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Abstract 

VIdeo services WIll form a substantIal portlOn of the traffic earned by emergmg broadband integrated networks. The 
VIdeo streams are compressed and sent to the network to conserve bandWIdth and hence reqUlre a good model to repre­
sent them In an asynchronous transfer mode (ATM) network. In this paper, we model the VIdeo sources by means of a 
dIffUSIOn processes WIth mean fl, variance d and eo-vanance C( t). We consIder video teleconferencing where the 
changes m the succeSSlVe frames are not abrupt but are mOle or less umform The matchmg parameters for the mean, 
vanance and covariance are taken from discrete-tIme Markov cham (DTMC) found in Blondm and Casals (Pelf 01 m­
ance Evaluation, 1992, 16, 5-20). The video telephony session is modelled according to a tl uncated diffUSIOn process 
and we calculate the steady-state behaviour for such a process We consider two truncations, namely, reflecting barrier 
and absorbmg barrier and state their intuitions III VIdeo telephony. 

Keywords: DIffusion process, traffiC models, VBR sources. 

1. Introduction 

The asynchronous transfer mode (ATM) is considered by the International Telecommunication 
Union-Technology (ITU-T) Standards Committee as the transport method for the broadband 
integrated services digital network (B-ISDN). In this network, digital video communica­
tion(video phone, video conferencing, television distribution, etc.) is expected to be a major 
class of service. A TM offers the capacity to support variable bit rate (VBR) connections. These 
input sources share a link of constant capacity d, which is less than the sum of individual bit 
rates, achieving a significant multiplexing gain. In pmiicular, infonnation loss and delay are 
the most important parameters that determine the quality of service. This paper deIives effi­
cient diffusion models for the VBR traffic representing the video traffic offered in an ATM 
network. 

Traffic is the driving force of communication systems, and traffic models are of crucial im­
portance for assessing network's performance. In practice, stochastic models of traffic systems 
are relevant to network traffic engineering and performance analysis, to the extent that they are 
able to predict system performance measures to a reasonable degree of accuracy. The funda­
mental systems, of which traffic is a major ingredient, are queueing systems. 

Fluid flow models have been used extensively in modeling high-speed communication 
networks. 1

, 2 The fluid represents packets or bits of information. The fluid flow model de-
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scribes the stochastic behaviour of the fluid flow in the buffer. The fluid arrival process is 
modelled by Markov-modulated process which is described by a continuous time Markov 
chain (CTMC)? In spite of their success as modelling tools in ATM networks, the fluid flow 
models have one drawback, that is they are second-order models. Hence, they work well when 
the system characteristics are adequately described by first- and second-order moments. This is 
the reason why they are very attractive in modelling DID/l queue in random environment. 
Consider a queue with a buffer. When the number of customers in the queue is very high, each 
discrete step's increase in the queue length, because of arrivals and decrease in queue length 
because of departures, is very small when compared to the total queue length. In such cases it 
is reasonable to approximate the discrete flow of customers by a continuous flow like a fluid. 
Any such results originate from fluid mechanics, in particular the diffusion for an ideal gas. 
Hence we call them as diffusion approximations. These techniques are also useful is studying 
the transient behaviour of the queueing system. In ATM networks, where the packets are of 
constant size and sources behave in an "on-off' fashion, the first-order models cannot account 
for the variablity of the arrival rate of the fluid. This is discussed in Karandikar and Kulkami.4 

It is this limitation that has prompted us to investigate the second-order fluid flow models to 
model ATM networks. In the case of VBR models, there is a positive serial dependence be­
tween successive packet anivals, and this dependency is a major cause of congestion in multi­
plexer queue. 

In this paper, we analyze the traffic patterns of the stochastic fluid flow system shown in 
Fig. I. The system consists of a buffer of finite size B, with the server having a constant rate of 
output d, which receives input from heterogeneous set of traffIC sources. Our primary motiva­
tion for considenng this system stems from its use in modelling statistical multiplexmg of sev­
eral sources at an ATM switching element in a B-ISDN. The high rates of transfer in such net­
works make cO!1ventional queuemg models, which treat individual cell as customer, unwieldy. 
The input flow characterized by diffusion process, accurately captures the bursty nature of data 
flow in such networks. The idea of approximating a discrete state process by a diffuslOn proc­
ess with continuous path was discussed in detail in Feller.5 The procedure of using a diffusion 
process to study a queueing system, whether it be a continuous time system or a discrete-time 
system can be useful because mathematical methods associated with continuum very often 
lend themselves more easily to analytical treatment than those associated with discrete coordi­
nate axes. Further references on dlffusion model systems are available elsewhere. I. 6-9 

1.1. Motivation for considering the diffusion process for moving pictllres expert group 
(MPEG) streams 

Traffic characterization and Source modelling of VBR-coded video are active research areas as 
VBR video would be a major player in the future of B-ISDN. We consider the MPEG-2 VBR 
video source. It was pointed out by Lou et al. lO that the frame sequences are normally distrib­
uted when we make the following nOlmalizations. The MPEG video can be grouped into three 
types, I, P and B frames. These frames are different from each other and have different sizes. 
An MPEG-2 video stream contains the mixture of all the three frames with periodical frame 
structure. As a typical example we consider the 'Mobl' sequence shown in Fig. 2. The nor­
malization procedure is a linear process and is explained below. 
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Let Mb Mp and MB denote the mean size of 1, P and B frames, respectively. Letf(i) denote 
the ith frame appearing ill the MPEG stream. Let j (i) denote the ith frame appearing in the 
MPEG stream after nOlmalization. Define 

