/shear 
zones. The inset shows the location of the terrane in the geological map of eastern India (modified after.52 
CGB Chattisgarh basin, RP Rengali Province, SC Singhbhum craton, GB Gondwana Basin, EGB Eastern 
Ghats Belt, BC Bastar craton.
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vis-à-vis cooling and decompression of the gran-
ulitic thrust sheets.4, 31, 39, 62 Structural modeling 
shows that the boundary thrust actually repre-
sents either the listric frontal thrust or the basal 
décollement of the EGB,16 which implies the 
formation of a fold-and-thrust sequence with a 
number of stacked thrust sheets. While the kine-
matics of the event is characterized, the timing of 
the thrusting event remains a bone of contention. 
Two distinct age groups of ca. 1000–900 Ma and 
ca. 550–500 Ma are reported from the northern 
part of the contact zone,130 but it was not clear 
until very recently what these ages imply with 
respect to the thrusting event. In a recent work, 
Chatterjee et al.31, 32 demonstrated the nature of 
age zonation across the contact. The ca. 1000–
900 Ma EG-R event largely cratonized the north-
ern EGB (Eastern Ghats Province) against SIB 
and the SIB+EG-R Ma crust was reworked later 

during the ca. 550–500 Ma due to thrusting.31 It 
is important to note that the adjacent cratonic 
block (footwall) was affected only by the later 
event. There is no record of magmatism and other 
crucial evidences for ocean closure along the con-
tact, defying its status as a true suture. Therefore, 
the ca. 550–500 Ma event most likely represents 
an intracratonic orogenic front in response to far-
field stresses imparted by the Pan-African orog-
eny occurring in East Gondwana. If this was the 
scenario, the cratonization of northern EGB was 
mostly completed during ca. 900 Ma.

5.2  EGB‑Singhbhum Craton
The situation in the northern boundary is com-
plicated due to the presence of a separate crus-
tal province (cf. Rengali Province of 52) between 
the EGB and the Singhbhum craton. Almost 

Figure 3: Geological map of the Eastern Ghats Belt with crustal provinces (after 52 and domains (after112. 
Major shear zones and domain boundaries are also shown. Crustal domains are marked by numbers 
in circle. EGBSZ Eastern Ghats Boundary Shear Zone, MSZ Mahanadi Shear Zone, KSZ Koraput Shear 
Zone, SSZ Sileru Shear Zone, VSZ Vamshadhara Shear Zone, NSZ Nagavalli Shear Zone.
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unclassified, the Rengali Province received much 
attention in recent times presumably due to pres-
ervation of Meso-Neoarchean high-temperature 
(HT) granulite metamorphism and its possible 
role in EGB-craton assembly.20, 82 Apart from 
some Ar–Ar dates in the range ca. 700–400 Ma 
from amphibolite-facies rocks 38, nothing was 
certain about the timing of magmatism and 
high-grade metamorphism of the Rengali Prov-
ince till recently. New petrological, structural, 
geochemical and geochronological data, how-
ever, clearly show that felsic magmatism and 
granulite–amphibolite facies metamorphism 
occurred in the time span of ca. 3050–2500 Ma 
6, 21, 34, 42, 82. Structural and geochronological data 
further indicate that the Rengali Province evolved 
as a southern margin of the Singhbhum craton;55, 
56, 82 which witnessed successive cycles of basin 
development during ca. 2500–1800 Ma.41 As we 
consider the Rengali Province an extension of 
the craton, the northern boundary of the EGB 
must lie somewhere in-between, possibly along 
the Kerajung Fault (Fig. 2). Although a major 
part of the fault zone is concealed under the 
Phanerozoic Gondwana basin, the exposed parts 
of southern Rengali do not show any evidence 
of ca. 1000–900 Ma metamorphism or magma-
tism. Of course, there are very few data to con-
firm this, but nothing has been reported so far. 
On the contrary, there is a report of ca. 500 Ma 
thermal/shearing event close to the Kerajung 
Fault which may be related to reactivation of 
the fault zone.56 Sporadic records of ca. 900 Ma 
event are identified from monazite from the 
rocks near the eastern fringe of Rengali Province 
that marks the northernmost extension of the 
EGB.130 There is no record of ca. 1000–900 Ma 
granulite facies metamorphic imprint on the 
high-grade gneisses or low-grade supracrustals 
of southern part of the Rengali Province. This 
absence of evidence may be explained by the 
resilience of the granulite-amphibolite grade 
Rengali basement by the ca. 900 Ma EGB front. 
Strangely, the low-grade supracrustals devel-
oped over the gneissic basement recorded mul-
tiple cycles of basin opening,41 but no effect 
of the ca. 900 Ma event. The basins must have 
been developed prior to ca. 900 Ma (no detri-
tal zircon < 1800 Ma), but escaped the strong 
EGB imprint. The most interesting results come 
from a supracrustal sequence occurring north 
of the Rengali Province. The Malaygiri suprac-
rustal sequence records ca. 950 Ma Barrovian 
metamorphism imprinted on garnet–staurolite 
schist.34 It is argued that the ca. 950 Ma event 
is the response of EGB orogeny by Singhbhum 

