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Abstract

Video services will form a substantial portion of the traffic carried by emerging broadband integrated networks. The
video streams are compressed and sent to the network to conserve bandwidth and hence require a good model to repre-
sent them 1n an asynchronous transfer mode (ATM) network. In this paper, we model the video sources by means of a
diffusion processes with mean f, variance o® and co-variance C(f). We consider video teleconferencing where the
changes 1n the successive frames are not abrupt but are more or less uniform The matching parameters for the mean,
variance and covariance are taken from discrete-time Markov chain (DTMC) found in Blondia and Casals (Perform-
ance Evaluation, 1992, 16, 5-20). The video telephony session is modelled according to a ttuncated diffusion process
and we calculate the steady-state behaviour for such a process We consider two truncations, namely, reflecting barrier
and absorbing barrier and state their intuitions in video telephony.

Keywords: Diffusion process, traffic models, VBR sources.

1. Introduction

The asynchronous transfer mode (ATM) is considered by the International Telecommunication
Union-Technology (ITU-T) Standards Committee as the transport method for the broadband
integrated services digital network (B-ISDN). In this network, digital video communica-
tion(video phone, video conferencing, television distribution, etc.) is expected to be a major
class of service. ATM offers the capacity to support variable bit rate (VBR) connections. These
input sources share a link of constant capacity d, which is less than the sum of individual bit
rates, achieving a significant multiplexing gain. In particular, information loss and delay are
the most important parameters that determine the quality of service. This paper derives effi-
cient diffusion models for the VBR traffic representing the video traffic offered in an ATM
network.

Traffic is the driving force of communication systems, and traffic models are of crucial im-
portance for assessing network’s performance. In practice, stochastic models of traffic systems
are relevant to network traffic engineering and performance analysis, to the extent that they are
able to predict system performance measures to a reasonable degree of accuracy. The funda-
mental systems, of which traffic is a major ingredient, are queueing systems.

Fluid flow models have been used extensively in modeling high-speed communication
networks." ? The fluid represents packets or bits of information. The fluid flow model de-
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scribes the stochastic behaviour of the fluid flow in the buffer. The fluid arrival process is
modelled by Markov-modulated process which is described by a continuous time Markov
chain (CTMC).? In spite of their success as modelling tools in ATM networks, the fluid flow
models have one drawback, that is they are second-order models. Hence, they work well when
the system characteristics are adequately described by first- and second-order moments. This is
the reason why they are very attractive in modelling D/D/1 queue in random environment.
Consider a queue with a buffer, When the number of customers in the queue is very high, each
discrete step’s increase in the queue length, because of arrivals and decrease in queue length
because of departures, is very small when compared to the total queue length. In such cases it
is reasonable to approximate the discrete flow of customers by a continuous flow like a fluid.
Any such results originate from fluid mechanics, in particular the diffusion for an ideal gas.
Hence we call them as diffusion approximations. These techniques are also useful is studying
the transient behaviour of the queueing system. In ATM networks, where the packets are of
constant size and sources behave in an “on-off” fashion, the first-order models cannot account
for the variablity of the arrival rate of the fluid. This is discussed in Karandikar and Kulkarni.*
It is this limitation that has prompted us to investigate the second-order fluid flow models to
model ATM networks. In the case of VBR models, there is a positive serial dependence be-
tween successive packet arrivals, and this dependency is a major cause of congestion in multi-
plexer queue.

In this paper, we analyze the traffic patterns of the stochastic fluid flow system shown in
Fig.1. The system consists of a buffer of finite size B, with the server having a constant rate of
output d, which receives input from heterogeneous set of traffic sources. Our primary motiva-
tion for considering this system stems from its use in modelling statistical multiplexing of sev-
eral sources at an ATM switching element in a B-ISDN. The high rates of transfer in such net-
works make conventional queueing models, which treat individual cell as customer, unwieldy.
The input flow characterized by diffusion process, accurately captures the bursty nature of data
flow in such networks. The idea of approximating a discrete state process by a diffusion proc-
ess with continuous path was discussed in detail in Feller.’ The procedure of using a diffusion
process to study a queueing system, whether it be a continuous time system or a discrete-time
system can be useful because mathematical methods associated with continuum very often
lend themselves more easily to analytical treatment than those associated with discrete coordi-
nate axes. Further references on diffusion model systems are available elsewhere.” *

1.1. Motivation for considering the diffusion process for moving pictures expert group
(MPEG) streams

Traffic characterization and source modelling of VBR-coded video are active research areas as
VBR video would be a major player in the future of B-ISDN. We consider the MPEG-2 VBR
video source. It was pointed out by Lou et al.'” that the frame sequences are normally distrib-
uted when we make the following normalizations. The MPEG video can be grouped into three
types, I, P and B frames. These frames are different from each other and have different sizes.
An MPEG-2 video stream contains the mixture of all the three frames with periodical frame
structure. As a typical example we consider the ‘Mobl” sequence shown in Fig. 2. The nor-
malization procedure is a linear process and is explained below.
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Let M;, Mp and Mp denote the mean size of I, P and B frames, respectively. Let f{i) denote
the ith frame appearing in the MPEG stream. Let f (i) denote the ith frame appearing in the
MPEG stream after normalization. Define
M, Mp