(1) 

The following linear transformation is applied to each frame in the sequence 

if the ith frame is a B frame, 

(2) 

if the ith frame is a P frame, and 

!(i) :::: !(i) 

if the ith frame is an 1 frame. After normalization, the number of cells per frame in the whole 
sequence is at a comparable level. It is assumed that the data series of the frame size after the 
normalization can be described by the normalqistribution as shown in Fig. 3. The histogram of 
the 'Mob!' sequence is plotted and the distribution is found to be normally distributed. To test 
whether the marginal distribution of the frame size is indeed a normal distribution, a Q-Q plot 
which plots the quantiles of data vs the quantiles of the fitted distribution is also used (Fig. 4). 
The fit is fairly good except for a few points. This test was carried out for most of the se­
quences and the results are similar. So the conclusion is that the MPEG sequences can be de­
scribed by the normal distribution. The linear transformation does not change the distribution 
type of the series if it follows a normal distribution. Simonian6 had indicated that experimental 
measures on animated picture transmission in packet mode have shown that the input process 
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FIG. 4. Q-Q plot of cells per frame vs normal distribution. 

can be modelled by a continuous gaussian stationary process with constant mean J1 and the 
decreasmg exponential correlation function given by 

(3) 

where It is the instantaneous arrival process, J1 the mean of the arrival process, 7] the rate pa­
rameter, r the time constant and 2:: is a constant. Slmoman6 also points out that the theoretical 
parameter (j' and the measured parameters L. and 17 are related by 

ci 0:; 21}2'.} (4) 

where 11 0:; a + {3. Here a and {3 represent the probability that 'on-off' source IS 'silent' or 'ac­
tive', respectively, in the next time period. Also, let To:; 7]t. So the queue length process is 
scaled as Or = 'lQt / L. SO, whenever we use the fluid content in the buffer, we use Qr, ll1-

stead of Qt. 

2. Diffusion approximation for VBR sources 

In this section, we propose analytical models for variable bit-rate video sources and their su­
perpositions. These models are based on the earlier work of Maglaris et al. ~ Maglaris et al.3 

and Blondia et aI} approximate video sources and their superpositions by means of a discrete­
state continuous-time Markov process. In this paper~ we model video source~' t y dlffusion 
process which is very useful for fluid approximation approach in statistical m .. ,Hiplexing. We 
consider sources with unifonn activity level, i.e., where no sudden changes in bit rate occur. 
The typical example is the video phone where there are no abrupt changes in the scene, except 
for the minor movements of head and shoulder. 

2.1. Video sources with unifonn activity level 

Consider a video scene where the changes are uniform. The scene is composed of M basic in­
fonnation blocks which are either 'on' or 'off' depending on the scene characteristics. Mathe­
matically speaking, we have M identical independent 'on-off' sources each generating A bits Is 
when in 'on' state. The continuous time version of the 'on-off' source is shown in Fig. 5. We 
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FIG 5 "on-off' source model 

consIder the discrete time case, which is represented by a two-state Markov chain similar to the 
continuous time case. Here we have probabilities instead of rates. Also there are probabilities 
for the remaining in the same state. They are geometrically distributed which is the discrete­
time version of the exponentIal distribution. We consider the versatile point process called dis­
crete-batch Markovian anival process (D-BMAP), which is the discrete time analogue of the 
batch Markovian arrival processes introduced by Lucantoni. 11 It has the advantage of model­
ling large classes of VBR sources. 

Some good examples of the slow change scenes available In practice are the bike, the float 
and the monkey sequences. Here the successive scene frames do not change very rapidly, but 
do so very slowly. The sequences are shown in Fig. 6. The values of mean, variance and co­
variance are derived by calculating the steady state mean, variance and co-variance of the 
Markov chain as shown in Fig. 9. Figure 9 is a CTMC but we consider it to be a discrete time 
Markov chain (DTMC). The superposition of M sources constitutes a video telephone session. 
These 'on-off' sources are multiplexed on a link of capacity d bits/so The cell-arrival rate is 
quantized into discrete level of A cells/s, i.e. when the state of the Markov chain is in state i, 
(O:S; i :s; M), the source emission rate is iA bits/so We assume M + 1 possible levels {O, A, 
2A, ...... , M A} and the transitions take place between neighbouring quantization levels only. 
Furthermore, we assume that the transition occurs with geometrical transition rates. So the cell 
stream arriving at the multIplexer buffer is approximated by a superposition of M identical 
independent 'on-off' sources, called mini sources, each generating cells at a constant rate while 
being in geometrically distributed active period. The resultant Markov chain is equivalent to 
sum of M identical two-state mini sources each moving back and forth geometrically between 