craton.34 This could be considered as a clinch-
ing evidence for EGB-Singhbhum craton colli-
sion, but there are problems. The major problem 
is the critical position of Rengali Province which 
debarred the direct contact of EGB with the cra-
ton sensu stricto. Moreover, if the cratonic block 
witnessed Barrovian metamorphism along a 
clockwise P–T path, the continental block must 
have underthrusted below the EGB front. There 
is no evidence of high-grade EGB rocks in the 
vicinity. Probably, the ca. 950 Ma event is related 
to tectonism of broadly similar age of EG-R 
orogeny, somewhere in the Prydz Bay, Vestfold 
Hills of East Antarctica. Like the western mar-
gin, there is no report of magmatism and no 
possibility of getting a suture here.

5.3  EGB‑Dharwar Craton
A major part of the EGB-Dharwar craton bound-
ary is masked by the overlying sedimentary suc-
cessions of Cuddapah basin (Fig. 1). A number of 
fold-thrust belts showing low- to medium-grade 
metamorphic characters occur along the contact 
zone. The southern part of EGB (Ongole domain) 
is flanked by the Nellore schist belt consisting of 
geologically and geochemically distinct multi-
ply deformed volcano-sedimentary successions 
of the Vinjamuru Group, the Kandra ophiolite 
complex, the Kanigiri ophiolitic mélange and the 
Udaigiri Group.118 The Vinjamuru Group shows 
Archean protolith signatures,110 but its timing of 
metamorphism (amphibolite facies) and juxta-
position to Kandra ophiolite complex occurred 
after ca. 1.9 Ga.117, 139, 140 The deformation and 
emplacement of syntectonic granite (Vinukonda 
granite) within the Vinjamuru Group occurred 
along the eastern boundary of the Nallamalai 
Fold belt at ca. 1589 Ma.53 The Kandra ophiolite 
belt consists of imbricate thrust slices of dismem-
bered ocean plate and interpreted to have origi-
nated under a supra-subduction zone setting at 
ca. 1.9 Ga.117, 139, 140 A second exotic unit, repre-
sented by the Kanigiri ophiolitic mélange, bears a 
somewhat similar supra-subduction setting signa-
ture and interpreted to have been emplaced at ca. 
1334 Ma.51 These ophiolitic sequences are argued 
to preserve relics of subduction–accretion process 
over an extended period (ca. 1800–1300 Ma) at 
the eastern margin of the Dharwar craton and are 
broadly correlated with the assembly and breakup 
of Columbia.44, 45, 118 Late granites, apparently 
clubbed with the Prakasam Alkaline Province 
plutons, were emplaced in the northern part of 
the Nellore schist belt and are interpreted to rep-
resent a Mesoproterozoic rifting episode along 
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the contact, but their status is not clear (e.g.,127. 
Zircon Hf signatures suggest that the provenance 
of the Paleoproterozoic as well as Neoproterozoic 
sedimentary successions of the western Cuddapah 
basin is the Eastern Dharwar craton, but the sig-
natures of the Ongole domain have strong resem-
blance with those of the Nallamalai fold belt.35, 68  
The last major tectonothermal event in the 
Ongole domain occurred at ca. 1540 Ma when it 
was cratonized with the Dharwar craton.125