SPB =—_—. (1)

Sp=—L,
IB MB MB

The following linear transformation is applied to each frame in the sequence

JO
fiy= S
if the ith frame is a B frame,
fo =12 @)
PB
if the ith frame is a P frame, and
F = £6)

if the ith frame is an [ frame. After normalization, the number of cells per frame in the whole
sequence is at a comparable level. It is assumed that the data series of the frame size after the
normalization can be described by the normal distribution as shown in Fig. 3. The histogram of
the ‘Mobl’ sequence is plotted and the distribution is found to be normally distributed. To test
whether the marginal distribution of the frame size is indeed a normal distribution, a Q-Q plot
which plots the quantiles of data vs the quantiles of the fitted distribution is also used (Fig. 4).
The fit is fairly good except for a few points. This test was carried out for most of the se-
quences and the results are similar. So the conclusion is that the MPEG sequences can be de-
scribed by the normal distribution. The linear transformation does not change the distribution
type of the series if it follows a normal distribution. Simonian® had indicated that experimental
measures on animated picture transmission in packet mode have shown that the input process
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can be modelled by a continuous gaussian stationary process with constant mean 4 and the
decreasing exponential correlation function given by

El(g— 1) - (I — )] - &™ 3)

where J, is the instantaneous arrival process, U the mean of the arrival process, 7 the rate pa-
rameter, T the time constant and Y, is a constant. Stmomnian® also points out that the theoretical
parameter ¢ and the measured parameters 2, and 1) are related by

o’ =2n%" (4)

where 1= ¢+ 5. Here @ and 3 represent the probability that ‘on-off” source 1s ‘silent’ or ‘ac-
tive’, respectively. in the next time period. Also, let 7= 1. So the queue length process is
scaled as Q, =nQt/ Y. So, whenever we use the fluid content in the buffer, we use Q;, -
stead of Q,.

2. Diffusion approximation for VBR sources

In this section, we propose analytical models for variable bit-rate video sources and their su-
perpositions. These models are based on the earlier work of Maglaris e al.’ Maglaris er al.?
and Blondia et al.,® approximate video sources and their superpositions by means of a discrete-
state continuous-time Markov process. In this paper, we model video sources ty diffusion
process which is very useful for fluid approximation approach in statistical m.{tiplexing. We
consider sources with uniform activity level, i.e., where no sudden changes in bit rate occur.
The typical example is the video phone where there are no abrupt changes in the scene, except
for the minor movements of head and shoulder.

2.1. Video sources with uniform activity level

Consider a video scene where the changes are uniform. The scene is composed of M basic in-
formation blocks which are either ‘on’ or ‘off’ depending on the scene characteristics. Mathe-
matically speaking, we have M identical independent ‘on-off” sources each generating A bits/s
when in ‘on’ state. The continuous time version of the ‘on-off’ source is shown in Fig. 5. We
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consider the discrete time case, which is represented by a two-state Markov chain similar to the
continuous time case. Here we have probabilities instead of rates. Also there are probabilities
for the remaining in the same state. They are geometrically distributed which is the discrete-
time version of the exponential distribution. We consider the versatile point process called dis-
crete-batch Markovian arrival process (D-BMAP), which is the discrete time analogue of the
batch Markovian arrival processes introduced by Lucantoni.'’ It has the advantage of model-
ling large classes of VBR sources.

Some good examples of the slow change scenes available 1n practice are the bike, the float
and the monkey sequences. Here the successive scene frames do not change very rapidly, but
do so very slowly. The sequences are shown in Fig. 6. The values of mean, variance and co-
variance are derived by calculating the steady state mean, variance and co-variance of the
Markov chain as shown in Fig. 9. Figure 9 is a CTMC but we consider it to be a discrete time
Markov chain (DTMC). The superposition of M sources constitutes a video telephone session.
These ‘on-off” sources are multiplexed on a link of capacity d bits/s. The cell-arrival rate is
quantized into discrete level of A cells/s, i.e. when the state of the Markov chain is in state ,
(0 <i< M), the source emission rate is /A bits/s. We assume M+ 1 possible levels {0, A,
2A,......, M A} and the transitions take place between neighbouring quantization levels only.
Furthermore, we assume that the transition occurs with geometrical transition rates. So the cell
stream arriving at the multiplexer buffer is approximated by a superposition of M identical
independent ‘on-off” sources, called mini sources, each generating cells at a constant rate while
being in geometrically distributed active period. The resultant Markov chain is equivalent to
sum of M identical two-state mini sources each moving back and forth geometrically between
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an ‘off’ and an ‘on’ state in which A bits/pixel are offered to the access buffer. The composite
rate, in the units of bits/pixel, is labelled as I,. Note that the rate will be changing in frame in-
tervals (30 frames/s) rather than continuously. This is also the multiplexed rate into the buffer.
The other way to look into the diffusion approximation is to treat the individual pixels as inde-
pendent ‘on-off” sources having the rates of transitions as that of a two-state DTMC or CTMC.
The transition rate matrix as given by Blondia and Casals®

'1-Ma Mo 0 0 }
B 1-B-(M-De (M- 0 0
P 0 2B 1-28-(M-2)yaa (M-2)x 0 5)
0 0
0 0
|0 0 0 : Mﬂ 1-MB|

This captures the model more accurately. As the number of pixels is very large, the resul-
tant equations arising from the usual Markov chain approximation is very hard to solve.