15 t'fJ r.; 
Harne 584Jl'11l1l'1ol MaI'M1'PIC.\lJhJ 

FIG.6 Frame sequences of monkey, bicycle and floatmg pictures. 
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an 'off' and an 'on' state in which A bits/pixel are offered to the access buffer. The composite 
rate, in the units of bits/pixel, is labelled as It. Note that the rate will be changing in frame in­
tervals (30 frames/s) rather than continuously. This is also the multiplexed rate into the buffer. 
The other way to look into the diffusion approximation is to treat the individual pixels as inde­
pendent 'on-off' sources having the rates of transitions as that of a two-state DTMC or CTMC. 
The transition rate matrix as given by Blondia and Casals8 

1-Ma Ma 0 0 

{3 1- fJ - (M -l)a (M -l)a 0 0 

0 2{3 1 - 2 {3 - (M - 2)a (M -2)a 0 
P= 

0 0 
(5) 

0 0 

0 0 0 M{3 1-MfJ 

This captures the model more accurately. As the number of pixels is very large, the resul­
tant equations arising from the usual Markov chain approximation is very hard to solve. 

The continuous time analogue of the 'on-off source is shown in Fig. 5. Now we construct a 
diffusion model as a limIt for the the model given in Blondia and Casals.8 Consider the DTMC 
and its associated transition probability matrix as given in eqn (5). 

P1,1+1::: (M - i)a 

PI,I= l-i{3-CM-i)a (6) 

PI,I-l ::: i{3. 

Given that the Markov chain is in state i, it can go to i + 1 or i-I state or remain in the same 
state with the above probabilities. The infinitesimal mean rate of change from a state i is given 
by 

[PI, I + ! - PI, 1- dLl ::: -j1(il1)j).t ::: [(M - i)a - zf3JLl. 

The infinitesimal variance of the change from one state to another is given by 

[PI, 1 + 1 + PI. 1- ! - (PI, I + 1 + PI, 1- 1)2]j).2 == <lOl1)Llt. 

(7) 

(7) 

Using the standard technique of converting a birth-death process into a diffusion process as 
indicated in Cox and Miller,12 and appendix A.I, we get 

df(t;x,y) 

at 
( ) 

df(t;x,y) (/2(x) a2 f(t;x,y) 00 M 
J1 x ::1._ + 2' t > . < x, V < 

at 2 ax . (9) 

where J1(x) is replaced by the steady-state mean fluid rate of the sources given by J1::: MAo. 
0.+f3 

and similarly <lex) is replaced by the steady-state variance <l ::: MA20.~ since we use moment­
(0.+/3) , 

matching technique to analyze the perfonnance of our system with the system given in Anick 
et at.! and Simonian.6 f(t; x, y) denotes the conditional probability density of the arrival process 
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with instantaneous arrival rate of x at time t given that arrival rate is y at time O. Though the 
above equation is governed by the infinitesimal mean and variance which is dependant on the 
state of the Markov chain and is given by eqns (7) and (8), respectively, we have plugged the 
steady state mean and variance values into the diffusion equation and analyze the performance 
of such systems. The boundary conditions ensure that eqn (9) is 0 at 0 and M. The matching 
parameters for )1, cr{2} and C(t) are found in the same way as in Maglaris et aZ? The Fokker­
Planck equation derived above can also be treated as a stochastic differential equation of the 
form 

dIt = J1(/t)dt + CJ(It)dWt• 

the above equation, Wt, p and c? are the standard Wiener process, steady-state mean of the 
process It and steady state varIance of the process It, respectIVely. 

3. Calculation of the transition probabilities 

The diffusion equation modelled above is the result of applying limits on a finite birth-death 
process whose transition rates are given in eqn (5). We now proceed to derive the steady-state 
distribution of the instantaneous arrival rate process It described by the stochastic differential 
equation given by eqn (10) under the conditions that cr> O. In order to discuss the boundary 
conditIOn and the stationary distribution, we shall approximate the process It by a sequence of 
diffusion processes WIth smooth drift and diffusion coefficients. Let pll(!) and n(l) be mono­
tone and sufficiently smooth functions such that p\!) ::= p(!) and etC/) = CJ(/) for I outside the 
interval (_n-1

, n-1
). Then the stochastic differential equation 

(11) 

has a umque solution I;. This is explained by Wong. 13 Since pll -7 J1 and d' -7 (J' as n -700 

except for I ::= 0, the sequence of stochastic processes {I;I} converges to a limiting process Ir. It 

is clear that It satisfies the original stochastic differential equation [eqn (10)]. So we shall take 
the limit It as the solution of eqn (10). If the dependence of the mean and variance on x is con­
sidered, then we would end up WIth Ornstein-Uhlenbeck process, whose steady-state density is 
gaussian and is given by Kobayashi and Ren,7 

1 _(,_v*)2 

f(y)::= lim f(y, t)::= e 2cr
2 

t-7OQ J2na 2 
(12) 

where y t ::= :af3 and (J'2 = Naf3)2' We consider the diffusion model by pluggmg the steady-
a (a+f3 

state mean and state variance of the original Markov chain into the mean and variance of the 
diffusion process and then analyzing the behaviour of the diffusion process. 