Recently, Sheppard et al.128 deduced Pan-Afri-
can age (531 ± 7 Ma) from in situ monazite dat-
ing of metamorphosed shale and siltstone from 
the Nallamalai Fold belt of the Cuddapah basin. 
These authors argue that this Pan-African event 
was responsible for folding, nappe stacking and 
very low-grade metamorphism. Although it is not 
clear how monazite grew in such low tempera-
ture conditions, this new age constraints imply 
Pan-African tectonism in the sedimentary basin 
close to the Ongole domain during the assembly 
of Gondwana.

6  Where is the India‑Antarctica Suture?
Early Rodinia reconstruction models assumed 

collision of India and East Antarctica95 which 
would imply closure of an ocean in-between with 
a possibility of a suture occurring between the 
two blocks. Metamorphic history of the EGB sug-
gests no evidence of a collisional orogeny; rather 
a more appropriate evolutionary model is accre-
tionary tectonics. 44, 45 With the accumulation of 
geological data from the Indian side (EGB) and 
the Antarctic side (Rayner Complex), it is now 
clear that the EGB-Rayner combine or R-EG 
evolved as a single accretionary orogen without 
any ocean closure in-between.54, 65, 67, 96 Accretion 
was presumably initiated at the continental mar-
gin of the Indian side (SIB, to be precise) with 
development of subduction zone (Fig. 4) and 
associated accretionary wedge and magmatic/
continental arc. Let us now reconstruct the sce-
nario to figure out what exactly happened during 
the ca. 1000–900 Ma time frame. We must discuss 
R-EG as a single orogenic belt in this time frame. 
The ca. 1000 Ma UHT metamorphism is conspic-
uous in EGB and this was possibly related to the 
high asthenospheric heat flow in back-arc set-
ting.44 Although there are records of granulite 
metamorphism and magmatism in the Prydz Bay 
region of the Rayner Complex during ca. 1000–
960 Ma,81 metamorphic condition in the latter 
never reached UHT, which is exclusive to the 
EGB. Therefore, a westward subduction (in the 
present geographic setting) is indicated and EGB 

Accretionary tectonics—
Tectonic process which is 
dominated by plate subduc-
tion, accretion and eventual 
collision.

