
1 3J. Indian Inst. Sci. | VOL 99:2 | 177–199 June 2019 | journal.iisc.ernet.in

Beyond Supervised Learning: A Computer Vision 
Perspective

1 Introduction
Distilling useful information from prior experi-
ence is one of the primary research problems in 
computer science. Past information contained in 
the training data is extracted as a model and used 
to predict future outcomes in machine learning. 
In the past few years, the advent of deep learn-
ing techniques has greatly benefited the areas of 
computer vision, speech, and Natural Language 
Processing (NLP). However, supervised deep 
learning-based techniques require a large amount 
of human-annotated training data to learn an 
adequate model. Although data have been pains-
takingly collected and annotated for problems 
such as image classification120,186, image caption-
ing115, instance segmentation134, visual ques-
tion answering81, and other tasks, it is not viable 
to do so for every domain and task. Particularly, 
for problems in health care and autonomous 

Lovish Chum1*, Anbumani Subramanian2, Vineeth N. Balasubramanian3 and C. V. Jawahar1

J. Indian Inst. Sci.

A Multidisciplinary Reviews Journal

ISSN: 0970-4140 Coden-JIISAD

Abstract | Fully supervised deep learning-based methods have created 
a profound impact in various fields of computer science. Compared to 
classical methods, supervised deep learning-based techniques face 
scalability issues as they require huge amounts of labeled data and, 
more significantly, are unable to generalize to multiple domains and 
tasks. In recent years, a lot of research has been targeted towards 
addressing these issues within the deep learning community. Although 
there have been extensive surveys on learning paradigms such as semi-
supervised and unsupervised learning, there are a few timely reviews 
after the emergence of deep learning. In this paper, we provide an 
overview of the contemporary literature surrounding alternatives to fully 
supervised learning in the deep learning context. First, we summarize 
the relevant techniques that fall between the paradigm of supervised 
and unsupervised learning. Second, we take autonomous navigation 
as a running example to explain and compare different models. Finally, 
we highlight some shortcomings of current methods and suggest future 
directions.
Keywords: Deep learning, Synthetic data, Domain adaptation, Weakly supervised learning, Few-shot 
learning, Self-supervised learning

R
EV

IE
W

 
A

R
T

IC
LE

navigation, collecting an exhaustive data set is 
either very expensive or all but impossible.

Even though supervised methods excel at 
learning from a large quantity of data, results 
show that they are particularly poor in gener-
alizing the learned knowledge to new task or 
domain221. This is because a majority of learn-
ing techniques assume that both the train and 
test data are sampled from the same distribution. 
However, when the distributions of the train and 
test data are different, the performance of the 
model is known to degrade significantly201,221. 
For instance, take the example of autonomous 
driving. The roadside environment for a city in 
Europe is significantly different from a city in 
South Asia. Hence, a model trained with input 
video frames from the former suffers a signifi-
cant degradation in performance when tested 
on the latter. This is in direct contrast to living 
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organisms which perform a wide variety of tasks 
in different settings without receiving direct 
supervision168,237.

This survey is targeted towards summa-
rizing the recent literature that addresses two 
bottlenecks of fully supervised deep learning 
methods—(1) lack of labeled data in a particu-
lar domain; (2) unavailability of direct super-
vision for a particular task in a given domain. 
Broadly, we can categorize the methods which 
aim to tackle these problems into three sets—(1) 
data-centric techniques which solve the prob-
lem by generating a large amount of data simi-
lar to the one present in the original data set; 
(2) algorithm-centric techniques which tweak 
the learning method to harness the limited data 
efficiently through various techniques like on-
demand human intervention, exploiting the 
inherent structure of data, capitalizing on freely 
available data on the web or solving for an easier 
but related surrogate task; (3) hybrid techniques 
which combine ideas from both the data and 
algorithm-centric methods.

Data-centric techniques include data aug-
mentation which involves tweaking the data sam-
ples with some pre-defined transformations to 
increase the overall size of the data set. For images, 
this involves affine transformations such as shift-
ing, rotation, shearing, flipping, and distortion 
of the original image116. Some recent papers also 
advocate adding Gaussian noise to augment the 
images in the data set. Ratner et al.171 recommend 
learning these transforms instead of hard-coding 
them before training. Another method is to use 
techniques borrowed from computer graphics to 
generate synthetic data which is used along with 
the original data to train the model. In the case 
when data are in the form of time-series, window 
slicing and window warping can be used for aug-
mentation purposes126.

Algorithm-centric techniques try to relax 
the need of perfectly labeled data by altering 
the model requirements to acquire supervision 
through inexact248, inaccurate148, and incom-
plete labels24. For most of the tasks, these labels 
are cheaper and relatively easy to obtain than full-
fledged task-pertinent annotations. Techniques 
involving on-demand human supervision have 
also been used to label selective instances from 
the data set220. Another set of methods exploit the 
knowledge gained while learning from a related 
domain or task by efficiently transferring it to the 
test environment189.

Hybrid methods incorporate techniques which 
focus on improving the performance of the model 
at both the data and algorithm level. For instance, 

in urban scene understanding task, researchers 
often use a synthetically generated data set along 
with the real data for training. This proves to be 
greatly beneficial as real-world data set may not 
cover all the variations encountered during the 
test time i.e. different lighting conditions, seasons, 
camera angles etc. However, a model trained using 
synthetic images suffers a significant decrease 
in performance when tested on real images due 
to domain shift. This issue is algorithmically 
addressed by making the model “adapt” to the 
real-world scenario259. Most of the methods dis-
cussed in this survey fall under this category.