The continuous time analogue of the ‘on-off” source is shown in Fig. 5. Now we construct a
diffusion model as a limt for the the model given in Blondia and Casals.® Consider the DTMC
and its associated transition probability matrix as given in eqn (5).

P, is1= (M-
P,=1-if-(M-iHa (6)
P, =i
Given that the Markov chain is in state i, it can go to i+ | or i — | state or remain in the same

state with the above probabilities. The infinitesimal mean rate of change from a state / is given
by

[Privr=Pic1]A=—p(iA)AL = (M - o— 1A @)
The infinitesimal variance of the change from one state to another is given by
[Pl,l+1 +Pt.z-l "’(Px,H-l +P;,;~ 1)2]A2 = &(JA)AI (7N

Using the standard technique of converting a birth-death process into a diffusion process as
indicated in Cox and Miller,'* and appendix A.1, we get

Flxy) (mea x) 92 f(t:%,)
or ok 2 ox?

A>00<x,y<M (9)

where £1(x) is replaced by the steady-state mean fluid rate of the sources given by u = ‘;’TA‘;

MA%of

(a+B)?*”’
matchmg technique to analyze the performance of our system with the system given in Anick
et al.' and Simonian.® f{1; x, y) denotes the conditional probability density of the arrival process

and similarly ¢*(x) is replaced by the steady-state variance 6* =

since we use moment-



MODELLING VIDEO TELEPHONY BY FOKKER-PLANCK EQUATION AND THEIR ANALYSIS 81

with instantaneous arrival rate of x at time ¢ given that arrival rate is y at time 0. Though the
above equation is governed by the infinitesimal mean and variance which is dependant on the
state of the Markov chain and is given by eqns (7) and (8), respectively, we have plugged the
steady state mean and variance values into the diffusion equation and analyze the performance
of such systems. The boundary conditions ensure that eqn (9) is 0 at O and M. The matching
parameters for 4, 6{2} and C(z) are found in the same way as in Maglaris et al.® The Fokker—
Planck equation derived above can also be treated as a stochastic differential equation of the
form

dl, = u(l)dt + ol)dw,.

the above equation, W,, it and o” are the standard Wiener process, steady-state mean of the
process I; and steady state variance of the process I, respectively.

3. Calculation of the transition probabilities

The diffusion equation modelled above is the result of applying limits on a finite birth-death
process whose transition rates are given in eqn (5). We now proceed to derive the steady-state
distribution of the instantaneous arrival rate process /, described by the stochastic differential
equation given by eqn (10) under the conditions that ¢ > 0. In order to discuss the boundary
condition and the stationary distribution, we shall approximate the process Z, by a sequence of
diffusion processes with smooth drift and diffusion coefficients. Let u'(f) and n(I) be mono-
tone and sufficiently smooth functions such that y*(I) = u(l) and ¢"(J) = o(l) for I outside the
interval (~n"1, n’l). Then the stochastic differential equation

dry = (1} Jat + o(I}" Jaw, a1

has a umque solution I;'. This is explained by Wong."” Since 1" — p and 6" — o as n —eo
except for I = 0, the sequence of stochastic processes {1,"} converges to a limiting process /.. It

is clear that /, satisfies the original stochastic differential equation [eqn (10)]. So we shall take
the limit I, as the solution of eqn (10). If the dependence of the mean and variance on x is con-
sidered, then we would end up with Ornstein—Uhlenbeck process, whose steady-state density is
gaussian and is given by Kobayashi and Ren,’

G

. 1 7
70)= lim f(r) =g 12)
e 2ro”
where y' = al‘g";, and o = Eﬂ—j%%? We consider the diffusion model by plugging the steady-

state mean and state variance of the original Markov chain into the mean and variance of the
diffusion process and then analyzing the behaviour of the diffusion process.

3.1. Case 1: Both the boundary points are reflecting

The above diffusion equation has boundaries at 0 and M. We can assume that the boundaries 0
and M are either reflecting or absorbing. If we assume the former, then the process does not
stay at the boundaries and is reflected as soon as it reaches any one of the two boundaries. If
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the assumption is the latter, then we have to device ways of making the process to come out of
the absorbing boundaries. Gelenbe'* derives solutions with such equations. We can consider
the boundaries M and O to be reflecting boundaries. The intuition in choosing a reflecting
boundary at point M stems from the fact that the information sent at this point corresponds to
the starting or refreshing of a new scene, which requires transmission of the entire data from
the encoder to the network. The boundary conditions are given by

PE) _gur=0 @>0)
ot

M:Oatx:M (t>0)‘
ox

(13)

The solution of the conditional probability density of the unrestricted process starting at x; at
time 0 and reaching x at time ¢ is given by

| leewd

ﬁ(x,t/x0,0)=o_me w0l 14)

Using the method of images as in Sommerfeld'® and Cox and Miller'? the conditional transition
probability density for the diffusion process with the reflecting boundary {0, M] is given by

2

( ) i 1 (2m+t-12(]—u1)2 (2Zm+r+rg—pu )
f(xtlxq,t5)= e ¥ +e 2N (15)
“~ 2mc?

for x, xp € [0, M]. The conditional pdf with 1ntital conditions x=0 and = 0.01 is plotted in
Fig. 8(a). The plot is also verified using the Mathematica package.