was positioned at the back-arc side during the 
ongoing subduction. In addition to that, prolonged 
felsic magmatism occurred in the Rayner Complex 
during ca. 1290–1060 Ma and these magmatic 
rocks show arc signatures.63, 129, 132 Geochemical 
signatures of felsic magmatic rocks from EGB are 
scarce and their emplacement ages are mostly 
unknown (ca. 1190 Ma granite emplacement in 
Phulbani domain, EGB: Ganguly et al. under revi-
sion). Therefore, a comparison of EGB and Rayner 
Complex before ca. 1000 Ma is fraught with uncer-
tainties. However, preponderance of the arc 
magma is notable in the Antarctic side which con-
stituted the fore-arc region of the accretionary sys-
tem. If the EGB and the Rayner Complex represent 
back-arc and arc–fore-arc settings, respectively, 
then a collision between arc–fore-arc and back-arc 
systems can be conceived prior to ca. 1.0 Ga. Since 
the boundary passes between two litho-tectonic 
domains of contrasting tectono-magmatic and tec-
tono-thermal history, it may be appropriate to 
consider the boundary a suture that existed at an 
uncertain time prior to ca. 1.0 Ga. However, the 
unified R-EG orogen came into existence thereaf-
ter and the Rayner Complex (including the Prydz 
Bay) is considered as the Indian component of East 
Antarctica.27 Pb-isotopic signatures of the gneissic 
rocks of the Rayner Complex along the Prydz Bay 
region show characteristics identical to the Dhar-
war craton of SIB,54 which also supports the fact 
that the R-EG belt evolved from the Indian side. 
The R-EG, therefore, evolved as a circum-cratonic 
accretionary orogenic belt (Fig. 5) like the present-
day Pacific. The accretion–collision during ca. 
1000–960 Ma most possibly took place between 
the SIB and the continental blocks of central Ant-
arctica like the Lambert Microcontinent81 or more 
probably the Ruker Province.92 Once accepted, the 
actual suture between SIB and the Ruker Province 
and rest of the central Antarctic craton (Crohn 
Craton of18 must be lying south of McRobertson 
Land;81, 92 Fig. 6). In this context, the geology of the 
Fisher Terrane can be of special interest. The latter 
is composed of mafic volcanics and plutonic rock 
complex78 which is interpreted to represent a calc-
alkaline arc.90 It is argued that three arcs collided 
and fused together between the Napier Complex 
and Lambert Terrane during the ongoing accretion 
and collision.81 The terrane underwent amphibo-
lite facies metamorphism and granite emplace-
ment during ca. 1200–950 Ma.92 Although no 
conclusive reports are available, we suspect that 
some of the mafic rocks could be part of dismem-
bered ophiolite which may be considered as a 
direct proof of the missing suture between India 
and East Antarctica. There are reports of 
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collisional tectonics (clockwise P–T path) from 
the granulites near McRobertson Land.81  

The R-EG orogen was wide in extent 
(100–200 km) and formed by closure of an 
ocean developed between SIB and Ruker Ter-
rane through at least two-phase orogenic events 
(subduction-accretion and final collision) dur-
ing ca. 1000–960 Ma and ca. 930–900 Ma which 

is well documented from the Prydz Bay region 
of the Rayner Complex.81 The ca. 930–900 Ma 
metamorphic imprints are also reported from 
the Lambert Terrane and Clemens Massif.36, 

37, 91 For the EGB, a similar two-stage orogenic 
event has been conceived recently (45 where the 
ca. 1030–970 Ma event witnessed UHT meta-
morphism and emplacement of charnockite and 

Figure 4: Cartoon diagram illustrating the accretionary growth of the GIL during the time frame 0f ca. 
1.06–0.90 Ga as a part of Rodinia. Sequential development of accretionary orogens along E–W (present 
day) and N–S (present day) directions during this span eventually juxtaposed cratonic fragments of India 
and East Antarctica. The approximate time frames have been considered from the published geochrono‑
logical data as described in the text. The inset is a simplistic cartoon of the GIL at approximately 0.9 Ga. 
GIL Greater Indian Landmass, NIB Northern Indian Block, SIB Southern Indian Block, MB Marwar Block, 
EA East Antarctic Block, R-EG Rayner‑Eastern Ghats belt, CITZ Central Indian Tectonic Zone.
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granite while the ca. 950–900 Ma event is a gran-
ulite facies reworking which exhumed the deep 
crust to shallower level (see45 for detail). This is 
not consistent with single stage prolonged evo-
lutionary model of Korhonen et al.79 Interest-
ingly, a similar controversy exists in case of Prydz 
Bay, where both single continuous evolution17, 63 
and two separate stages of evolution24 have been 
postulated.