In this paper, we discuss some of these meth-
ods along with describing their qualitative results. 
We use tasks associated with autonomous naviga-
tion as a case study to explain each paradigm. As 
a preliminary step, we introduce some common 
notations used in the paper. We follow this by 
mentioning the radical improvement brought by 
supervised deep learning methods in computer 
vision tasks briefly in Sect. 1.2. Section 2 contains 
an overview of work which involves the use of 
synthetic data for training. Various techniques for 
transfer learning are compared in Sect. 3. Meth-
ods for weak and self-supervision are discussed 
in Sects. 4 and 6, respectively. Methods which 
address the task of learning an adequate model 
from a few instances are discussed in Sect. 5. 
Finally, we conclude the paper discussing the 
promises, challenges, and open research frontiers 
beyond supervised learning in Sect. 7. Figure 1 
gives a brief overview of the survey in the context 
of semantic segmentation task for autonomous 
navigation.

1.1  Notations and Definitions
In this section, we introduce some notations 
which aid the explanation of the paradigms sur-
veyed in the paper. Let X  and Y be the input and 
label space, respectively. In any machine learn-
ing problem, we assume to have N objects from 
which we wish to learn the representation of the 
data set. We extract features from these objects 
X = (x1, x2, . . . , xN ) to train our model. Let 
P(X) be the marginal probability over X. In a 
fully supervised setting, we also assume to have 
labels Y = (y1, y2, . . . , yN ) corresponding to each 
of these feature sets. A learning algorithm seeks 
to find a function f : X −→ Y in the hypoth-
esis space F  . To measure the suitability of the 
function f, a loss function l : Y × Y −→ R

≥0 is 
defined over space L . A machine learning algo-
rithm tries to minimize the risk R associated with 
wrong predictions:
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Use of synthetic data has become mainstream 
in computer vision literature. Note that even 
though synthetic data may appear to contain 
the same entities, we cannot assume that it has 
been generated from the same distribution. 
Hence, we denote that it is input space as Xsynth 
instead of X  . However, the label space remains 
the same. To elaborate, we have a new domain 
Dsynth = {Xsynth,P(Xsynth)} which is different 
from the real domain D = {X ,P(X)} as both their 
input feature space and marginal distributions 
are different. Hence, we cannot use the objec-
tive predicting function fsynth : Xsynth −→ Y for 
mapping X  to Y.

Transfer learning, a term interchangeably used 
with domain adaptation (DA), aims to solve this 
problem. However, the term is not only used to 
transfer knowledge between different domains 
but also between distinct tasks. We define a task as 
containing the label space Y and the conditional 
distribution P(Y|X), as T = {Y ,P(Y |X)} . Build-
ing on the above notations, we define domain 
shift ( Ds  = Dt ) and label space shift ( Ts  = Tt ), 
where Ds and Dt are source and target domains, 
respectively. As an example, using synthetic data 
and then adapting the learned objective to real 
domain fall under domain shift as D  = Dsynth . 
Within the domain adaptation literature, meth-
ods have been categorized into homogeneous and 

R =
1

N

N∑

n=0

l(yi, f (xi)).

heterogeneous settings. Homogeneous domain 
adaptation methods assume that the input feature 
space for both the source and target input distri-
bution is the same, i.e., Xs = Xt . Heterogeneous 
domain adaptation techniques relax this assump-
tion. As a result, heterogeneous DA is considered 
a more challenging problem than homogeneous 
DA.

Although supervised learning considers that 
all the feature sets xi have a corresponding label 
yi available at the time of training, the labels can 
be inaccurate, inexact, or incomplete in a real-
world scenario. These scenarios collectively fall 
under the paradigm of weakly supervised learn-
ing. These conditions are particularly true if the 
training data has been obtained from web. For-
mally, we define the feature set for incomplete 
label scenario as X = (x1, x2, . . . , xl , xl+1, . . . xn) 
where Xlabeled = (x1, x2, . . . , xl) have corre-
sponding labels Ylabeled = (y1, y2, . . . yl) available 
while training, but the rest of the feature sets 
Xunlabeled = (xl+1, . . . , xn) do not have any labels 
associated with them.

Other interesting weakly supervised models 
encompass cases where each instance has multi-
ple labels or a bag of instances have a single label 
assigned to it. To formalize for multiple-instance 
single-label scenario, we assume that each fea-
ture set xi is composed of many sub-feature sets 
(xi,1, xi,2, . . . , xi,m) . Here, xi is called a “bag” of 
features and the paradigm is known as multiple-
instance learning. A bag is labeled positive if at 
least one item xi,j is positive otherwise negative. 

Figure 1: Learning paradigms arranged in decreasing order of supervision signal. Semantic segmenta-
tion of outdoor scene is taken as an example task (1) Fully supervised learning requires a lot of anno-
tated data to learn a viable model35. (2) Synthetically generated instances can be used to compensate for 
the lack of real-world data179. (3) Knowledge from one real-world data set can be transferred to another 
data set which does not contain the sufficient amount of instances. For instance, a model trained on City-
scapes can be fine-tuned with the data from the Indian Driving Data set (IDD)231. (4) In case pixel-level 
labels are expensive to obtain, inexact supervision from polygon labels can be exploited to accomplish 
the task. (5) If only a few instances are available along with their labels, few-shot learning techniques can 
be employed to learn a generalizable model. (6) Finally, unsupervised learning exploits the inherent struc-
ture of the unlabelled data instances.
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Although the above paradigms correspond to 
a varied amount of supervision, they always 
assume a huge number of instances X available at 
the time of training the model. This assumption 
breaks down when some classes do not have suf-
ficient instances.