3.3. Case 2. Only 0 as reflecting barrier

Now consider the case when the number of ‘on-off’ sources, M — s, ¢t — 0 and B—0in
such a way that Ma = a and MB = b where a and b are constants. In this case we get a diffusion
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FIG 8(a). Conditional probability density function f{x, #/0, 0) and (b) Conditional probability distribution function F(a,
/0, 0%). The mathematica package was not able to plot the spike at (x, £) =0, 0

approximation as in the previous case but with the reflecting barrier at M being removed. The
conditional transitional probability density of the arrival rate process flx, t/xg, 0) as given by
Cox and Miller'? is

1 (\‘,\g—;u)2 Mmu—(vzxg—;u)z 2[.1 2px X—xn + ;Lt
f(x,t/x0,0)=-——— e M te 0% +—2—e“2 {1—¢[—0——) (16)
N27mo?t o ot

for x, xp € [0. ). (See Appendix A2 for the derivation of eqn (16).) Now let us calculate the
moments of the conditional probability density function. From eqn (16), it can be shown that
the conditional probability distribution function is given by

o2t o2t
17

F(x,1/x5,0)=P(X(2) < x/ X(0)=x,)= %{1+Erf[x“k"o -‘ut}_e%‘;(l + Erf[x - Xg —utm

where p = (a — b)A. The probability distribution function F(x, #/0, 0) is plotted in Fig. 8(b). The
steady-state pdf /(x) and the asymptotic distribution function are found to be

[(x):tlimf(x,t/xo,O):%‘lzie—;% (18)
and
Fy(x) = P(X(es) <) =1 — - (19)

The above is an excellent model for the video telephony where the changes in the scenes are
very slow. This is evident from the plots of density and distribution functions. The steady-state
behaviour of the input is exponentially distributed.
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3.3. Steady-state behaviour of the input rate

Clearly the distribution of I, at ¢ converges to the stationary distribution as ¢ — . Let us denote
flxixg) as the steady-state conditional probability density function. Then as

t—> oo, ?—fi%/tﬁl — 0. Hence the Fokker—Planck eqn (9) becomes

,u(x)f(x/xo)+

Solving the above equation we have

2
d
9 2(") = F(x1x5)=0. 20)

"o B0 4
C ej0_2:2(v) Y
o*(x)

flxlxy)= 1)

where p(x) and o*(x) are replaced by the steady-state values (t and &, respectively, as given in
section 2.1. The constant C is determined from the total probability condition, namely,

{5 f(x 1 xp)=1.50 Cis found to be

o Y—Z“T(")—dy
=t [ M g 22)
o*(x)Jo
Now f(x/xp) is given by
C -«
f(x/x0)=?e o (23)

This expression agrees with the expression derived in the previous section. Now we can also
determine the conditional probability of the input rate exceeding the output rate given that the
input rate is less than the output rate, i.e. f{x > d/xp).

3.4. Case of 0 as an absorbing boundary

The case of having absorbing boundaries at point 0 is tantamount to treating the video connec-
tion as closed. This is a fairly good assumption for the case where the connection ceases after
some finite time. To derive the solution for the condition with the absorbing boundary at the
origin, we consider the case of two absorbing boundaries 0 and d and then extend it to the case
of a single absorbing boundary. This implies that the following boundary condition holds.

lim F(x7x)=0 an lim f(x/x)=0 24)
We use the method of the Fourier series to solve the above equation and find that the functions
ﬁ

V(%) =bpe” sin(%) ©25)

2.2 2 2

mnToc M
o=Q, =~ 26

" 2d* 202 (20)
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The absorbing boundaries are called Dritchlet boundaries and the steady-state probability i8
given by

2ua

m(x)=e* for (0<x<d). (27

b, = \/%(m =12,..). (28)

The eigenfunction expansion of fis given by

The normalizing constants are

oo

f(x / xO) = Zeathm(x)Wm (XO )”(Xo) (29)
m=]
2 !’(‘()’“‘) “—”ié* il _ml7t2g212 . mrx ) M,
=Ee e mz;‘e ~” xsm(-———d )sm( y )

Now if we take the limit of d — o= we get the diffusion process with absorbing barrier at 0.