7  The Other Side of Indian Continental 
Margin

From the foregoing discussion, we have devel-
oped a picture of the sequence of events that 
occurred at the eastern margin of the SIB (in 
the present coordinate) involving R-EG dur-
ing ca. 1000–900 Ma. Now we shift our focus 
to the other side of the SIB. We look at the geo-
logical evolution of the CITZ to find out clues. 
It appears that the northern and north-western 
margin of the SIB (in the present co-ordinates) 
underthrusted below the NIB through CITZ 
during ca. 1060–960 Ma.9–11, 13 The Sausar belt 
of the CITZ exposes a Barrovian metamorphic 
sequence that recorded a clockwise P–T evolu-
tion, which is considered as a cratonic response 
of the underthrusted continental block.11, 13 The 
consequent crustal thickening and upper amphi-
bolites to granulite facies metamorphism in the 
structurally lower plate and crustal anatexis, 

locally producing post-peak dry charnockitic 
magma, at ca. 0.98 Ga are evidenced by zircon 
Hf isotopic compositions 13. It is already known 
that the CITZ is a suture and the ca. 1060–960 Ma 
event eventually closed an ocean basin (Sausar 
basin) that existed between the NIB and the SIB 
(Fig. 4). Looking further east, the Chhotanagpur 
Granite Gneiss complex (CGGC) also preserves 
a fair share of Grenvillian-age evolution. Mafic 
granulites and felsic orthogneisses of the CGGC 
evolved through clockwise P–T path implying the 
onset of collisional tectonics during ca. 950 Ma.99 
Apart from that, many places of CGGC record 
granulite facies metamorphism during ca. 1000–
950 Ma.28–30, 50, 76, 83, 99, 111 Combining all these 
information, it can be argued that the continental 
crust of the SIB was underthrusted below the NIB 
along the CGGC in a similar style as that of the 
CITZ during the ca. 1060–950 Ma. The eastward 
extension of the NIB must be buried under the 
thick sediments of the Indo-Gangetic alluvium. 
It is thus apparent that the CITZ-CGGC combine 
represents a suture that was extended northwards 
between the NIB and the Marwar block along the 
western margin of the ADMB.8, 11, 15 For the lat-
ter terrane, Bhowmik et al.15 recently proposed a 
Grenvillian-age paired metamorphic belt, which 
is a consequence of west-directed continental 
subduction and collision of continent and arc–
back-arc systems.8, 11, 15 Seen in that context, it 
is probable that the ocean closure during the 

Figure 5: Reconstructed configuration of the supercontinent Rodinia at ca. 0.90 Ga (modified after 80 
where the Rayner‑Eastern Ghats belt (R‑EG) have developed as a circum‑cratonic orogen. Abbreviations 
used for cratonic blocks: GIL Greater Indian Landmass, T-Tarim EA‑East Antarctica, SB Siberia, Au Aus‑
tralia, SC South China, LA Laurentia, KA Kalahari, RDP Rio de la Plata, CO Congo, SF Sao Francisco, AM 
Amazonia, BA Baltica, WA West Africa, NC North China.
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Grenvillian-age orogeny occurred from all sides 
(introversion?) causing widespread magmatism, 
metamorphism, thrusting, shearing and fold 
development along the suture. If we see the fea-
tures in a holistic way, the ca. 1060–900 Ma time 
witnessed flurry of activities surrounding the 
continental landmass (SIB) which was evolving as 
a supercraton.

8  Cratonization of the EGB: Significance 
of Pan‑African Signatures

There is a controversy regarding the timing of 
cratonization of the EGB as both Grenville-age 
(ca. 900 Ma) and Pan-African-age (ca. 500 Ma) 
imprints are present at the boundaries. As dis-
cussed earlier, the imprints of the Grenvillian-age 
event are pervasive in the EGB which lies on the 
eastern and northern parts of the SIB (Fig. 3). 
Pan-African (ca. 550–500 Ma) metamorphic sig-
natures are highly localized in EGB, mostly along 
shear zones.52 This observation led Dobmeier 