Few-shot learning entail the scenario when 
only a few (usually not more than 10) instances 
per class are available at the time of training. 
Zero-shot learning (ZSL) is an extreme sce-
nario which arises when no instance is avail-
able for some classes during training. Given the 
training set with features X = (x1, x2, . . . , xn) 
and labels Ytrain = (y1, y2, . . . , yn) , the test 
instances belong to previously unseen classes 
Ytest = (yn+1, yn+2, . . . , ym) . Recently, some 
papers address a generalized ZSL scenario where 
the test classes have both seen or unseen labels.

When no supervision signal is available, 
the inherent structure of the instances is uti-
lized to train the model. Let X and Y be the 
feature and label set, respectively; as we do 
not have P(Y|X), we cannot define the task 
T = {Y ,P(Y |X)} . Instead, we define a proxy 
task Tproxy = {Z,P(Z|X)} whose label set Z can 
be extracted within the data itself. For computer 
vision problems, proxy tasks have been defined 
based on spatial and temporal alignment, color, 
and motion cues.

1.2  Success of Supervised Learning
Over the past few years, supervised learning 
methods have enabled computer vision research-
ers to train more and more accurate models. 
For several tasks, these models have achieved 
state-of-the-art performance which is compa-
rable to humans. In the visual domain, accuracy 
for both structure and unstructured prediction 
tasks such as image classification91,96,116,203,214, 
object detection75,76,136,174,178, semantic segmen-
tation12,27,92,133,138,182,260, pose estimation23,222, 
action recognition46,58,74,104,223, video classi-
fication110, and optical flow estimation47 has 
consistently increased allowing for their large-
scale deployment. Apart from computer vision, 
problems in other domains such as speech rec-
ognition82,83,190, speech synthesis229, machine 
translation13,84,213,244, and machine reading170 
have also seen a significant improvement in their 
performance metrices.

Despite their success, supervised learning-
based models have a fair share of issues. First of 
all, they are data hungry requiring a huge amount 
of instance-label pairs. To add, a majority of 
large data sets required to train these models are 

proprietary as they provide an advantage to the 
owner in training a supervised model for a par-
ticular task and domain. Second, when applying a 
machine learning model in the wild, it encounters 
a multitude of conditions which are not observed 
in the training data. In these situations, fully 
supervised methods, despite the super-human-
level performance on a particular domain suffer 
drastic degradation in performance on a real-
world test set as they are biased towards the train-
ing data set.

2  Effectiveness of Synthetic Data
A much better degree of photo-realism, easy-to-
use graphics tools such as game engines, large 
libraries of 3D models, and appropriate hard-
ware have made it is possible to simulate virtual 
visual environments which can be used to con-
struct synthetic data sets which are exponentially 
larger than real-world data sets. One primary 
advantage of using synthetic data is that the pre-
cise ground truth is often available for free. On 
the other hand, collecting and annotating data 
for a large number of problems is not only a tedi-
ous process but also prone to human errors. To 
add, one can easily vary factors such as viewpoint, 
lighting, and material properties earning full con-
trol over configurations and visual challenges 
to be introduced in the data set. This presents a 
major advantage for computer vision researchers 
as real-world data sets tend to be non-exhaus-
tive, redundant, heavily biased, and partly repre-
sentative of the complexity of natural images221. 
Moreover, some situations are not possible to be 
arranged in a real-world setting because of safety 
issues, e.g., a head-on collision in an urban scene 
understanding data set. Last but not least, having 
a few high-profile real-world data sets bias the 
research community towards the tasks for which 
annotations have been provided with these data 
sets. Thus, graphically generated synthetic data 
sets have become a norm in the computer vision 
community, particularly for tasks such as medical 
imaging and autonomous navigation.

In the visual domain, synthetic data have been 
used mainly for two purposes: (1) evaluation of 
the generalizability of the model due to the large 
variability of synthetic test examples, and (2) aid-
ing the training through data augmentation for 
tasks where it is difficult to obtain ground truth, 
e.g., optical flow or depth perception. A virtual 
test bed for design and evaluation of surveillance 
systems is proposed in Taylor et al.217. Kaneva 
et al.108 and Aubry and Russell10 use synthetic 
data to evaluate hand-crafted and deep features, 



181

Beyond Supervised Learning: A Computer Vision Perspective

1 3J. Indian Inst. Sci. | VOL 99:2 | 177–199 June 2019 | journal.iisc.ernet.in

respectively. Butler et al.22 propose MPI Sintel 
Flow data set, a synthetic benchmark for opti-
cal flow estimation. Handa et al.88 introduce 
ICL-NUIM, a data set for evaluation of visual 
odometry.

More significantly, synthetic data are uti-
lized for gathering additional training instances, 
mainly beneficial due to the availability of pre-
cise ground truth. There are various data genera-
tion strategies, from real-world images combined 
with 3D models to full rendering of dynamic 
visual scenes. Figure 2 illustrates two common 
methods for synthetic data generation. Vaquez 
et al.232 learn the appearance models of pedes-
trians in a virtual world and use the learned 

model for detection in the real-world scenario. 
A similar technique is described for pose estima-
tion11,162, indoor scene understanding89, action 
recognition41, and variety of other tasks. Instead 
of rendering the entire scene, Gupta et al.85 over-
lay text on natural images consistent with the 
local 3D scene geometry to generate data for text 
localization task. A similar method is used for 
object detection52 and semantic segmentation177 
where real images of both the objects and back-
grounds are composed to synthetically generate 
a new scene. One drawback of using synthetic 
data for training a model is that it gives rise to 
“sim2real” domain gap. Recently, a stream of 
works in domain randomization188,219,224 claims 

Figure 2: Data collected in real-world setting may not have sufficient diversity in terms of illumination, 
viewpoints, etc. Synthetic data produced through virtual visual models help to get around this bottle-
neck. Another way to create additional data for training is to paste real or virtual objects to real scenes. 
One advantage of this approach is that the domain gap between real and synthetically generated data is 
lesser leading to better performance on the real data set.
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to generate synthetic data with sufficient varia-
tions, such that the model views real data as just 
another variation of the synthetic data set.