B0 4 e 220
fx/xg)=2e < 2 jo e 7 sin(meu)sin(7orgu )du @31
2 M_LZ% oo 02;52
==e o e L e * sin{mel)sin(mey ) (32)
1 u(mz—\]__;ﬁlz_ o ol
=—e 2 Io e 2 [coa(g(x - X )) ~ cos(§(x+ xO))]d{ (33)

N27ott

3.5. Calculation of loss probability in case of zero buffer for single source

plo-v) pk (e (vro)
vl v
=e¢ W e T - (34)

From Schwartz,'® we know that the loss probability for the model mentioned in Fig. 7., Py, is
given by
M
P = (i-dyx, /m (35)

1=L+1

where m is the mean number of the sources that are in the ‘on’ state, J={L+ 1, L+ 2,....., M}
represents the overload region, i.e. it represents those states in the Markov Chain in which the
arrival rate is greater than the service rate d. Let 7, represent the steady-state probability that
the Markov Chain is in state i. This is shown in Fig. 9. Another related measure, £ as indicated
in Schwartz'® is given by
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M
£= En,. (36)

=L+

This is simply the probability of being in the overload region. Now in the diffusion model in
which the input is unrestricted, we have

_Gmow?
1 e e 20%

P =— —==(Xx—d)dx and 37
L udst 2mo ( ) ©7
(e '(1;!“ )2
© 2 20t
£= J' LA 38
L+l 2mto %)

Rewriting (x - d) as (x — xy — pit) — (d — %o — ut) and substituting in the above equation we have

_(e=vo-p)?
1 N(X-XO",ut)e 2% (d‘XO—yf)
P == -
L -[d 2mo dx U € (39)
-(d—roz—w)z (d )
ote — Xy — ut)e
= - , 4

o P (40)

In the case of restriction with absorbing boundaries, the cell loss probability is given by
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N2me?t

Similarly, we can plug the value of the process with reflected boundaries in eqn (35) and get
the cell-loss probability.

J(, ulg=v) wh 1 _(v»—z"n)z (mgy
PL=~j e @ e —e @ ldx, @1)

3.6. Superposition of N such sources

We consider N-such video telephony connections each represented by the M-state Markov
chain as said in the above section, with each session having its own mean i, variance 0‘,2 and

covariance C,(f). Also, we assume that each session is independent of other sessions and get the
diffusion equation of the following form

It x,y) ap,(6x,y) <= 9% (6%, )
(;y)zzﬂl( (x +Z (x) 9°p, (133, )

5 >00<x,y<e0. 42)
ox~

1=1

Theorem 3.1. The limiting densities p, of the above processes satisfy the following equation

S 8171 x) 9 p,
0=Zu,( 2 4 r>0.0<x,y<oo (43)
1=1
along with the boundary conditions
N N 42 2
o,(0) , 5 9:(x) 9°p,(0)
0= : ' 2l >0, 44
;#z(x) . +; > (44)
and
(M) < 32(x) P p(M
O——-Zy,(x) p:9(x )+Z '2(x) gx(z )i (45)

The above boundary conditions are got by considering reflecting boundaries at 0 and M.
Proof: Introduce the matrix notation as follows
612 H
63 Hy

N
il
N—
£y
I

and p=[py, pyseeees Py}

This can be written as
Ap(x)+ Bp(x)=0 and
Ap(0)+ Bp(0)=0 and
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AP(M)+ Bp(M)=0 46)

where p(x) and p(x) are first and second derivatives of p(x) respectively. From the general
theory of linear differential equations we know that the solution of the eqn (46) is a linear com-
bination of the functions of the type

p(x) = P
where A is a scalar and @ = [®,, Ds,..... Dy]. Substituting eqn (47) in eqn (46) we get
O[A’A + AB] =0 (48)
Thus, A4 should be a solution to
det[A*A + AB] =0 (49)

and @ satisfies eqn (48). Thus the superposition process, in steady state, is also a truncated
gaussian process with the mean given by =3 u, and variance by o’ = ,Ail 0'3. The
solution to the superposition of N identical sources is also the same as that of the individual
process. So the expressions derived for the single source case is applicable for these sources

except the mean and variance of superposition is the sum of mean and variance of individual
sources.

3.7. Culculation of loss probabilities for the zero-buiffer case when there aie N sources

As mentioned above, let there be N such sources which emit the fluid to the output port which
has no buffer. The ith source emits fluid according to the diffusion process with the mean rate
1,(x), variance o’,2 (x) and autocovariance C,(x). For the sake of simplicity, assume that all the
sources are identical and have the same mean, variance and autocovariance. The loss-
probability analysis is similar to that of the single source case. We make an assumption that the
resultant process is normally distributed and apply the theory of large deviations to calculate
the cell-loss probability. Now it is easier to find the probability that the input rate exceeds the
output rate. As per the assumption we have N identical independently distributed untruncated
normal random variables whose generating function is given by

-t )2

1 . y i
(9)=5jeg'e 2 tl,\':e“epr o . (50)

Now proceeding as given in Shwartz and Weiss'” we get I(d) = sup9(9d~[u0t +%0263t])=

(d-pr)’

26

Thus Chernoff’s Theorem states that, for any d > 0,

iyl
P(x;+xy+.4xy 2 Nd)=e @ (51)

But we need the probability that the N sources, transmitting simultancously, exceeds the ser-

vice rate Nd. Here it is assumed that the capacity of the channel in Ne/ instead of . In this cuse

we_can perform a direct calculation: v +..... xy is a normal random variable distributed as
VNx, so
- lq I
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2

Pl + x4 4xy 2 Nd) = P(x, 2 /Nd )= *ar, (52)

1= -
=] ¢
N2m JNd
Using the estimate of this integral as in McKean,'®

1 1 e .2 12
S dr<le® (53)
y+y )

we obtain
1 VT
Ba e

which is in agreement with the exponential order of the large deviation estimates. The fact the
l . . .

e rs 50 generic.