3.1. Case 1: Both the boundary points are reflecting 

The above diffusion equation has boundaries at 0 and M. We can assume that the boundaries 0 
and M are either reflecting or absorbing. If we assume the former, then the process does not 
stay at the boundaries and is reflected as soon as it reaches anyone of the two boundaries. If 
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FIG. 7. Model for combmed M 'on-off sources. 

the assumption is the latter, then we have to device ways of making the process to come out of 
the absorbing boundaries. Gelenbe14 derives solutions with such equations. We can consider 
the boundaries M and 0 to be reflecting boundaries. The intuition in choosing a reflecting 
boundary at point M stems from the fact that the infonnation sent at this point corresponds to 
the starting or refreshing of a new scene, which requires transmission of the entire data from 
the encoder to the network. The boundary conditions are given by 

(Jj(x;t) = 0 atx = 0 (t> 0)' at .' 
Jj(x;t) = 0 atx = M (t > 0). 

ax 
(13) 

The solution of the conditional probability density of the unrestricted process starting at Xo at 
time 0 and reaching x at time t is given by 

1 _(,-to-11I)2 

f ( / 0) - 2.,.21 
)1 x,t xo, - ~e 

(J...,;2m 
(14) 

Using the method of images as in Sommerfeld 15 and Cox and Miller l2 the conditional transItion 
probabihty density for the diffusion process with the reflecting boundary [0, M] is given by 

(15) 

for x, Xo E [0, M]. The conditional pdf with mtital conditions x = 0 and t = 0.01 is plotted in 
Fig. 8(a). The plot is also verified using the Mathematica package. 

3.3. Case 2. Only 0 as reflecting barrier 

Now consider the case when the number of 'on-off' sources, M ~ 00, ex ~ 0 and f3 ~ 0 in 
such a way that M ex = a and Mf3 = b where a and b are constants. In this case we get a diffusion 
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FIG 8(a). Conditional probablhty density [unction fix, tlO, 0) and (b) Con<.iItlOnal probabllity distnbutlOn function F(x, 
tlO, 0+). The mathematic a package was not able to plot the spike at (x, t) = 0, ° 
approximation as in the previous case but with the reflecting barrier at M being removed. The 
conditional transitional probability density of the alTlval rate process I(x, tlxo, 0) as given by 
Cox and Miller12 is 

(16) 

for x, Xo E [0. 00). (See Appendix A2 for the derivation of eqn (16).) Now let us calculate the 
moments of the conditional probability density function. From eqn (16), it can be shown that 
the conditional probability distribution function is given by 

where J1 =:: (a - b)A. The probability distribution function F(x, tlO, 0) is plotted in Fig. 8(b). The 
steady-state pdf lex) and the asymptotic distribution function are found to be 

2 _2/t! 

l(x) = lim f(x,t I xo,o) = ~ e ,,2 

t-'T"" (J 

(18) 

and 

2)Ll 

Fx(X) = P(X(oo) < x) = 1 - e -7. (19) 

The above is an excellent model for the video telephony where the changes in the scenes are 
very slow. This is evident from the plots of density and distribution functions. The steady-state 
behaviour of the input is exponentially distributed. 
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3.3. Steady~state behaviour of the input rate 

Clearly the distribution of It at t converges to the stationary distribution as t --7 00. Let us denote 
f(x/xo) as the steady~state conditional probability density function. Then as 

t --700, af(x~xo) --7 O. Hence the Fokker-Planck eqn (9) becomes 

fl(x)f(x / xo)+ (j2(x) ~ f(x / xo)= O. 
2 dx 

Solving the above equation we have 

C rT_2~y 

f( / )= __ eJo 0'2 (v) 

X Xo cr2 (x) 

(20) 

(21) 

where flex) and d(x) are replaced by the steady-state values fl and d, respectively, as given in 
section 2.1. The constant C is determined from the total probability condition, namely, 

fa f( x / xo) = 1. So C is found to be 

(22) 

Now f(x/xo) is given by 

(23) 

This expression agrees with the expression derived in the previous section. Now we can also 
determine the conditional probability of the input rate exceeding the output rate given that the 
input rate is less than the output rate, i.e.f(x > d/xo). 

3.4. Case of 0 as an absorbing boundary 

The case of having absorbing boundaries at point 0 is tantamount to treating the video connec­
tion as closed. This is a fairly good assumption for the case where the connection ceases after 
some finite time. To derive the solution for the condition with the absorbing boundary at the 
origin, we consider the case of two absorbing boundaries 0 and d and then extend it to the case 
of a single absorbing boundary. This implies that the following boundary condition holds. 

lim f(x / xo)= 0 and lim f(x / xo)= O. 
X-40 x-'ld 

(24) 

We use the method of the Fourier series to solve the above equation and find that the functions 

(25) 

(26) 



MODELLING VIDEO TELEPHONY BY FOKKER-PLANCK EQUATION AND THEIR ANALYSIS 85 

The absorbing boundaries are called Dritchlet boundaries and the steady-state probability is 
given by 

2/L\ 

n(x)=ecr2 for(Osxsd). (27) 

The normalizing constants are 

bm = ~(m = 1,2" .. ). (28) 

The eigenfunction expansion ofJis given by 

OX> 

J(x/ xo)= l:eIXI/I(lfIm(x)lfIlIl(xo)n(xo) (29) 
m==! 

Now if we take the limit of d -} 00 we get the diffusion process with absorbing barrier at O. 