Modern game engines are a popular method 
to extract synthetic data along with the anno-
tation due to their photo-realism and realistic 
physics simulation. Gaidon et al.64 present the 
Virtual KITTI data set and conduct experiments 
on multi-object tracking. SYNTHIA183 and GTA 
179 provide urban scene understanding data along 
with semantic segmentation benchmarks. Unre-
alCV167 provides a simple interface for research-
ers to build a virtual world without worrying 
about the game’s API. 

Synthetic data for Autonomous Navigation

Autonomous Navigation has greatly benefited from the 
use of synthetic data sets as pixel-level ground truth can 
be obtained easily and cheaply using label propaga-
tion from frame to frame. As a result, several synthetic 
data sets have been curated particularly for visual tasks 
pertaining to autonomous navigation64,129,179,180,183,191. 
Alhaija et al.5 propose a method to augment virtual 
objects to real road scene for creating additional data to 
be used during training the model. Apart from training 
the models, racing simulators have also been used to 
evaluate the performance of different approaches to 
autonomous navigation26,48. Janai et al.102 offer a com-
prehensive survey of literature pertinent to autonomous 
driving

One of the major challenges in using synthetic 
data for training is the domain gap between real 
and synthetic data sets. Transfer learning dis-
cussed in Sect. 3 offers a solution to this problem. 
Eventually, through the use of synthetic data, we 
would like to replace the expensive data acquisi-
tion process and manual labeling of ground truth 
into a generic problem of training with unlim-
ited computer-generated data and testing in the 
real-world scenario without any degradation in 
performance.

3  Domain Adaptation and Transfer 
Learning

As stated in Sect. 2, a model trained on source 
domain does not perform well on a target domain 
with different distribution. Domain adaptation 
(DA) is a technique which addresses this issue by 
reusing the knowledge gained through the source 
domain for the target domain. DA techniques 
have been categorized according to three criteria: 
(1) distance between domains; (2) presence of 
supervision in the source and target domain; (3) 
type of domain divergences. Most of the DA tech-
niques assume that the source and target domain 
are “nearer” to each other, in the sense that the 
instances are directly related. In these cases, sin-
gle-step adaptation is sufficient to align both the 

domains. However, if this assumption does not 
hold true, multi-step adaptation is used where a 
set of intermediate domains is used to align the 
source and target domains. Prevalent literature 
also classifies DA in supervised, semi-supervised, 
and unsupervised setting according to the pres-
ence of labels in source and target domain. Never-
theless, there are inconsistencies in the definition 
within the literature; while some papers refer to 
the absence of target labels as unsupervised DA, 
others define it as an absence of both the source 
and target labels. Hence, in this section, we cate-
gorize the DA techniques with respect to the type 
of domain divergences. Section 1.1 gives out the 
formal notation and formulations for DA setting.

Earlier works categorized the domain adapta-
tion problem into homogeneous and heterogene-
ous settings. Homogeneous domain adaptation 
deals with the situation when both the source and 
target domains share a common feature space X  
but different data distributions P(X) or P(Y|X). 
Some traditional methods for homogeneous 
domain adaptation include instance re-weight-
ing25, feature transformations39,97, or kernel-
based techniques that learn an explicit transform 
from source to target domain50,78,154. Figure 3 
pictorially presents the traditional domain adap-
tation methods. All the techniques address-
ing this problem aim to correct the differences 

Figure 3: Conventional techniques for domain 
adaptation. The original model is trained to clas-
sify  and . However, it is able to classify  and 

 only after applying appropriate DA techniques.
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between conditional and marginal distributions 
between the source and target domain. Hetero-
geneous domain adaptation pertains to the con-
dition when the source and target domains are 
represented in different feature space. This is 
particularly important for problems in the vis-
ual domain such as image recognition80,117,263, 
object detection, semantic segmentation128, 
and face recognition as different environments, 
background, illumination, viewpoint, sensor, or 
post-processing can cause a shift between the 
train and test distributions. Moreover, a differ-
ence between the tasks also demands the model 
to be adapted to the target domain task. Manifold 
alignment238 and feature augmentation49,130 are 
some of the techniques used for aligning feature 
spaces in heterogeneous adaptation. A detailed 
survey of traditional adaptation techniques is out 
of the scope of this survey. We direct readers to 
Ben-David et al.16 and Pan et al.153 for a summary 
of homogeneous and Day and Khoshgoftaar40 
and Weiss et al.242 for a detailed overview of het-
erogeneous adaptation techniques. Patel et al.158, 
Shao et al.199, and Csurka37 provide an over-
view of shallow domain adaptation methods on 
visual tasks. In this paper, we briefly state recent 
advances in deep domain adaptation techniques 
pertaining computer vision tasks.

Taking a cue from the success of deep neural 
networks for learning a feature representation, 
recent DA methods use them to learn representa-
tions invariant to the domain; thus inserting the 
DA framework within the deep learning pipe-
line. Earlier work using deep neural networks 
only used the features extracted from the deep 
network for feature augmentation149 or subspace 
alignment139,169 of two distinct visual domains. 
Although these methods perform better than 
state-of-the-art traditional DA techniques, they 
do not leverage neural networks to directly learn 
a semantically meaningful and domain-invariant 
representation.