7y 2ppearsis also generic

P(xl + Xyt try 2 Nd)z

4. Buffer behaviour
4.1. A diffusion approximation to the fluid model

In order to get the exact solution for the steady-state distribution of the fluid model with diffu-
sion process as input, one has to deal with a two-dimensional stochastic process (Q;, I;); 20 on
R0, ) x R[0, o). It is very difficult to solve such case. So we make an approximation of the
queue length process Q, by a diffusion process X, on R(-oe, o<). The approximating process X,
has no reflecting barrier at 0. So when the process X, is 1n the range of (e, 0], we treat the
original queue length process @, as 0. Define an one-dimensional diffusion process X, by a sto-
chastic differential equation in the form

dX, = p(Xpdt + olX,) dW, (55)

where W, is the standard Wiener process and the coetfecient of drift is u(x) and coeffecient of
diffusion is o(x). The above stochastic differential equation is interpreted as

r r
X, =X, + jo (X, s + _[ (X, (56)

where the second integral is Ito’s integral.

Consider the model as shown in Fig.1. We consider a fluid butfer model with stochastic instan-
taneous 1nput rate /,, constant output rate d and buffer of size B. Here /, is a diffusion process
such that the [ 4 1,dT = A,, the cumulant input has continuous sample paths. The process 4,
represents integrated Wiener process. So the rate of change of 4, follows a diffusion process.
When the buffer is not empty the rate of change in the buffer content @, depends on the differ-
ence I, - d; and when the buffer is empty, it remains zero until the instantaneous arrival rate /,
exceeds d. So the buffer content Q, evolves according to the following equation

d {[,~d:ifQ,>Oor1,_>.d
f=

— (57
dt )

0 : otherwise
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It should be noted that @, is a deterministic function of the sample path of I, but it is useful to
consider (Q,, I,) as a variate Markov process representing the state of the system. Now intro-
duce the integrated process as follows

t !
0,=q-+ [1,ds- [d*dr=q+,-D, (58)

where g is the buffer content at time 0, A, is the total arrival rate till time ¢ and D, is the total
flow out of the system till time 1. 4, is already modelled as a integrated diffusion process and
we will now approximate the output process D; also as a diffusion process. Consider the sec-
ond integral alone. This integral can be represented as

D, = j >Od*ds+J 1(Q, = OY,ds. (59)

The first term represents that the output rate is equal to d when the buffer content is greater
than zero or when the instantaneous arrival rate is greater than the instantaneous departure rate.
The second term represents the fact that the output rate will be equal to the input rate when the
instantaneous arrival rate is less than the departure rate and the buffer content is zero. We must
evaluate the mean E[[,/], < d] and variance var[I/I; < d] of the second term. In order to evalu-
ate the second term, we approximate /, on {Q, =0} by an one dimensional diffusion process

fudt + od W, (60)

where [I = E[Is /1 < d] and o= ,/varlls 1,<d | The derivation of the conditional mean

and variance is given in Appendices A.3 and A.4. So we are approximating the output process
by a diffusion process. The ® need not be evaluated because it is not relevant to the
approximations of the steady-state probabilities of O, and its reasons will be discussed 1n the

next section. Substituting the above values in eqn (58), we get the approximating diffusion
equation for the queue length process as

X, =x+4,-D,
t
-x+J (s +oW,) - JI(XA>O)d=“ds—jOI(Xv=0)d(ﬁs+wm)

X,=q +j;1(Xs > ) (i - d)s + o] - jot (X, =0 (e~ i) + oW,

where W, and W, are the standard Wiener processes. Both W, and Vf/ are Wiener processes

and in future can be represented by just W,. Since the sets {X, >0} and {X, <0} are disjoint, the
above equation can be written as the following diffusion equation

(u-d)dt+0dW, : X, >0
X, = (62)

(e - i)+ waw;: X, <0
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The approximating diffusion process derived for the queue length is derived after several steps
of approximations. Therefore theoretically there is no guarantee that the process Q, simulates
the original behaviour of the original queue length process when it is small. But for large queue
lengths it may well simulate because of the following reason. let the queue length at time f; be
q,, and let 7 be the last departure time from level O of the queue length process before time #.