and Raith52 to conclude that the Grenvillian-age 
crust of the EGB had long-lasting stability like 
its Antarctic counterpart (Rayner Complex). Let 
us focus on two boundaries of EGB where Pan-
African age events have been reported. Along 
the northern boundary of EGB with the Rengali 
Province, ca. 530–500 Ma metamorphic event 
is recorded from the mica schist of the Rengali 
Province adjacent to the Kerajung Fault Zone.56 
Muscovite grains in the schistose rock produced 
sillimanite and K-feldspar by dehydration reac-
tion driven by heating, arguably resulted from 
shearing, thrusting and unroofing of the deeper 
crust in a crustal-scale flower structure.56 The 
grade of metamorphism reached up to upper 
amphibolite facies (K-feldspar-sillimanite zone) 
only along the shear/thrust zone. This can be 
considered as a direct response of the extended 
Singhbhum craton, which also preserves some 
evidence of Grenvillian-age imprint.34 Along the 
western margin, the EGB rock suite is argued 

Figure 6: A possible correlation map of India and East Antarctica at ca. 900 Ma showing the positions of 
the Eastern Ghats Belt and the Rayner Province (modified afte 81, 92, 96. Positions of possible suture zones 
are shown in the diagram (see text for details). BC Bastar craton, DC Dharwar craton, SC Singhbhum cra‑
ton, NC Napier Complex, RKP Ruker Province, MRL McRobertson Land, FT Fisher Terrane.



355

Eastern Ghats Belt, Grenvillian‑Age Tectonics and the Evolution of the Greater Indian Landmass: A Critical Perspective

1 3J. Indian Inst. Sci. | VOL 98:4 | 345–363 December 2018 | journal.iisc.ernet.in

to have thrusted over the Bastar craton along a 
major shear zone.4, 16, 39, 136 Recently, Chatterjee 
et al.31, 32 documented age zonation across an 
EGB-Bastar transect where the ca. 950 Ma met-
amorphic event is located at the interior part of 
the orogenic belt and the ca. 500 Ma metamor-
phism is imprinted on the EGB thrust sheet as 
well as on the basement gneisses of the Bastar 
craton. The grade of metamorphism was amphi-
bolite-lower granulite facies which locally trans-
formed hornblende into clinopyroxene.32 Both 
these examples show that moderate to high tem-
perature metamorphism occurred only along the 
shear zones due to thrusting of the EGB on to the 
bounding SIB. There is no record of magmatism, 
ocean closure and suturing during this time along 
the margins of EGB, unlike the case of the South-
ern Granulite Terrane119 and references therein). 
The ca. 550–500 Ma event in the EGB-SIB sector 
is thus intracratonic in nature, as conceived by 
Dobmeier and Raith,52 albeit without precise age 
data along the terrane boundaries. We also con-
sider a similar possibility while the actual Pan-
African suture is located farther east of the R-EG 
along the Trans-Antarctic Mountain67, 81 and the 
ca. 550–500 Ma events are the cratonic response 
to far-field stresses of the Pan-African orogeny.52

9  India in Rodinia: Constraints 
from Paleomagnetic Data

Meert85 made an interesting observation on 
the distribution of continental blocks within 
a supercontinent. Accordingly, the continental 
blocks which remained joined together in sev-
eral supercontinent cycles are termed as “strange 
attractors”. The India–Antarctica–Australia–Mad-
agascar combination, commonly known as the 
East Gondwana, is considered as a strange attrac-
tor. On the other hand, distinctly located conti-
nental blocks, like the South China, are termed as 
“lonely wanderers’. In the configuration of Rod-
inia, the position of India is controversial. Some 
models propose that India became part of Rod-
inia during ca. 900 Ma80 and others), while oth-
ers consider India as a lonely wanderer in the 
broad framework of Rodinia.26, 81, 88, 107 In the lat-
ter model, India and part of the East Antarctica 
(Napier Complex + Rayner Complex + Ruker 
Terrane) never became part of Rodinia, which 
is based on paleomagnetic constraints from the 
ca. 1070 Ma Vindhyan and ca. 750 Ma Malani 
rocks.59, 84