Contemporary methods use discrepancy-
based or adversarial approaches for domain 
adaptation. Discrepancy-based methods posit 
that fine-tuning a deep network with target 
domain data can alleviate the shift between 
domain distributions45,151,253. Labels or attribute 
information70,227, Maximum Mean Discrepancy 
(MMD)226,249, correlation alignment212, statisti-
cal associations87, and batch normalization131 are 
some of the criterion used while fine-tuning the 
model.

Adversarial methods encompass a framework 
which consists of a label classifier trained adver-
sarially to the domain classifier. This formulation 

aids the network in learning features which are 
discriminative with respect to the learning task 
but indiscriminate with respect to the domain. 
Ganin et al.68 introduced DANN architecture 
which uses a gradient reversal layer to ensure 
that feature distributions over the two domains 
are aligned. Liu and Tuzel136 introduce a GAN-
based framework in which the generator tries 
to convert the source domain instances to those 
from the target domain and the discriminator 
tries to distinguish between transformed source 
and target domain instances. Bousmalis et al.20, 
Hoffman et al.95, Shrivastava et al.202 and Yoo 
et al.252 also focus on generating synthetic target 
data using adversarial loss, albeit using it in pixel 
space instead of embedding space. Sankaranaray-
anan et al.193 use a GAN only to obtain the gradi-
ent information for learning a domain-invariant 
embedding, noting that successful domain align-
ment does not strictly depend on image genera-
tion. Tzeng et al.228 propose a unified framework 
for adversarial methods summarizing the type of 
adversary, loss function, and weight sharing con-
straint to be used during training. 

Generative Adversarial Network (GAN)

GAN79 consists of two neural networks; a generator 
that creates samples using noise and a discriminator 
which receives samples from both the generator and 
real data set and classifies them. The two networks are 
trained simultaneously with the intention that the gen-
erated samples are indistinguishable from real data at 
equilibrium. Apart from producing images, text, sound, 
and other forms of structured data, GANs have been 
instrumental in driving research in machine learning; 
particularly in the cases where data availability is limited. 
Data augmentation7,62 using GANs has resulted in 
higher performing models than those which use affine 
transformations. Adversarial adaptation, a paradigm 
inspired by GAN framework, is used to transfer the data 
from the source to the target domain. Other notable 
applications of GANs include data manipulation140, 
adversarial training119, anomaly detection195, and adver-
sarial cryptography1

Reconstruction-based techniques try to con-
struct a shared representation between the source 
and target domains while maintaining the indi-
vidual characteristics of both the domains intact. 
Ghifary et al.72 use an encoder which is trained 
simultaneously to accomplish source-label pre-
diction along with target data reconstruction. 
Bousmalis et al.19 train separate encoders to 
account for domain-specific and domain-invar-
iant features. In addition, it uses domain-invar-
iant features for classification while using both 
kinds of features for reconstruction. Methods 
based on adversarial reconstruction are proposed 
in Kim et al.112, Russo et al.187, Yi et al.251, Zhu 
et al.262 which use a cyclic consistency loss as the 
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reconstruction loss along with the adversarial loss 
to align two different domains.

Optimal transport is yet another technique 
used for deep DA38,173. Courty et al.36 assign 
pseudo-labels to the target data using the source 
classifier. Furthermore, they transport the source 
data points to the target distribution minimizing 
the distance traveled and changes in labels while 
moving the points.

Visual adaptation has been studied for 
problems such as cross-modal face recogni-
tion137,207, object detection31,94, semantic seg-
mentation32,225,259, person re-identification42, 
and image captioning29. Although deep DA has 
achieved considerable improvement over the 
traditional techniques, much of the work in the 
visual domain has focused on addressing homo-
geneous DA problems. Recently, heterogeneous 
domain adaptation problems such as face-to-
emoji215 and text-to-image synthesis176,254 have 
also been addressed using adversarial adaptation 
techniques. Another interesting direction of work 
pertains open set DA21,23,255 which loosens the 
assumption that output sets of both the source 
and target class must exactly be the same. Tan 
et al.216 address the problem of distant domain 
supervision transferring the knowledge from 
source to target via intermediate domains. An 
in-depth survey of deep domain adaptation tech-
niques is presented in Wang and Deng239.

4  Weakly Supervised Learning
Weakly supervised learning is an umbrella term 
covering the predictive models which are trained 
under incomplete, inexact, or inaccurate labels. 
Incomplete supervision encompasses the situa-
tion when the annotation is only available for a 
subset of training data. As an example, take the 
problem of image classification with the ground 
truth being provided through human annotation. 
Although it is possible to get a huge number of 
images from the internet, only a subset of these 
images can be annotated due to the cost associ-
ated with labeling. Inexact supervision pertains to 
the use of related, often coarse-level annotations. 
For instance, a fully supervised object localiza-
tion requires to delineate the bounding boxes; 
however, usually, we only have image-level labels. 
Finally, noisy or non-ground truth labels can be 
categorized as inaccurate supervision. Collabora-
tive image tags on social media websites can be 
considered as noisy supervision. Apart from sav-
ing annotation cost and time, weakly supervised 
methods have proven to be robust to change in 
the domain during testing.

4.1  Incomplete Supervision
Weakly supervised techniques pertaining incom-
plete labels make use of either semi-supervised 
or active learning methods. The conventional 
semi-supervised approaches include self-training, 
co-training18,165, and graph-based methods51. 
A discussion on these is out of the scope of this 
survey. Interested readers are directed to Chapelle 
et al.24 for a detailed overview of semi-supervised 
learning.