During the interval (7, fo], the queue length process is greater than O and the departure rate
process is d. Thus we have

X,;=A,~A.+d(t- 1) forte (1, 1p). (63)

This approximation is justified for large 7 — 7.
4.2. Stationary solution
The above equation satisfies the standard Fokker—Planck equation

s _ o 15
5 T Th P(t, x)a(x)+ 7 P(z, x)b(x). (64)

At steady state, the above equation satisfies

0 =—-—3—P(t, x)a(x)—kliz;P(t,x)b(x). 65)
ox 2 ox”
Solving the above equation, we get
2 J‘ ‘;(v )
P P07 66
(*)7=— b(x) (66)
where the constant A is found from
ln(\)
J' i, 67)
So
P(x) = P,(x) for X,> 0 and P_(x) for X, <0 (68)
where
pHzd
P (x)=_a"32_ 2" forX, >0, and (69)
(v-0)
2
P(x)= ;;;e  for X, <0. (70)
The constant A is given by
0 A
_——f 2—"czx+ P I e B (1)

~ 2d—p)p-i)
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From this it is clear that P(x) is independent of @ for g > 0 and the boundary condition at g =0
should be set as oP(0") = oP(0"). Denote Q as the stationary distribution of the random vari-
able Q,. Now P[Q > x] can be approximated as

PO > x] = [ Plu)du (72)
= ij e ” (73)
L AE) (74)

The stationary distribution of X, is an approximation for Q, the stationary random variable of
original queue length process (, and the mass at x =0 is approximated as P(Q=0) = 1~ L,

i
where L= fj—_é‘-.

=

The above approximation, for the queue length exceeding a particular threshold x, is similar to
the one obtained by Simonian® and Kobayashi and Ren.” Figures 10(a) and (b) give the rela-
tionship of the buffer size with cell-loss probability. The first figure is in the range of 700 to
1200 cells and the second covers for the buffer size between 1000 and 1500 cells. The queue-
length process is an approximating process and there is no guarantee that the process simulates
the original behaviour of the O, when it is small. However, this process approximates Q, for
large ¢.

We make comparisons with that of Anick ef al.'' and Simonian® for the cell-loss probabil-
ity. Here, we consider log;oP(Q > x) instead of just P(Q > x). First, we consider the heavy traf-
fic case in which the input is close to the output.

It is very clear that our model gives the worst case performance for all values of the buffer
size. So our model acts as the upper bound on the cell-loss probability. This is also validated
by testing the spring sequence. We use moment matching techniques and determine the pa-
rameters like mean y and variance o for our diffusion model and compare our analytical model

4
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PIO>Y] 50107 1510
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4
(X
[
3 0510
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000 ) ) oo 1200 1 1 U3 1508y
(a) Butersue (b) Butter size

FiG. 10. Cell-loss probability vs buffer size m cells (ranges (a) 700-1200 and (b) 1000-1500).
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Tabel I

Comparison of cell-loss probability, at heavy traffic condi-
tion, among Anick’s Simonian’s and our models for different
values of buffer sizes

Anick model Simonian Model Our model
B (cells)

logwPL logiPe loguwPr
0 -0.37 0 -0.07432
2 —082 -028 -0 178018
4 -111 ~056 -0.356036
6 -1.39 -0.85 —0.534054
8 -1.65 -1.13 -0 712072
10 -1.92 -141 —0 89009
20 -3.22 -282 -178018
30 -4.52 -4.23 -2 67027
40 -5.82 -5 64 -3 56036
50 ~7.12 =705 —4 45045
60 -842 -8.46 -5 34054
70 -9.72 -9 87 —6 23063
80 -1102 ~1128 ~7.12072

Here we assume the output rate to be 16.66 mean(y) = 14.29,
o=319andn=14.

with the original trace and Simonian model (Tables I to III). The tables show that our model
achieves the upper bounds on the cell-loss probability.

Now consider the case when the input is less than that of the output. This is the case of mild
traffic. The output rate is equal to 16.66, mean(y) = 7.14, o= 2.26 and 11 = 1.4. Our mode] per-
forms very badly in this case as is the case with usual fluid models, since fluid models are not
expected to behave well under mild traffic conditions. The diffusion process for the queue

Tabel II

Comparison of cell-loss probability, between original trace
sequence of the spring, Simonian’s and our model for differ-
ent values of buffer sizes

Onginal Trace  Simomian model Our model
B (cells)

loguPL logioPy, logioP1,
0 -0.37 0 -0.01
100 -051 -0.21 -0 14
200 —0.69 -0.42 -0.30
300 -0.75 -0.63 -044
400 -0.83 -0.84 -0.60
450 -0.88 -0.95 -0.67
500 -0.93 -1.06 -074
550 -0.98 ~1.16 -0.82
600 -1.05 -1.27 -0.90

The output rate is 250, mean(y) =215, ¢=100.83 and n=1.4
are obtained using moment-matching techniques.
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Tabel 1T

Comparison of cell-loss probability, at light traffic condition,
among Anick’s, Simonian’s and our model for different val-
ues of buffer sizes

Anick model Simonian model Qur model

B (cells)
logiPy, logiPL logPy,

0 ~4.13 -8.72 -1.0034

2 -8.14 -1099 -2.00578

4 -10.56 -13.25 ~4.01157

6 -12.77 -15.52 -6.01735

8 -14.91 -17.78 -8.02313

10 -17.02 -20.05 -10.0289
The output rate is equal to 16,66, mean(y) =7.14, 0=2.26 and
n=14.

length process has been obtained after several steps of approximations. Therefore theoretically
there is no guarantee that the queue length process will simulate the original process. But O,
simulates the original process when ¢ is large. Suppose that @, >0 and let 7 be the last depar-

ture time from level O of the process O, before time #;. During this time interval (7, 15}, 0, >0
and the departure rate is 4. Thus we have

Qi=A-A+d(t-7)forte (7. 1) (75)

So if the output rate is $d$, then we have the queue length greater than 0 and so the diffusion
process may simulate the original process if the interval (1, 1] is large.