Continental reconstruction is based on appar-
ent polar wander paths which provide quantita-
tive and robust evidence about relative positions 

(latitude and orientation) of continental blocks 
in the erstwhile supercontinents. However, many 
workers highlighted the ambiguities in paleo-
magnetic data that may lead to critical errors in 
reconstructions.22, 86 Meert85 discussed the issue 
of hemispheric ambiguity for high paleolatitude 
positions and described how it can be cross-
checked from the established temporal sequence 
of paleomagnetic poles from two (or more) dif-
ferent continents. In case of the Precambrian 
continental blocks, the temporal resolution is 
poor and one has to rely often on paleomagnetic 
poles from rocks that differ in age by more than 
100 Ma. Alternatively, spatially and temporally 
separated poles from separate cratonic nuclei can 
be analyzed to find coeval poles conforming to 
a fixed reconstruction.121 Moreover, factors like 
secondary magnetizations in Precambrian rocks 
complicate the matter.87, 135

The ca. 1070 Ma (Vindhyan) and ca. 750 Ma 
(Malani) ages for paleopole reconstructions have, 
however, problems. The ca. 1070 Ma age for Vin-
dhyan is slightly older than the ca. 1000 Ma clo-
sure of NIB-Marwar block. Therefore, its ancestry 
before amalgamation should not be treated as 
convincing evidence. Similarly, ca. 750 Ma is 
another crucial time for supercontinent cycle. It 
was the time when Rodinia began to disintegrate 
and the ca. 900 Ma configuration of India could 
have been disturbed. It is possible that the NIB 
was fragmented from the India towards North 
China and the pole positions are masking the 
position of India during ca. 900 Ma. In a recent 
work, Wang et al.141 suggested that NW India was 
spatially linked to the South China and Madagas-
car blocks during the time frame of 800–780 Ma 
as a continuous geodynamic system. These work-
ers further argue that this continuous system 
evolved either along the periphery of Rodinia or 
as outboards of the supercontinent with the age 
of convergent plate margin magmatism coincid-
ing with breakup of the supercontinent. It can be 
argued that the ca. 1060–900 Ma events occurred 
surrounding the Indian land masses, united them 
as the GIL. This cannot be possible without ocean 
closure and does not justify the role of India as a 
lone wanderer. The surrounding cratonic blocks 
must have closed in and the possibility that India 
remained a part of Rodinia can still be possible.

10  Discussion and Unresolved 
Questions

The GIL assembly was distinctly related to the 
tectonic scenario developed surrounding the SIB. 
While the CITZ marks the northern tectonic 
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margin, the EGB preserves a fragment of the east-
ern tectonic margin of the SIB. The counterpart of 
the EGB is the Rayner Complex which is now dis-
placed to East Antarctica. We have argued that the 
Grenvillian-age orogeny is by and large respon-
sible for development of GIL. A relatively recent 
development regarding this orogeny in the Indian 
context is a possible identification of a paired met-
amorphic belt in the Aravalli Delhi Mobile Belt or 
ADMB.15 Identification of high heat flow along 
the western boundary of the South Delhi Fold 
Belt raises the possibility of arc-related metamor-
phism at ca. 1.0 Ga, which might be paired with 
collision-related metamorphism at the same age 
in adjoining parts of the ADMB.

We now intend to focus on three important 
related aspects that highlight some unresolved 
issues.