Active learning methods are used in computer 
vision to reduce labeling efforts in problems such 
as image annotation109, recognition235, object 
detection250, segmentation234, and pose estima-
tion135. In this paradigm, unlabeled observations 
are optimally selected from the data set to query 
at the training time. For instance, localizing a car 
occluded by a tree is more difficult than another 
non-occluded car. Thus, the human annotator 
could be asked to assign ground truth for the 
former case which may lead to improved perfor-
mance for the latter case. A typical active learning 
pipeline alternates between picking the most rel-
evant unlabeled examples as queries to the oracle 
and updating the prior on the data distribution 
with the response34. Some common query for-
mulation strategies include maximizing the label 
change61, maximizing the diversity of selected 
samples53, reducing the expected error of classi-
fier184, or uncertainty sampling194. A survey by 
Settles198 gives insight into various active learning 
techniques.

Although both semi-supervised and active 
learning techniques have been used to address 
different problems in the visual domain, there 
has been an increased interest towards the latter 
after the emergence of deep learning-based meth-
ods. Sener and Savarese197 and Gal et al.65 present 
an effective method to train a CNN using active 
learning heuristics. An approach to synthesize 
query examples using GAN is proposed by Bento 
and EDU261. Fang et al.55 reframe active learning 
as a reinforcement learning problem. In addition, 
deep active learning methods have been used to 
address vision tasks such as object detection in 
Roy et al.185.

4.2  Inexact Supervision
Apart from dealing with partially labeled data 
sets, weakly supervised techniques also help relax 
the degree of annotation needed to solve a struc-
tured prediction problem. Full annotation is tedi-
ous and time-consuming process—contemporary 
vision data sets reflect this fact. For example, in 
Imagenet186, while 14 million images are provided 
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with image-level labels and 500,000 are annotated 
with bounding boxes; only 4460 images have 
pixel-level object category labels. Thus, the devel-
opment of training regimes which learn com-
plex concepts from light labels is instrumental in 
improving the performance of several tasks.

A popular approach to harness inexact labels 
is to formulate the problem in multiple-instance 
learning (MIL) framework. In MIL, the image 
is interpreted as a bag of patches. If one of the 
patches within the image contains the object 
of interest, the image is labeled as a positive 
instance, otherwise negative. Learning scheme 
alternates between estimating object appearance 
model and predicting the patches within posi-
tive images. As this setup results in a non-convex 
optimization objective, several works suggest 
initialization209, regularization208, and curricu-
lum learning118 techniques to alleviate the issue. 
Recent works100,243 embed the MIL framework 
within a deep neural network to exploit the weak 
supervision signal.

Structured prediction problems such as 
weakly supervised object detection (WSOD) and 
semantic segmentation have garnered a lot of 
attention in the recent years. Bilen and Vedaldi17 
propose an end-to-end WSOD framework for 

object detection using image-level labels. Several 
other techniques have been employed as super-
vision signal for WSOD such as object size200 
and count69, click supervision156,157, and human 
verification155. Similar methods have also been 
proposed for weakly supervised semantic seg-
mentation problems15,98,111,132,142,163. Figure 4 
depicts some weak supervision signals used for 
semantic segmentation problem.

4.3  Inaccurate Supervision
As curating large-scale data sets is an expen-
sive process, building a machine learning model 
which uses web data sets such as YouTube8m2, 
YFCC100M218, and Sports-1M110 is one of the 
pragmatic ways to leverage the almost infinite 
amount of visual data. However, labels in these 
data sets are noisy and pose a challenge for the 
learning algorithm. Several studies have investi-
gated the effect of noisy instances or labels on the 
performance of the machine learning algorithm. 
Broadly, we categorize the techniques into two 
sets—the first approach resorts to treating the 
noisy instances as outliers and discard them dur-
ing training54,211. Nevertheless, noisy instances 
may not be outliers and occupy a significant por-
tion of the training data. Moreover, algorithms 

Figure 4: An example of the varying degree of supervision for semantic segmentation problem. Although 
pixel-level labels provide strong supervision, they are relatively expensive to obtain. Thus, the recent 
literature suggests techniques which exploit polygon labels, scribbles, image-level labels, or even col-
laborative image tags from social media platforms (note that hashtags are not only inexact but also an 
inaccurate form of supervision).
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pursuing this approach find it difficult to distin-
guish between noisily labeled and hard training 
examples. Hence, methods in this set often use a 
small set of perfectly labeled data. Another stream 
of methods focus on building algorithms robust 
to noise107,146,175,230 by devising noise-tolerant 
loss functions73 or adding appropriate regulari-
zation terms9. For a comprehensive overview of 
learning algorithms robust to noise, we refer to 
Frénay and Verleysen60.

Consequently, a plethora of techniques have 
been proposed to harness the deep neural net-
works in a “webly” supervised scenario. As most 
of the data on the web is contributed by non-
experts, it is bound to be inaccurately labeled. 
Hence, techniques used to address noisy annota-
tions can be applied if the training data are col-
lected from the web. Chen and Gupta30 propose 
a two-stage curriculum learning technique on 
easier examples before adapting it to web images. 
Xiao et al.247 predict the type of noise in each of 
the instances and attempt to remove it. Webly 
supervised methods have been proposed for 
many tasks in visual domain such as learning 
visual concepts43,67, image classification233, video 
recognition66, and object localization264.