(31) 

2 1'( \(~-\) _ tJ2; 00 _ cr2tS-2 . . _ 
=-e cr- 2cr- r e 2 sm(ID:S)sm(ID:o~)d~ 

n Jo 
(32) 

(34) 

3.5. Calculation oj loss probability in case ofzeru bufJerJor single source 

From Schwartz,16 we know that the loss probability for the model mentioned in Fig. 7., PL. is 
given by 

M 

PL = L(i-d)ncl m (35) 
c=L+! 

where In is the mean number of the sources that are in the 'on' state, J = {L + 1, L + 2, ..... , M} 
represents the overload region, i.e. it represents those states in the Markov Chain in which the 
arrival rate is greater than the service rate d. Let nl represent the steady-state probability that 
the Markov Chain is in state i. This is shown in Fig. 9. Another related measure, £ as indicated 
in Schwartz16 is given by 
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OVERLOAD REGION 

(36) 

This is simply the probability of being in the overload region. Now in the diffusion model 111 

which the input is unrestricted, we have 

(t-'O-.ut)2 

1 f 00 e-----;;;:;-
PL = - J2iii, (x - d)dx and 

f.1 L+l 2TCtO" 
(37) 

(38) 

RewIiting (x - d) as (x - xo - f.1t) - Cd - Xo - f.1t) and substituting in the above equation we have 

(39) 

-(d-'O-Ilt )2 

at e ~ (d - Xo - f.1t )c: 
J1 Jfii J1 

(40) 

In the case of restriction with absorbing boundaries, the cell loss probability is given by 
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(41) 

Similarly, we can plug the value of the process with reflected boundaries in eqn (35) and get 
the cell-loss probability. 

3.6. Superposition of N such sources 

We consider N-such video telephony connections each represented by the M-state Markov 

chain as said in the above section, with each session having its own mean J.1i, variance (J~ and 

covariance elt). Also, we assume that each session is independent of other sessions and get the 
diffusion equation of the following form 

dp(t;x,y) 
at 

~ ()dpl(t;X,y) f a~(x) a2
Pl(t;x,y) 00 

..L. fJ I X + L... '1' t > . < x, y < DO. 

1=1 ax 1::::1 2 ax-

Theorem 3.1. The limiting densities Pl of the above processes satisfy the followzng equation 

0= fJ1 (x) dpl(X) + f a~(x) a2 
P/(x).f > 0.0 < x )J < 00 

L... I ax L... 2 ax2 '-
1=1 1=1 

along with the boundary conditions 

O = ~ () dp/(O) f a;(x) CPPI(O) 0 
L...J1/ x + L... 2 .t> , 
1=1 ax i=l 2 ax 

and 

The above boundary conditions are got by considenng reflecting boundaries at 0 and M. 

Proof" Introduce the matrix notation as follows 

A -l.. -2 

This can be written as 

)11 

J1z 
B-, -

AP( x ) + Bp( x) == 0 and 

AP(O) + Bp(O) == 0 and 

and P = [PI' Pz, ...... , P N ]. 

(42) 

(43) 

(44) 

(45) 
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Ajj(M) + BjJ(M) = 0 (46) 

where p(x) and jJ(x) are first and second derivatives of p(x) respectively. From the general 
theory of linear differential equations we know that the solution of the eqn (46) is a linear com­
bination of the functions of the type 

p(x) = ell\:<p 

where Il is a scalar and <p = [<P}, <P2, ..... <PN]. Substituting eqn (47) in eqn (46) we get 

<p[A?A + AB1 = 0 

Thus, A should be a solution to 

det(A?A + AB) = 0 

(48) 

(49) 

and <p satisfies eqn (48). Thus the superposition process, in steady state, is also a truncated 

gaussian process with the mean given by J.1 = 2:.;:'1 p/ and variance by (52 = 2:.;:'1 a;. The 

solution to the superposition of N identical sources is also the same as that of the individual 
process. So the expressions derived for the smgle source case is applicable for these sources 
except the mean and variance of superposition is the slim of mean and variance of indIvidual 
sources. 

3.7. Calculation of loss prohabilitiesfor the :ero-bllffer case wilen tllere me N sources 

As mentioned above, let there be N such sources which emit the fluid to the output port which 
has no buffer. The ith source emits fluid according to the diffusion process with the mean rate 
Il,(x), variance (J'~(X) and autocovariance C,Cr). For the sake of simplIcity, asslime that all the 
sources are identical and have the same mean, variance and autocovariance. The loss­
probability analysis is SImilar to that of the single source case. We make an assumption that the 
resultant process is normally distributed and apply the theory of large deviations to calculate 
the cell-loss probability. Now it 1S easier to fmd the probability that the input rate exceeds the 
output rate. As per the assumption we have N identical independently distributed untruncated 
normal random variables whose generating function is given by 

, 
1 

(\-Ilt)- , , 

f 8\' --r- ~let+I!L':'~ 
(8)=- e-e 2t<T- dr::::e 2. 