10.1  Amalgamation of Domain 2 
(Part of Eastern Ghats Province) 
and Ongole Domain

Mezger and Cosca89 envisioned, on the basis of 
geochronological data, that part of EGB occur-
ring south of the Godavari rift has a contrasting 
geological history with respect to the northern 
part. This implies that the Godavari rift could be 
taken as the boundary between the southern and 
northern EGB. Subsequently, ca. 1.0–0.90 Ga met-
amorphic event was reported from pelitic granu-
lites occurring south of the Godavari rift137 which 
suggest that the suspected boundary between the 
ca. 1.6 Ga Ongole domain and the ca. 1.0–0.9 Ga 
domain 2 of the Eastern Ghats Province should lie 
at high angle to the Godavari rift. To find the exact 
location of the boundary between these two con-
trasting age crustal domains, one needs high-reso-
lution age data from closely spaced localities along 
an E–W transect. Upadhyay et al. 137 deduced zir-
con U–Pb ages from felsic gneisses of Vijaywada 
area (their sample KR 8) which lies close to the 
Ongole domain. The obtained age information is 
very complex spanning 1.20–0.5 Ga. Using Hf iso-
topic signatures, these workers argued that zircon 
grains were produced by an early anatectic process 
(ca. 1.20–1.0 Ga) while the later events (< 1.0 Ga) 
possibly reworked zircon grains by coupled dis-
solution-reprecipitation process. This conclusion 
implies that although the cratonization of the 
Ongole domain occurred at ca. 1.54 Ga;125 the ca. 
1.2–1.0 Ga event finally joined it with the Domain 
2. Interestingly, Mezger and Cosca89 reported Ar–
Ar age from hornblende of the Ongole domain, 
which can be considered as a possible response of 
the cratonized Ongole domain of the impending 

ca. 1.2–1.0 Ga orogeny. This needs to be checked 
with more robust geochronological data. The 
suspected boundary should have N–S orienta-
tion whose structural character would provide 
significant information about the nature of jux-
taposition. Given the disposition of the rocks, we 
speculate a major shear zone between the two that 
needs to be verified.

10.2  UHT Metamorphism in the EGB 
and its Absence in the Rayner 
Complex

It is important to mention that although the 
R-EG evolved as a single orogen, UHT metamor-
phism is exclusive to EGB as there is no report 
of it in the Rayner Complex. This implies that 
the cause of UHT metamorphism during the 
evolution of R-EG was spatially restricted to the 
Indian side. In a recent review on time scales of 
UHT metamorphism, Harley66 made an elaborate 
discussion on possible tectonic setting for both 
long-lived and short-lived UHT metamorphism. 
He argued that the back-arc basin can be consid-
ered as an ideal setting for UHT metamorphism, 
where short-lived UHT metamorphism will be 
facilitated by enhanced heat flow by magmatic 
under-accretion and mantle heat advection under 
extensional accretionary setting. This setting is 
quite different from the long-lived collisional  
orogenic settings.3, 70–72 In a recent study, Bhow-
mik and Chakraborty 7 used sequential kinetic 
modeling to demonstrate how an apparently 
long-lived accretionary process can be resolved 
into several short-lived tectonic pulses which may 
have direct implication in Proterozoic tecton-
ics. A strong temporal link among magmatism, 
crustal growth and granulite metamorphism is 
a characteristic feature of UHT metamorphism 
in back-arc basin. In this context, emplacement 
of voluminous granitic and charnockitic magma 
during ca. 1.0–0.95 Ga in the EGB 2, 19, 60, 104 can 
be considered as the magmatic component of 
the EGB back-arc basin. The mentioned spa-
tial restriction warrants that the back-arc basin 
was positioned at the Indian side with a westerly 
dipping subduction polarity, which needs to be 
checked with geophysical data.

10.3  Significance of ~ 1.7–1.5 Ga Events 
in the Indian Scenario

The widespread occurrence of tectonothermal 
activities at ~ 1.7–1.5 Ga in different Proterozoic 
mobile belts of India implies that the “boring bil-
lion” was eventful here. Such events were recorded 
in the Ongole Domain,19, 125 ADMB, 11, 23, 123  
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CITZ 13 and Chhotanagpur Granite Gneiss Com-
plex.99, 122 The exact significance of such activities 
is speculative and it is not clear whether a con-
tinuous orogen existed, which will be obviously 
related to the Columbia supercontinent.
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