Conclusion

In this paper, we have developed diffusion models for the video telephony traffic. We have
taken a simple Markov chain interpreted for the slow moving video as in Maglaris ez al.* and
mapped it into a truncated diffusion process. Buffer behaviour for such sources is also derived.
Our results of the plots of probability density functions and comparison with Anick ez al." and
Simonian® show that our model gives a reasonable approximation for Video Telephony. We

intend to improve upon this madel by incorporating the scene changes thus extending the
scope to video traffic in general.
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Appendix
A. Derivation of diffusion equation from discrete~time Markov chain (DTMC)

Squaring eqn (7) and adding to eqn (8), we get
[Pyyo1 +P,,1]A" = 2GA)AL+ 0P(iA) (A1 (A
Using eqns (7) and (A.1), we get
pt _ HOAAC o2 (iA)At + p2(ih)Ar
BT A 20

(A2)

and
__H(ip)Ar 02 (iA)Ar + p?(iA) At

2A 24 a3)
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Now consider the transition from state i to any arbitrary state j in exactly n + 1 steps. The equa-
tion governing such a transition is given by

+1 14 n n
BV =R aPh+ BB+ BB, (A4)

[NRNS]

Substituting the values of P, , 1, P, and P, ;_, in eqn (A4) we get
. 2 2 2(; 2
[,u(m)m LS+ p (zA)At] - 2{1 o2 (iA)At+ (zA)At] o .

24 242 HLITA g 24 ni
. 20 2¢:
{” u(zZAA)At 0 (zA)At2 Z # (zA)Ati\ . (A5)

Taking P; ;s on one side we get

n+l . 2/, 2/ 2/ 2.
it {uéf) AL (zA)Az] +2{a )+ (zA)Az] P
. 2/ 2/,
A)As+ 2 (iA)A |,
[- ";’fh" (14) . AZ” (i) JP,_L, (A6)
iA O (iA)+ WP (iA)Ar |, W
%—AJ[PHLJ —Pl"lyj]—kl:———ﬁ—(———— { 141,y “21:;,; + 141, (A7)
Equation (A7), when simplified yields

. . 2 2 p(s.
&P(gzx’y) = u(x) 8P(;’xx’ ), 0 2(") ? P;”Zx’y).T >0.0<x,y< M. (A8)

X

L. Derivation of conditional probability density function in the truncuated case using the
method of images

Consider a standard Fokker-Planck equation with the boundary condition

1 2 8f .
—ot X _ =0.
[2 o " 'UJJ\:O (A9)

The appropriate image system for the above problem as in Sommerfeld™ consists of a point
image at x = -, and a continuous system of 1mages in the range .1 < —x,. We get

WY L Ke ok +J e " L{a)da (A10)

—o0

1 (== ~(e=p-pr)? v, e )
flx;t)= e

(st) \2mo
The above equation satisfies the standard Fokker-Planck equation and its initial condition. We
must determine the constant K and the function L(a) so that the eqn (A9) is satisfied. Using eqn
(A10), the condition eqn (A9) leads to the equations



MODELLING VIDEO TELEPHONY BY FOKKER-PLANCK EQUATION AND THEIR ANALYSIS 97

1 ,dL
~0*—=-ul{a)=0 and (A1)
2  da
_ou R0
(xo = r)e = =[xk + WK +16° L{=x,)]e =" = 0,10, (A12)
It follows that
2w 2l
K=¢ ° ,L(a):g—‘lzie a (A13)
o)

Substituting the above values in eqn (A10), we get the solution for the Fokker-Planck equation
which is bounded at one end.

Alll. Computation of E[1/], < d]

The P[I; < a/l; < d] is defined only for a <d as it is zero for a > d. We consider a general nor-
mal distribution as /, is defined to be a diffusion process which has the property of being nor-
mally distributed (Since I, can be expressed by forward equation as in Cox and Miller,” we
have the conditional probability given by normal distribution). Then we consider the truncated
normal which is the realistic assumption as the departure and the arrival rates can never be
negative in the context of computer communication.

_Gem)?
A [, xe " dx
fi=E[I, /1 <d]=—:(—;§2———— (Al4)
Ji‘ e 2 dx

This expression is got from the fact that E(x) = E(x)/P(x < d). The above equation is a solution
for the process which is not restricted, i.e., it is in the range from (—oe, +c0),

(emP
J‘_lm xe 2 dx

L)
J'd e 264 dx

A

il

E[l,/1,<d]= (A16)

Since i, o and d are fixed, we can evaluate I easily.

AlIV. Computation of var(l/I; <d)
Once the mean is found, the variance can be easily calculated from the formulae

var(I/l; < d) = E[(I, - Eq/I< d)/1, < d] (A17)