2 . (50) 

Now proceeding as given in Shwartz amI Weiss l7 we get l(d}::::sUP8(ed-[llet++(52e2t])= 

(d_pt)2 Tl Cl ff' TIl' 210'" . 1US lerno s leorem states t lat, for any d> 0, 

(51 ) 

But we need the probability that the N sources, transmitting simultaneously, exceeds the ser­
vice rate Nd. Here it is assumed that the capacity of the channel in Nt! instead of d. In this case 

we can perform a direct calculation: Xl + ..... XN is a normal random variable dlstrihuted as 
.JNX1' so 
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(52) 

Using the estimate of this integral as in McKean,lll 

1 -t,,2 fex> _+t 2 1 -+v 2 

----1 e - :::; e - dt S - e _. 
y+ y y y 

(53) 

we obtam 

(54) 

which is in agreement with the exponential order of the large deviation estimates. The fact the 

IN appears is also generic. 

4. Buffer behaviour 

4.1. A diffilsion approximation to the fluid model 

In order to get the exact solution for the steady-state distribution of the fluid model with diffu­
sion process as input, one has to deal with a two-dimensional stochastic process (Qr. II)t ~ 0 on 
9\[0, 00) x 9\[0, 00). It is very difficult to solve such case. So we make an approximation of the 
queue length process Qt by a diffusion process Xl on 9\(-00,00). The approximating process XI 
has no reflecting balTier at O. So when the process Xl is m the range of (00, 0], we treat the 
onginal queue length process Q, as O. Define an one-dimensional diffusion process XI by a sto­
chastic dIfferential equation in the form 

(55) 

where W, is the standard Wiener process and the coeffecient of dnft is /ler) and coeffecient of 
diffusion is O"(x). The above stochastlc differential equation is interpreted as 

(56) 

where the second integral is Ito's integral. 

Consider the model as shown in Fig.I. We consider a fluid buffer model with stochastic instan­
taneous mput rate It, constant output rate d and buffer of size B. Here It is a diffusion process 

such that the n I,dr: = At, the cumulant input has continuous sample paths. The process At 

represents integrated Wiener process. So the rate of change of At follows a diffusion process. 
When the buffer is not empty the rate of change in the buffer content Qt, depends on the differ­
ence It - d; and when the buffer is empty, it remains zero until the instantaneous arrival rate It 
exceeds d. So the buffer content Qt evolves according to the following equation 

d {It - d : if Qt > 0 or It ~ d 
dt Qt = 0: otherwise 

(57) 



90 N. SAl SHANKAR AND A. P. SHIVAPRASAD 

It should be noted that Qt is a deterministic function of the sample path of It> but it is useful to 
consider (Qt, It) as a variate Markov process representing the state of the system. Now intro­
duce the integrated process as follows 

(58) 

where q is the buffer content at time 0, At is the total arrival rate till time t and Dt is the total 
flow out of the system till time t. At is already modelled as a integrated diffusion process and 
we will now approximate the output process D t also as a diffusion process. Consider the sec­
ond integral alone. This integral can be represented as 

(59) 

The first term represents that the output rate is equal to d when the buffer content is greater 
than zero or when the instantaneous arrival rate is greater than the instantaneous departure rate. 
The second term represents the fact that the output rate will be equal to the input rate when the 
instantaneous arrival rate is less than the departure rate and the buffer content is zero. We must 
evaluate the mean E[lJ/\ < d] and variance varU/ff < d] of the second term. In order to evalu­
ate the second term, we approximate It on {Qt = o} by an one dimensional diffusion process 

Jult+mdW; (60) 

where p:::: E[ II / Ij < d] and OJ::: JvarlIs / Is < d]. The derivation of the conditional mean 

and variance is given in Appendices AJ and A.4. So we are approximating the output process 
by a diffusion process. The OJ need not be evaluated because it is not relevant to the 
approximations of the steady-state probabilities of Qt and its reasons will be discllssed III the 
next section. Substituting the above values in eqn (58), we get the approximating diffusion 
equation for the queue length process as 

== x + J~ d(f1S+ (j~)- J~ I(X.I > O'yl * ds - f~ I(Xs = O)d(ps + m~l) 

where Ws and ~ are the standard Wiener processes. Both Wt and ~. are Wiener processes 

and in future can be represented by just Wt• Since the sets {Xt > O} and {Xt ~ O} arc disjoint, the 
above equation can be written as the following diffusion equation 

(62) 
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The approximating diffusion process denved for the queue length is derived after several steps 
of approximations. Therefore theoretically there is no guarantee that the process Qt simulates 
the original behaviour of the original queue length process when it is small. But for large queue 
lengths it may well simulate because of the following reason. let the queue length at time to be 
qt and let T be the last departure time from level 0 of the queue length process before time to. 

o 

During the interval (T, toJ. the queue length process is greater than 0 and the departure rate 
process is d. Thus we have 

XI =At -Ar+ d(t - r) for t E (T, toJ. 

This approximation is justified for large t - T. 