5  k‑Shot Learning
One of the distinguishing characteristics of 
human visual intelligence is the ability to acquire 
an understanding of novel concepts from very 
few examples. Conversely, a majority of current 
machine learning techniques show a precipitous 
decrease in performance if there are an insuf-
ficient number of labeled examples pertaining 
to a certain class. Few-shot learning techniques 
attempt to adapt the current machine learning 
methods to perform well under a scenario where 
only a few training instances are available per 
class. This is of immense practical importance—
for instance, collecting a traffic data set might 
result in only a few instances of auto-rickshaws. 
However, during testing, we would like the model 
to recognize auto-rickshaws with various scales, 
angles and other variations which might not be 
present in the training set. Earlier methods such 
as Fei-Fei et al.57 use Bayesian learning-based 
generative framework with the assumption that 
the prior built from previously learned classes can 
be used to bootstrap learning for novel categories. 
Lake et al.121 built a Hierarchical Bayesian model 
which performs similarly to humans on few-
shot alphabet recognition tasks. However, their 
method is shown to work only for simple data 
sets such as Omniglot122. Wang and Hebert241 

learn to regress from parameters of the classifier 
trained on a few images to the parameters of the 
classifier trained on a large number of images. 
More recent efforts into a few-shot learning tech-
niques can be broadly categorized into metric-
learning and meta-learning-based methods.

Metric learning aims to design techniques 
for embedding the input instances to a feature 
space beneficial to few-shot settings. A common 
approach is to find a good similarity metric in the 
new feature space applicable to novel categories. 
Koch et al.114 use a deep learning model based 
on computing the pairwise distance between 
the samples based on Siamese networks follow-
ing which the learned distance is used to solve a 
few-shot problems through k-nearest-neighbor 
classification. Vinyals et al.236 propose an end-to-
end trainable one-shot learning technique based 
on cosine distance. Other loss functions used for 
deep metric learning include triplet loss Schroff 
et al.196 and adaptive density estimation Rippel 
et al.181. Mehrotra and Dukkipati143 approximate 
the pairwise distance by training a deep residual 
network in conjunction with a generative model.

Meta-learning entails a class of approaches 
which quickly adapt to a new task using only a 
few data instances and training iterations. To 
achieve this, the model is trained on a set of tasks, 
such that it transfers the “learning ability” to a 
novel task. In other words, meta-learners treat the 
tasks as training examples. Finn et al.59 propose 
a model agnostic meta-learning technique which 
uses gradient descent to train a classification 
model such that it is able to generalize well on 
any novel task given very few instances and train-
ing steps. Ravi and Larochelle172 also introduce 
a meta-learning framework employing LSTM 
updates for a given episode. Recently, a method 
proposed by Mishra et al.145 also exploits contex-
tual information within the tasks using temporal 
convolutions.

Another set of methods for few-shot learn-
ing relies on efficient regularization techniques 
to avoid over-fitting on the small number of 
instances. Hariharan and Girshick90 suggest a 
gradient magnitude regularization technique for 
training a classifier along with a method to hallu-
cinate additional examples for a few-shot classes. 
Yoo et al.252 also regularize the dimensionality of 
parameter search space through efficiently clus-
tering them ensuring the intra-cluster similarity 
and inter-cluster diversity.

Literature pertaining to Zero-Shot Learning 
(ZSL) focuses on finding the representation of a 
novel category without any instance. Although 
it has a strong semblance to few-shot learning 
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paradigm, methods used to address ZSL are dis-
tinct from few-shot learning. A major assumption 
taken in this setting is that the classes observed 
by model during training are semantically related 
to the unseen classes encountered during test-
ing. This semantic relationship is often captured 
through class-attributes containing shape, color, 
pose, etc., of the object which are either labeled 
by experts or obtained through knowledge 
sources such as Wikipedia, Flickr, etc. Lampert 
et al.123 were first to propose a zero-shot recogni-
tion model which assumes independence between 
different attributes and estimates the test class by 
combining the attribute prediction probabili-
ties. However, most of the subsequent work takes 
attributes as the semantic embedding of classes 
and tackles it as a visual semantic embedding 
problem4,56,124,245. More recently, word embed-
dings206,256 and image captions176 have also been 
used in place attributes as a semantic space. Fig-
ure 5 compares the two common approaches to 
ZSL with supervised learning.

In ZSL, a joint embedding space is learned dur-
ing training where both the visual features and 
semantic vectors are projected. During testing on 
unseen classes, nearest-neighbor search is per-
formed in this embedding space to match the pro-
jection of visual feature vector against a novel object 
type. A pairwise ranking formula is used to learn 
parameters of a bi-linear model in Akata et al.4 and 
Frome et al.63. Recently, Zhang et al.256 argue to use 
the visual space as the embedding space to alleviate 
the hubness problem when performing nearest-
neighbor search in semantic space. We refer the 
readers to Xian et al.246 for detailed evaluation and 
comparison of contemporary ZSL methods.

Some other tasks which have shown promis-
ing results in a zero-shot setting are video event 
detection86, object detection14, action recogni-
tion166, and machine translation106.

6  Self‑supervised Learning
In self-supervised learning, we obtain feature 
representation for semantic understanding tasks 
such as classification, detection, and segmenta-
tion without any external supervision. Explicit 
annotation pertaining to the main task is avoided 
by defining an auxiliary task that provides a 
supervisory signal in self-supervised learning. 
The assumption is that successful training of the 
model on the auxiliary task will inherently make 
it learn semantic concepts such as object classes 
and boundaries. This makes it possible to share 
knowledge between two tasks. Self-supervision 
has a semblance to transfer learning where 
knowledge is shared between two different but 
related domains. However, unlike transfer learn-
ing, it does not require a large amount of anno-
tated data from another domain or task. Figure 6 
illustrates the difference between both the para-
digms in the context of vehicle detection.