4.2. Stationary solution 

The above equation satisfies the standard Fokker-Planck equation 

dP{t,x) (j 1 (j2 
-:\,.-=--P{t,x)a(x)+--2 P(t,x)b(x). 

at ax 2 ax 

At steady state, the above equation satisfies 

a 1 (j2 
o =--P(t,x)a(x)+--? P{t,x)b(x). ax 2 ax" 

Solving the above equation, we get 

A 2f'~ 
P{x)--e JOb(v) Y 

b(x) 

where the constant A is found from 

So 

where 

1 2 rQ,,(-'-4d 
A -I - 100 

Jo h(V) Yd --- e q 
b(x) 0 

P(x) = P +(x) for Xt > 0 and P_(x) for Xt ~ 0 

A 2 11-
d x 

P+(x) = ye.,.2 for X t > 0, and 

A 2(11-[1) 

P)x) = -e (»2 for Xt ~ O. 
(J) 

The constant A is given by 

- 1 1"'" 2 11
-

d 
X 1 fa 2

1l
-
il 

A 1 =- e (f d:x+- e w dx 
(j' 0 (jJ -00 

d-jI. 
2(d - J.l )(J.l- j1 r 

(63) 

(64) 

(65) 

(66) 

(67) 

(68) 

(69) 

(70) 

(71) 
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From this it is clear that P(x) is independent of o for q > 0 and the boundary condition at q = 0 
should be set as o~(0') = cTF(0'). Denote Q as the stationary distribution of the random vari- 
able Q,. Now P[Q > x] can be approximated as 

The stationary distribution of X, is an approximation for Q, the stationary random variable of 
original queue length process Q, and the mass at x = 0 is approximated as P(Q = 0) = 1 - L, 

where L = 
d- f i  

The above approximation, for the queue Iength exceeding a particular threshold x, is similar to 
the one obtained by simonian6 and Kobayashi and   en.^ Figures 10(a) and (b) give the rela- 
tionship of the buffer size with cell-loss probability. The first figure is in the range of 700 to 
1200 cells and the second covers for the buffer size between 1000 and 1500 cells. The queue- 
length process is an approximating process and there is no guarantee that the process simulates 
the original behavious of the Q, when it is small. However, this process approximates Q, for 
large t. 

We make comparisons with that of Anick et al." and simonian6 for thc cell-loss probabil- 
ity, Here, we consider logloP(Q > x) instead of just P(Q > x). First, we consider the heavy traf- 
fic case in which the input is close to the output. 

It is very clear that our model gives the worst case performance for all values of the buffer 
size. So our model acts as the upper bound on the cell-loss probability. This is also validated 
by testing the spring sequence. We use moment matching techniclues and dete~mine the pa- 
rameters like mean p and variance cr for om diffusion model and compare our analytical modc] 

(a) Hut ter w e  .L (b) Huttc~ \via \ 

FIG. 10. Cell-loss probability vs buI'fer size in cells (ranges (a) 700-1200 and (b) 1000-1 5 0 0 ) .  
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Tabel I 
Comparison of cell-loss probability, at heavy traffic condi-
tion, among Anick's Simonian's and our models for different 
values of buffer sizes 

Anickmodel SImonian Model Our model 
B (cells) 

logwPt logwPL loglOPt 

0 -0.37 0 -0.07432 
2 -082 -028 -0 178018 
4 -1 11 -056 -0.356036 
6 -1.39 -0.85 -0.534054 
8 -1.65 -1.13 -0712072 
10 -1.92 -141 -089009 
20 -3.22 -282 -1 78018 
30 -4.52 -4.23 -267027 
40 -5.82 -564 -356036 
50 -7.12 -705 -445045 
60 -842 -8.46 -534054 
70 -9.72 -987 -623063 
80 -11 02 -1128 -7.12072 

Here we assume the output rate to be 16.66 mean(jl) = 14.29, 
(5=319and11=14. 

with the original trace and Simonian model (Tables I to III). The tables show that our model 
achieves the upper bounds on the cell-loss probability. 

Now consider the case when the input is less than that of the output. This is the case of mild 
traffic. The output rate is equal to 16.66, mean(p) = 7.] 4, (J= 2.26 and 71 = 1.4. OUf model per­
forms very badly in this case as is the case with usual fluid models, since fluid models are not 
expected to behave well under mild traffic conditions. The diffusion process for the queue 

TabelH 
Comparison of cell-loss probability, between original trace 
sequence of the spring, Simonian's and our model for differ­
ent values of buffer sizes 

Onginal Trace Slmoman model Our model 
B (cells) 

10g lOPL ]OgIOPL 10glOFL 

0 -0.37 0 -0.01 
100 -051 -0.21 -014 
200 -0.69 -0.42 -0.30 
300 -0.75 -0.63 -044 
400 -0.83 -0.84 -0.60 
450 -0.88 -0.95 -0.67 
500 -0.93 -1.06 -074 
550 -0.98 -1.16 -0.82 
600 -1.05 -1.27 -0.90 

The output rate is 250, mean(j.l) = 215, (5= 100.83 and 1] = 1.4 
are obtamed using moment-matching techniques. 
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TabelIII 
Comparison of cell-loss probability, at light traffic condition, 
among Anick's, Simonian's and our model for different val­
ues of buffer sizes 

Anick model Snnonian model Our model 
B (cells) 

lOglOPL lOglOPL IOglOPL 

0 -4.13 -8.72 -1.0034 
2 -8.14 -1099 -2.00578 
4 -10.56 -13.25 -4.01157 
6 -12.77 -15.52 -6.01735 
8 -14.91 -17.78 -8.02313 
10 -17.02 -20.05 -lO.0289 

The output rate is equal to 16.66, mean(Jl) == 7.14,0"== 2.26 and 
11 = 1.4. 

length process has been obtained after several steps of approximations. Therefore theoretically 
there is no guarantee that the queue length process will simulate the original process. But Qt 
simulates the original process when t is large. Suppose that Qto > 0 and let r be the last depar-

ture time from level 0 of the process Qt before time to. During this time interval (r, to], Q/ > 0 
and the departure rate is d. Thus we have 

(75) 

So if the output rate is $d$, then we have the queue length greater than 0 and so the diffusion 
process may simulate the original process if the interval (r, toJ is large. 