Before the advent of deep learning-driven 
self-supervision models, a significant work was 
carried out in unsupervised learning of image 
representations using hand-crafted205 or mid-
level features204. This was followed by deep 
learning-based methods like autoencoders93, 
Boltzmann machines192, and variational meth-
ods113 which learn by estimating latent param-
eters which help to reconstruct the data.

The existing literature pertaining self-super-
vision relies on using the spatial and temporal 
context of an entity for “free” supervision signal. 
A prime example of this is Word2Vec144 which 
predicts the semantic embedding of a particu-
lar word based on the surrounding words. In 
the visual domain, context is efficiently used by 
Doersch et al.44 to predict the relative location 
of two image patches as a pretext task. The same 
notion is extended in Noroozi and Favaro150 by 
predicting the order of shuffled image patches. 

Figure 5: Comparison of supervised learning with ZSL. Features are not available for C3 and C4 at the 
time of training. However, the availability of attributes or semantic embeddings for both the train and test 
classes aid the training of ZSL framework.
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Apart from spatial context based auxiliary tasks, 
predicting color channel from luminance val-
ues125,257 and regressing to a missing patch in 
an image using generative models159 have also 
been used to learn useful semantic information 
in images. Other modalities used for feature 
learning in images include text77, motion160,164, 
and cross-channel prediction258. Recently, Huh 
et al.99 take advantage of EXIF metadata embed-
ded in the image as a supervisory signal to deter-
mine if it has been formed by splicing different 
images.

For videos, temporal coherence serves as an 
intrinsic underlying structure: two consecutive 
image frames are likely to contain semantically 
similar content. Each object within the frame is 
expected to undergo some transformations in the 
subsequent frames. Wang and Gupta240 use rela-
tionships between the triplet of image patches 
obtained from tracking. Misra et al.147 train a 
network to guess whether a given sequence of 
frames from a video are in chronological order. 

Lee et al.127 make the network predict the cor-
rect sequence of frames given a shuffled set. 
Apart from temporal context, estimating camera 
motion103, ego-motion3, and predicting the statis-
tics of ambient sound8,152 have also been used as a 
proxy task for video representation learning. 

Self-supervision for Urban Scene Understanding

As solving autonomous navigation takes centre stage 
in both vision and robotics community, urban scene 
understanding has become a problem of utmost inter-
est. More often than not, annotating each frame for 
training is a tedious job. As self-supervision gives the 
flexibility to define an implicit proxy task which may or 
may not require annotation, it is one of the preferred 
methods for addressing problems such as urban scene 
understanding. Earlier work in this area includes Stavens 
and Thrun210 where authors estimate the terrain rough-
ness based on the “shocks” which the vehicle receives 
while passing over it. Jiang et al.105 show that predict-
ing relative depth is an effective proxy task for learning 
visual representations. Ma et al.141 propose a multi-
modal self-supervised algorithm for depth completion 
using LiDAR data along with a monocular camera

Figure 6: Strong supervision vs. weak supervision vs. self-supervision.  and  depict fully connected 
and convolutional layers, respectively.
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7  Conclusion and Discussions
In the past decade, computer vision has benefited 
greatly from the fact that neural networks act as 
universal approximator of functions. Integrat-
ing these networks in the pre-existing machine 
learning paradigms and optimizing through 
backpropagation have consistently improved per-
formance for different visual tasks. In this survey 
paper, we reviewed recent work pertaining to the 
paradigms which fall between fully supervised 
and unsupervised learning. Although most of our 
references lie in the visual domain, the same para-
digms have been prevalent in related fields such 
as NLP, speech, and robotics.

The space between fully supervised and unsu-
pervised learning can be qualitatively divided on 
the basis of the degree of supervision needed to 
learn the model. While synthetic data are cost 
effective and flexible alternative to real-world 
data sets, the models learned using it still need 
to be adapted to the real-world setting. Transfer 
learning techniques address this issue by explic-
itly aligning different domains through discrep-
ancy-based or adversarial approaches. However, 
both of these techniques require “strict” anno-
tation pertaining to the task which hinders the 
generalization capability of the model. Weakly 
supervised algorithms relax the need of exact 
supervision by making the learning model toler-
ant of incomplete, inexact, and inaccurate super-
vision. This helps the model to harness the huge 
amount of data available on the web. Even when a 
particular domain contains an insufficient num-
ber of instances, methods in k-shot learning try 
to build a reasonable model using parameter reg-
ularization or meta-learning techniques. Finally, 
self-supervised techniques completely eliminate 
the need of annotation as they define a proxy task 
for which annotation is implicit within the data 
instances.

These techniques have been successfully 
applied in both structured and unstructured 
computer vision applications such as image clas-
sification, object localization, semantic segmenta-
tion, action recognition, image super-resolution, 
image caption generation, and visual question 
answering. Despite their success, recent models 
weigh heavily on deep neural networks for their 
performance. Hence they carry both the pros 
and cons of using these models; cons being lack 
of interpretability and outcomes which largely 
depend on hyperparameters. Addressing these 
topics may attract increasingly more attention in 
the future.

Some very recent work combines ideas from 
two or more paradigms to obtain results in a 

very specialized setting. Peng et al.161 address the 
domain adaptation problem when no task-rele-
vant data are present in the target domain. Inoue 
et al.101 leverage the full supervision in source and 
inaccurate supervision in the target domain to 
perform transfer learning for object localization 
task.

In the coming years, the other learning para-
digms inspired by human reasoning and abstrac-
tion such as meta-learning6,59, lifelong learning33, 
and evolutionary methods may also provide 
interesting avenues in research. We hope that 
this survey helps researchers by easing the under-
standing of the field and encourage research in 
the field.
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