Conclusion 

In this paper, we have developed diffusion models for the video telephony traffic. We have 
taken a simple Markov chain interpreted for the slow moving video as in Maglaris et at. 3 and 
mapped it into a truncated diffusion process. Buffer behaviour for such sources is also derived. 
OUf results of the plots of probability density functions and comparison with Anick et al. I and 
Simonian6 show that our model gives a reasonable approximation for Video Telephony. We 
intend to improve upon this model by incorporating the scene changes thus extending the 
scope to video traffic in general. 
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A. Derivation of diffusion equation from discrete-time Markov chain (DTMC) 

Squaring eqn (7) and adding to eqn (8), we get 
[Pl,l + 1 + PI, /_ d~2 = Ji(i~)~t + d-(i~) (D.ti 

Using eqns (7) and (A.l), we get 

and 

pt. J1(iD.)D.t ()2(iD.)D.t + J1 2(iD.)D.t 
i,HI =~+ 2D.2 

D­
EL-l = 

J1(iD. )D.t a 2 (i~ ).M + /12 (i~ )D.t 
26. + 26.2 • 

(AI) 

(A2) 

(A3) 
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Now consider the transition from state i to any arbitrary state j in exactly n + 1 steps. The equa­
tion governing such a transition is given by 

~~/l = ~,I+l~:l,j + ~,/~~J + ~,1-1~~1,J' (A4) 

Substituting the values of PI, 1+ b PI, I and PI, i-I in eqn (A4) we get 

(
J1(il1)l1t + (j2(il1)l1t+ J12(il1)l1tJRn . +2['!' (j2(iL.\)l1t+ /1

2 
(il1)l1t]pn. + 

211 211- 1+1,) 2 2l1.2 l,J 

[ 
J1(ib.)l1t + a

2
(il1)At+ J12(ib.)l1.tJp. 11 • (AS) 

2L.\ 2l1.2 I-I,J 

Taking Pj,}s on one side we get 

/-l(il1)[p _p ]+[a
2
(il1.)+!1

2
(il1.)l1.t][pn _2pT! +pll ] (A7) 

211 Hi,} I-i,} 2!~? Hi,} l,} H-I" 

Equation (A 7), when simplified yields 

ap(t;x,y) ()ap(t;X,y) a2(x) a2p(t;x,y) T 00 . M 
at = f1 x ax + 2 ax2 . > . < x, y < . (A8) 

II. Derivation of conditional probability density function in the truncated Cllse llsing the 
method of images 

Consider a standard Fokker-Planck equation with the boundary condition 

[~ a2 dj - /-If] = O. 
2 ax t=O 

(A9) 

The appropriate image system for the above problem as in Sommerfeld 15 consists of a point 
image at x = -Xo and a continuous system of Images in the range .\ < -.ro. We gd 

f(x; t) = _1_ e -( t-2~;'jJ!.t + Ke -( '~:;iH t + f (() e .:J.~~;;:~ t L( a )da 
[ 

1 1 'J 
hm(j -~ (AlO) 

The above equation satisfies the standard Fokker-Planck equation and its initial condition. We 
must determine the constant K and the function L(a) so that the eqn (A9) is satisfied. Using eqn 
(AlO), the condition eqn (A9) leads to the equations 
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1 ? dL 
-(r -- j1L(a) = 0 and (All) 
2 da 

'oJ! IOJ! 

(xo - Jit)e -7 - [xoK + ,utK + ta2 L(-xo )]e (12 = O,t > O. (AI2) 

It follows that 

(AI3) 

Substituting the above values in eqn (AIO), we get the solution for the Fokker-Planck equation 
which is bounded at one end. 

AlII. Computation of E[lJI\ < d] 

The P[Js < a/Is < d] is defined only for a < d as it is zero for a > d. We consider a general nor­
mal distribution as rl is defined to be a diffusion process which has the property of being nor­
mally distributed (Since It can be expressed by forward equation as in Cox and Miller,12 we 
have the conditional probability given by normal distribution). Then we consider the truncated 
normal which is the realistic assumption as the departure and the arrival rates can never be 
negative in the context of computer communication. 

(\-J!/)2 

" = E[I / 1 < d] = f ~ xe -~ dx 
f1 S S (.-/11)" 

(A14) 

J~ e - 20'2/ dx 

This expression is got from the fact that E(x) = E(x)/P(x < d). The above equation is a solution 
for the process which is not restricted, i.e., it is in the range from (-00, +00). 

Since p, cr and d are fixed, we can evaluate it easily. 

AIV. Computation of var(I/ls < d) 

Once the mean is found, the variance can be easily calculated from the formulae 

var(Iils < d) = E[(Is - E(/JI.\< d))2/ls < d] 

(A16) 

(AI7) 


